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1. Introduction

1.1. What is a knot? In the physical world, knots are constructed by taking a
cord, wrapping it around itself somehow, and pulling the structure tight. This
knot may be untied by loosening the structure and undoing the steps that were
taken to tie it in the �rst place. It might make sense, then, to de�ne a mathemat-
ical knot as some embedding of the interval [0, 1] into R3. The trouble with this
de�nition lies in how we wish to distinguish knots. Mathematical knots are con-
sidered equivalent under isotopy; using the above de�nition, any knot would be
equivalent to any other because they would all be isotopic with the interval. To
quote Crowell and Fox, “we must get rid of the ends” [2]. So, to that end, a knot
is de�ned as an embedding of the unit circle into R3.

The trivial knot, often called the unknot, is the mathematical representation of
an unknotted structure, de�ned as the trivial embedding of the unit circle into
R3, given by  (G,~) = (G,~, 0). In general, we call an embedding of one or more
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circles into R3 a link, and we refer to the maximally connected components of a
link simply as its components. Thus, a knot is a 1-component link.

Remark. In this paper, we will focus purely on so-called tame knots. Loosely
speaking, they are mathematical knots which are representations of real-world
knots. Somewhat more technically, they are isotopic to a �nite closed chain of
straight line segments in R3. All tame knots are isotopic to one that is continu-
ously di�erentiable. More on tame knots can be found in [2, pp. 5-6].

Figure 1. A tight and loose trefoil (overhand) knot tied with
paracord, followed by its analogous knot diagram.

1.2. Knot diagrams. The rightmost panel in Figure 1 is an example of a knot
diagram. A knot diagram is simply a projection of a knot onto a plane contain-
ing information about how strands cross one another. In fact, this diagram is in
what we call regular position. A diagram in regular position has the following
properties: at no point in the diagram do more than two arcs cross at once, and
no two arcs in the diagram are tangent to one another. Regular diagrams avoid
any ambiguity in their representation of a knot. From this point onward, the term
“diagram” will refer to one in regular position. Reidemeister’s book [3] contains
some of the foundational theory on knot diagrams, and allows for much of knot
theory to be done in terms of knot diagrams alone.

1.3. Organization of this paper. The purpose of this paper is to provide a clear
explanation of how to compute one presentation of the knot group (the funda-
mental group of the knot complement) of any tame knot from a knot diagram.
The method presented here is a reinterpretation of lecture notes by Jae Choon
Cha on the Wirtinger presentation [1]. Section 2 details a decomposition of a
general knot into an open cover that is conducive to van Kampen’s theorem. This
decomposition is used in section 3 to show that a presentation for the knot group
is computable for a general knot diagram, and we show how this computation
can be performed directly on the diagram in question. We conclude with a few
example calculations for small diagrams in Section 4.

2. Decomposition from a knot diagram

2.1. The principal component. In order to use the van Kampen theorem to
compute the knot group, we will need a decomposition of the knot complement
in the form of an open cover whose components have fundamental groups that
we understand. This cover is constructed directly from a knot diagram as follows.
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We assume the knot  with diagram " to exist in R2 × [−1,∞) such that the
strands in" lie entirely inR2×{0} and a neighborhood of each crossing resembles
Figure 2. The bottom of each undercrossing lies in R2 × {−1}. With  in this
position, we can de�ne the principal component of our cover as� := R2×[−1/2,∞]
so that each crossing inside � will locally resemble Figure 3.

Figure 2.
Crossing of  

Figure 3.
Crossing in �

Notice that  ∩� is a set of arcs corresponding with the strands in the original
diagram " . In general, the number of strands and the number of crossings in a
diagram are equal. So if the diagram " has = crossings, the complement � \  is
homotopic to a wedge of = circles, which we know has a �rst fundamental group
isomorphic to ⊕=8=1Z.

2.2. Taking care of the crossings. Because of how we have constructed the
principal component of the cover �, all that remains is to understand what each
crossing contributes to the knot group. The following is a general solution to
building the knot complement from �, one crossing at a time.

We �rst identify an annulus O in the plane R2 × {−1/2} that encircles the end-
points of the strands that meet this plane. To O we glue the (1 × � face of a �2 × �
as in Figure 5. Note that � := �2 × � is contractible and that O is homotopic to
(1. For each crossing in  we will glue �8 , a copy of �, as described above. The
resultant cover �

⋃
8 �8 is homotopic to R2 × [−1,∞) \  .

Figure 4.
� � �2 × �

Figure 5.
Glueing � to �
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3. Computation of the knot group

Now that we have a cover of the knot complement with components whose
fundamental groups we understand, what is left is to apply Van Kampen’s theorem
to determine a presentation of the knot group. Since each crossing is identical in
a neighborhood, it su�ces to apply Van Kampen locally for each crossing.

3.1. The crossing relator. First, we choose an orientation for  and identify a
point ? ∈ � that will be the common basepoint for each set in our cover. The
generators of c1(�) can then be visualized as = loops, each winding around one
of the = distinct strands of  ∩�. These loops are oriented according to the right-
hand-rule with respect to the orientation of  .

We now turn our attention to the neighborhood of a general crossing (Figure 6).
The annulusO is visualized as a homotopy-equivalent (1∪b , where b is an arc in�
from the (1 to the basepoint ? . We take the generator for the fundamental group of
O to be the loop starting at ? , going down b , once around the (1 counterclockwise,
and then back up b to ? . Call this generator l . It is now easy to see that l is
homotopy equivalent to the path composition WUW−1V−1, which is precisely the
relation we need on � ∩ �.

Figure 6. Generators near a crossing

3.2. Computing from a diagram. The relator we found in the previous section
can be calculated directly from the knot diagram. Figure 7 represents the same
picture as Figure 6 viewed from above. This view is conducive for computing the
group directly from a knot diagram. The knot group for an arbitrary knot  can
be calculated by the following steps.

(1) Choose an oriented knot diagram for  .
(2) Draw an arrow representing each generator of R3 \  with orientation

determined by the right-hand-rule as in Figure 7.
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(3) For each crossing, and starting with any generator for that crossing, list
the generators in counterclockwise order. List the generator U as U−1 if
and only if its arrow is pointing clockwise relative to the crossing. Add
this word to the generators of c1( ).

(4) When all crossings have been accounted for, the group is a presentation
of c1( ), called the Wirtinger presentation.

Figure 7.
Diagrammatic view of Figure 6

4. Example calculations

4.1. The trefoil.

c1( ) ≈
〈
U, V,W

�� WUV−1U−1, VWU−1W−1, UVW−1V−1〉
4.2. A nontrivial diagram of the unknot.

Both relators imply that U = V , so we have c1( ) ≈ 〈U, V | U = V〉 ≈ 〈U | 〉 ≈ Z,
as expected.
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