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Abstract. A mathematical knot is an embedding of a circle into Euclidean

three-space. In general, distinguishing knots is nontrivial. Tricolorability and

writhe provide elementary insight for invariance of knots. Knot polynomials

provide further accuracy in distinction of knots while maintaining a relative

ease of computability.
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1. Introduction

The purpose of this paper is to cover the fundamentals in the field of knot the-

ory, providing an adequate jumping-off point for anyone wishing to study the

mathematics of knots. We assume the reader has knowledge covering roughly

that of a first course in topology, including a basic understanding of homeomor-

phisms and embeddings. Section 2 is a review of homotopy and isotopy, followed

by the definition of ambient isotopy. We begin Section 3 with a precise definition

of a knot, followed by a first look at knot diagrams and the Reidemeister moves.

Section 4 explains tricolorability and the writhe number. Lastly, Section 5 de-

tails the construction of the Jones polynomial by combining the Kauffman bracket

polynomial with the writhe number. We conclude with a few calculations of knot

polynomials for small diagrams.
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2. Prereqisites

Before discussing knots, we will review homotopy and isotopy.

Definition 2.1. Let - and . be topological spaces, and let 5 and 6 be continuous

functions from - to . . A homotopy between 5 and 6 is a continuous function

� : - × [0, 1] → . such that

(1) � (G, 0) = 5 (G)
(2) � (G, 1) = 6(G).

Definition 2.2. Let - and . be topological spaces, and let 5 and 6 be embeddings

of- into. . An isotopy between 5 and6 is a continuous function� : - ×[0, 1] →
. such that

(1) � (G, 0) = 5 (G)
(2) � (G, 1) = 6(G)
(3) � (G, C) is an embedding of - into . for all C ∈ [0, 1].

It is common for knot equivalence to be stated in terms of ambient isotopy.

The principle is the same as isotopy; they are both continuous families of home-

omorphisms taking one embedding to another. However, an ambient isotopy is,

essentially, a deformation of the space in which the embeddings live; embeddings

themselves merely come along for the ride.

Definition 2.3. Let- and. be topological spaces, and let 5 and 6 be embeddings

of - into . . An ambient isotopy between 5 and 6 is a continuous family of

homeomorphisms � : . × [0, 1] → . with the following properties.

(1) � (5 , 0) = 5
(2) � (5 , 1) = 6
(3) � (5 , C) is an embedding for all C ∈ [0, 1].

3. Mathematical Knots

3.1. What is a knot? In the physical world, knots are constructed by taking a

cord, wrapping it around itself somehow, and pulling the structure tight. This

knot may be untied by loosening the structure and undoing the steps that were

taken to tie it in the first place. It might make sense, then, to define a mathe-

matical knot as some embedding of the interval [0, 1] into R3. The trouble with

this definition lies in how we wish to distinguish knots. Mathematical knots are

considered equivalent under isotopy; using the above definition, any knot would

be equivalent to any other, because they would all be isotopic with the interval.

To quote Crowell and Fox, “we must get rid of the ends” [1]. So, to that end, we

use the following definition.

Definition 3.1. A knot is an embedding of the unit circle into R3.
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Figure 1. A tight and loose trefoil (overhand) knot tied with

paracord, followed by its analogous knot diagram.

The trivial knot, often called the unknot, is the mathematical equivalent of an

unknotted structure. In general, we call an embedding of one or more circles into

R3 a link. We refer to the maximally connected components of a link simply as

its components. Thus, a knot is a 1-component link.

Definition 3.2. The unknot is any knot isotopic to the trivial embedding of the

unit circle into R3, given by  (G,~) = (G,~, 0).

Definition 3.3. A link is an embedding of one or more circles into R3.

Remark. In this paper, we will focus purely on so-called tame knots. Loosely

speaking, they are knots which may be represented in the real world with a phys-

ical piece of string. Somewhat more technically, they are isotopic to a finite closed

chain of straight line segments in R3. All tame knots are isotopic to one that is

continuously differentiable. More on tame knots can be found in [1, pp. 5-6].

Theorem 3.1. Two tame knots are isotopic if, and only if, they are ambiently

isotopic.

This theorem is a consequence of the fact that a tame knot is isotopic with a

smooth manifold, for which isotopy and ambient isotopy are equivalent.

