Chem 286: NMR methodology		course syllabus		instructor: Monika Ivancic	
					Lab component
January 18	course overview; lab structure & s NMR spectrometer: magnet, cons				
Jan 23 & <u>25</u>	NMR active nuclei, principles behind NMR (how and why it works) Principles behind NMR: E-levels, Boltzmann distribution			lab 1:	¹ H 1D on Bruker & using MNova
Jan 30 & Feb 1	The vector model of NMR: rotating frame, the pulse & QPD				
February 6 & 8	The vector model (cont'd): phase cycling, Nyquist & sampling the FID Recording the spectrum: time and frequency domains				
Feb 13 & <u>15</u>	Practical aspects of ¹³ C NMR NOE enhancement vs. Polarization		lab 2:	¹³ C 1	D & DEPT on Bruker
February 22	Chemical shifts and coupling Electron shielding; origin of spin-s	pin coupling			
Feb 27 & Mar 1X-nuclei NMR and kinetics by NMRIab 3:19 F & 31 P 1D on Bruker					
March 6 & 8	Midterm exam T1 & T2 relaxation; Mechanisms o	f relaxation			
March 20 & <u>22</u>	Review of calibrating the 90° pulse Intro to 2D NMR; Homo vs. heteronuclear experiments lab 4: quantitative ¹ H 1D on Varian				
March 27 & 29	COSY vs. TOCSY spectroscopy 1H-1H thru bond experiments				
April 3 & <u>5</u>	1H-1H thru space experiments 2D NOESY vs. ROESY theory and p		ab 5:	COS	//TOCSY on Varian
April 10 & 12	special topics ideas: RDCs, protein NMR, large molecule NMR, DOSY Prep for end-of-semester student presentations				
April 17 & <u>19</u>	¹ H- ¹³ C HSQC (1-bond) and HMBC (Experiment setup; data interpreta		ab 6:	HSQ	C/HMBC on Varian
April 24 & 26	Dynamic NMR: lineshape analysis vs. Coalescence T; rate constants $k_{\rm c}$ Intermolecular exchange processes				
May 1 & 3	Final: student presentations on s	pecial NMR topics			