Instructor

Prof. Matt Liptak
Discovery W112
(802) 656 – 0161
matthew.liptak@uvm.edu

Lecture

MWF 12:00 - 12:50, Rowell 115

Office Hours

TF 2:00 – 3:00, Discovery W112

Exams

F Sep. 29, 12:00 PM, Rowell 115 F Nov. 3, 12:00 PM, Rowell 115 M Dec. 11, 10:30 AM, Rowell 115

Course Description

Chem 231 will cover the fundamentals of inorganic chemistry within the frameworks of molecular symmetry and molecular orbital theory. All areas of inorganic structure, bonding, and reactivity will be covered, with an emphasis on transition metal complexes.

Textbook

Miessler, G.L. and Tarr, D.A. Inorganic Chemistry, 5th Ed., Prentice Hall, 2013

Web Content

Lecture notes, problem sets, and problem set answer keys will be available through Blackboard (bb.uvm.edu). These materials are available for all current, UVM-affiliated, students, but they may not be shared off-campus without permission of the instructor.

Course Goals

Upon completion of Chem 231, it is anticipated that you will:

- 1. Understand the relationship between molecular symmetry and bonding.
- 2. Appreciate the use of molecular orbital theory as a *general* approach that can explain the chemical properties of inorganic and organic molecules.
- 3. Recognize why transition metal complexes can have structures and properties unique from those of main group compounds.

Academic Honesty

As UVM students, you are expected to conduct yourself in accordance with the Code of Academic Integrity: http://www.uvm.edu/policies/student/acadintegrity.pdf

Accommodations

All exam accommodations must be requested via e-mail at least two weeks prior to the scheduled exam time in order to receive consideration.

Course Outline

Unit #1 – Fundamentals of Inorganic Chemistry

- I. Molecular Symmetry
- II. Vibrational Spectroscopy
- III. Molecular Orbital Theory
- IV. Main Group Bonding

Unit #2 - Structure and Bonding of Inorganic Compounds

- V. Acid-Base Chemistry
- VI. Solid State Chemistry
- VII. Transition Metal Bonding
- VIII. Ligand Field Theory

Unit #3 – Spectroscopy and Reactivity of Coordination Complexes

- IX. Electronic Spectroscopy
- X. Coordination Chemistry
- XI. Organometallic Chemistry
- XII. Bioinorganic Chemistry

Problem Sets

Problem sets will be handed out approximately once a week throughout the course of the semester. These problem sets are intended to solidify your understanding of the major course concepts and challenge you to think critically using your new-found knowledge. Please follow a "no writing utensil" rule when discussing these assignments with your classmates. Problem sets are due at the *beginning* of class. Late Problem sets will not be accepted, but the two lowest scores will be dropped.

Exams

Three exams are scheduled for Chemistry 231, which will cover units 1-3 separately. In other words, the exams will not be cumulative. Exams #1 and #2 are scheduled for 12 PM on **September 29** and **November 3**. Exam #3 will use our final exam time: **December 11** at 10:30 AM.

Grading

Your grade will be based upon problem sets (25%) and three exams (25% each). I strive to be as accurate as possible when grading problem sets and exams, but will occasionally make a mistake. You may request a complete regrade of an assignment, plus a clear explanation for any lost points, at any point prior to administration of the final exam.

Tentative Course Schedule

	Monday	Wednesday	Friday
Aug. 28	Course Overview	Proper Rotations (4.1)	Improper Rotations (4.1)
Sep. 4	Labor Day	Point Groups (4.2)	Character Tables (4.3)
	No Class		PS #1 Due
Sep. 11	Molecular Vibrations (4.4)	IR and Raman Spectra (4.4)	Molecular Orbitals (5.1)
			PS #2 Due
Sep. 18	Homonuclear Diatomics (5.2)	Heteronuclear Diatomics (5.3)	Main Group σ Bonding (5.4)
			PS #3 Due
Sep. 25	Main Group π Bonding (5.4)	Walsh Diagrams	Exam #1
		PS #4 Due	12:00 PM
Oct. 2	Lewis Acid-Base (6.4)	Intermolecular Forces (6.5)	Hard-Soft Acid-Base (6.6)
Oct. 9	Fall Recess	Solid State Structure (7.1)	Lattice Energy (7.2)
	No Class	PS #5 Due	
Oct. 16	Band Structure (7.3)	Coordination Complexes (9.3)	Metal σ Bonding (10.3)
		PS #6 Due	
Oct. 23	Metal π Bonding (10.3)	Ligand Field Splitting (10.3)	Angular Overlap Model (10.4)
		PS #7 Due	
Oct. 30	Jahn-Teller Effect (10.5)	UV/Vis Abs Spectra (11.1)	Exam #2
		PS #8 Due	12:00 PM
Nov. 6	Electronic States (11.2)	Ligand Field Transitions (11.3)	O _h Substitution (12.1-12.5)
			PS #9 Due
Nov. 13	D_{4h} Substitution (12.6-12.7)	Oxidation-Reduction (12.8)	Oxidative Addition (14.1)
			PS #10 Due
Nov. 20	Thanksgiving Recess	Thanksgiving Recess	Thanksgiving Recess
	No Class	No Class	No Class
Nov. 27	Insertion/Elimination (14.2)	Catalysis (14.3)	Tetrapyrroles (16.1)
			PS #11 Due
Dec. 4	Metalloproteins (16.2)	Nitrogen Fixation (16.3)	Course Summary
			PS #12 Due
Dec. 11	Exam #3		
	10:30 AM		