3.2. Knot diagrams. With the exception of the photographs of real-world knots,

the figures we have seen thus far are all examples of knot diagrams. A knot dia-

gram is simply a projection of a knot onto a plane, with information about how

strands cross one another. In fact, all diagrams we have seen have been in regular

position. A diagram in regular position has the following properties: at no point

in the diagram do more than two arcs cross at once, and no two arcs in the dia-

gram are tangent to one another. Regular diagrams avoid any ambiguity in their

representation of a knot. From this point onward, the term “diagram” will refer

to one in regular position.

Knot diagrams are the standard way to represent knots, though they have more

utility than visualization alone. By making small adjustments to a knot diagram,

we can obtain different representations of the same knot. These adjustments are

completely encapsulated in the Reidemeister moves.

Definition 3.4. The Reidemeister moves are the following three elementary op-

erations for knot diagrams.
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Remark. There are obvious variants of all three moves that we exclude from this

diagram, as they are very similar.

It is clear that a diagram obtained by some finite sequence of Reidemeister

moves on � is isotopic to � . Conversely, if � and � ′ are two regular diagrams

of isotopic knots, then there always exists some finite sequence of Reidemeister

moves to get from one to the other.

Theorem 3.2. Two knots are ambiently isotopic if, and only if, any regular dia-

gram of either knot may be obtained from that of the other by means of a finite

sequence of Reidemeister moves.

A complete proof of this theorem is given by Reidemeister himself [4, pp. 8–10].

The result makes it possible to study knot equivalence through the equivalence

of their diagrams alone. The rest of this paper focuses exclusively on invariants

computed on knot diagrams.

The last foundational topic we cover in this section is regular isotopy. This

stricter form of isotopy is another way in which knots may be considered equiv-

alent. Certain invariants only hold only for regular isotopy and not ambient iso-

topy, such as writhe (Section 4) and the Kauffman bracket polynomial (Section 5).

Definition 3.5. Two knot diagrams are regularly isotopic if one may be trans-

formed into the other without the use of Reidemeister move 1.

4. Simple Invariants

4.1. Tricolorability.

Definition 4.1. A knot  is tricolorable if, for all regular diagrams of  , each

continuous curve in the diagram may be colored with one of three colors such

that:

(1) At a crossing, either all three or only one color is present;

(2) All three colors are used in the diagram.

Figure 2. A tricoloring of the trefoil knot.
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In Figure 2, we see that the usual diagram of the trefoil knot is tricolorable. The

figure-eight knot is not tricolorable, the proof of which is simple and is left to the

reader.

Theorem 4.1. Tricolorability is an invariant of ambient isotopy.

Proof.

�

Remark. We are omitting proof for the previously mentioned variants of each

Reidemeister move.

If any one diagram of a knot is tricolorable, then any other diagram of that

knot is as well, so tricolorability places a knot in one of two groups: knots with a

tricoloring, and knots without a tricoloring. It is a weak invariant of knots. For

example, given any three distinct knots, it is impossible to distinguish them using

tricolorability alone. Nevertheless, it is an invariant.

4.2. Writhe. Thewrithe of a diagram, also called the twist number, is an invariant

of regular isotopy that is easily calculated from an oriented knot diagram. To give

a diagram orientation, we simply choose a directionality of the knot, notated with

arrows, as in Figure 4.

Definition 4.2. The writhe F ( ) of an oriented knot diagram  is the sum of

the signs of all crossings in the diagram.

The convention for crossing signs is shown in figure 3.

Theorem 4.2.Writhe is an invariant of regular isotopy.

Proof. It is easy to see that the first Reidemeister move does not preserve writhe.

The following shows invariance under moves 2 and 3.

�

The writhe numbers of the trefoil and figure-eight knots are 3 and 0, respec-

tively, as seen in Figure 4. We can be sure, then, that the trefoil is not equivalent

to the unknot under regular isotopy. On the other hand, the figure-eight knot

is indistinguishable from the unknot considering both writhe and tricolorability.

Though seemingly not very useful on its own, an important application of writhe

will be in our definition of the Jones polynomial.
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Figure 3. Sign conventions for crossings in an oriented diagram.

Figure 4. Calculating writhes of the trefoil and figure-eight.

5. Polynomial Invariants

The Jones Polynomial was originally formulated by means of von Neumann al-

gebras on elements of the braid group [2]. Louis Kauffman formulated the bracket

polynomial, in part, as a “self-contained introduction to the Jones polynomial” [3,

p. 395]. We will take Kauffman’s approach, as Jones’s original method is beyond

the scope of this paper. We conclude with some computations of knot polynomi-

als for small links.

Definition 5.1. Let  be a knot or link diagram. The bracket polynomial 〈 〉 is
the Laurent polynomial in the variable 0 defined by:

(i) 〈©〉 = 1
(ii) 〈© ∪  〉 = (−02 − 0−2) 〈 〉
(iii) 〈 〉 = 0 〈 〉 + 0−1 〈 〉

Here, the symbol “©” refers to a diagram of the unknot with no crossings. In

rule (iii), which we will call the splitting rule, the diagrams in the brackets are

assumed to differ only in the presented area. By applying these rules for 〈 〉
recursively, we will always terminate at some final configuration of disjoint un-

knots. This follows from the observation that an application of the splitting rule

essentially wipes out a single crossing from the diagram.

We can symbolically represent the action of splitting that takes place in the

splitting rule by placing a marker on a crossing that denotes which way it is to

be split, as in Figure 5. If we apply a marker to every crossing in a diagram  , we

obtain a state of  .
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Figure 5

Because the splitting of all crossings in a state results in a disjoint collection

of unknots, we see that the set of all states of  are in bijection with all final

configurations in the expansion of 〈 〉. Thus, for a diagram  and a state ( , we

define

〈 |(〉 = 08−9

where 8 is the number of markers corresponding with the coefficient 0 in the split-

ting rule, and 9 is the number of markers corresponding with the coefficient 0−1.
Each state, then, will contribute precisely 〈 |(〉 (−02−0−2) |( |−1 to the polynomial.

Therefore, we can express 〈 〉 as the sum over all states of  as follows;

〈 〉 =
∑
(

〈 |(〉 (−02 − 0−2) |( |−1

where |( | is the number of components in the configuration after splitting the

state ( completely.

=⇒ 〈 〉 = 02(−02 − 0−2) + 1 + 1 + 0−2(−02 − 0−2)

= −04 − 0−4

Figure 6. Calculation of the bracket for the Hopf link.
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Proposition 1.The bracket polynomial is an invariant of regular isotopy.

Proof of this proposition can be found in Kauffman’s article, where much of

the theory in this section is from [3, p. 398].

To achieve invariance of ambient isotopy, wemust deal with the behavior of the

bracket under the first Reidemeister move. Through direct calculation, we have

that 〈 〉 = −0−3 〈 〉 as well as 〈 〉 = −03 〈 〉. We know, as well, that writhe

is an invariant of regular isotopy and that the preceding diagrams have writhes

of +1 and −1, respectively. By augmenting the bracket polynomial to account for

this relationship, we obtain

5 [ ] = −0−3F ( ) 〈 〉 ,
an invariant under all three Reidemeister moves, and thus an invariant of oriented

knots and links. When the above polynomial is evaluated at C
−1/4, it is equivalent

to the Jones polynomial [2] [3].

Definition 5.2. Let  be an oriented link diagram. The Jones polynomial of  ,

denoted + (C) is defined as follows.
+ (C) := 5 [ ]

��
C
−1/4

5.1. Example Calculations.

=⇒ 〈 〉 = 03(−02 − 0−2)2 + 20(−02 − 0−2) + 0−1 + 0−1(−04 − 0−4)

= 07 − 0−5 − 03

F ( ) = −3, =⇒ 5 [ ] = −0−3(−3) (07 − 0−5 − 03) = −016 + 012 + 04

=⇒ + (C) = −C−4 + C−3 + C−1

Figure 7. Polynomials for the trefoil knot.
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=⇒ 〈 〉 = 0(07 − 0−5 − 03) + (−04 − 0−4) + 0−2(−02 − 0−2) (−04 − 0−4)

= 08 + 0−8 − 04 − 0−4 + 1

F ( ) = 0, =⇒ 5 [ ] = −0−3(0) (08 + 0−8 − 04 − 0−4 + 1)

= 08 + 0−8 − 04 − 0−4 + 1

=⇒ + (C) = C2 + C−2 − C − C−1 + 1

Figure 8. Polynomials for the figure-eight knot.

F ( ) = 2, and we know that 〈 〉 = −04 − 0−4 , so

5 [ ] = −0−3(2) (−04 − 0−4) = 0−10 + 0−2

=⇒ + (C) = C
5/2 + C 1/2

Figure 9. Polynomials for the Hopf link.
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=⇒ 〈 〉 = 0 + 0−1(−02 − 0−2) = −0−3

F ( ) = −1, =⇒ 5 [ ] = −0−3(−1) (−0−3) = 1

=⇒ + (C) = 1

Figure 10. Polynomials for a nontrivial unknot.
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