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SOLVING SOLVABLE QUINTICS

D. S. DUMMIT

5 3 2
Abstract. Let f{x) = x +px +qx +rx + s be an irreducible polynomial

of degree 5 with rational coefficients. An explicit resolvent sextic is constructed

which has a rational root if and only if f(x) is solvable by radicals (i.e., when

its Galois group is contained in the Frobenius group F20 of order 20 in the

symmetric group S5). When f(x) is solvable by radicals, formulas for the

roots are given in terms of p, q, r, s which produce the roots in a cyclic order.

1. Introduction

It is well known that an irreducible quintic with coefficients in the rational

numbers Q is solvable by radicals if and only if its Galois group is contained

in the Frobenius group F20 of order 20, i.e., if and only if the Galois group

is isomorphic to F20 , to the dihedral group DXQ of order 10, or to the cyclic

group Z/5Z. (More generally, for any prime p, it is easy to see that a solvable

subgroup of the symmetric group S whose order is divisible by p is contained

in the normalizer of a Sylow p-subgroup of S , cf. [1].) The purpose here is

to give a criterion for the solvability of such a general quintic in terms of the

existence of a rational root of an explicit associated resolvent sextic polynomial,

and when this is the case, to give formulas for the roots analogous to Cardano's

formulas for the general cubic and quartic polynomials (cf. [1, §14.7], for

example) and to determine the precise Galois group. In particular, the roots are

produced in an order which is a cyclic permutation of the roots (see the remark

before the examples below), which can be useful in other computations (e.g.,

cf. [3]). We work over the rationals Q, but the results are valid over any field

K of characteristic different from 2 and 5. The reader may wish to compare

Weber [4] (particularly §§189 and 196).

2. Fixed field of the Frobenius subgroup

Let xx, x2, x3, x4, x5 be the roots of the general quintic polynomial

5 _        4 3 _        2 _
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where the s¡ are the elementary symmetric functions in the roots. Let F2Q < S5

be the Frobenius group of order 20 with generators (12 34 5) and (2 3 54).

Then the stabilizer in S5 of the element

a _ a   _    2 2 2 2 2
C7   —   C/i    —   A i AtAc   ~T~  A i  AtA^     I- A t A i A t      i     AtA^Ac   "T* At Ai Ac

2 2 2 2 2
I AtAtA¿ i- A¿Ai At I A¿AtAc "T~ AcAi A* ~T" Ac A^Ai

is precisely F20 . It follows that 8X satisfies a polynomial equation of degree 6

over Q(s,, s2, s3, s4, s5) with conjugates

f92 = (123)0,

_    2 2 2 2 2
— Ai AtAc  l  Ai AiAí *T" A^AiA« "T" A^AiAc  [  At Ai At

2 2 2 2 2
"T" At AjAc     i    A j A|/Lc     i    A* a^Ai   "T" AcAi A-î     i    AcatA^ .

03 = (13 2)0,

_2 2 2 2 2
— A i At At ""i   A i AjAc    i- At A i A^ ""i   At A iAc ~\~ At A i *\ c

2 2 2 2 2
*T" An AtA*  T  AjAiAi  I  A*AtAc  I  At AiAa ~t~ AcAtA* *

04 = (12)0,

2 2 2 2 2
A j At A t "i- A i A^Ac    i- ai At Ac ""T" At AtA< ~\   A t A i A ¿

2 2 2 2 2
"l- At At Ac  1  -^4 A i At ~t~ A^AiAc "T" Ac A i Ai "T" Ac At A^ j

Ö, = (2 3)0.

—" A i A t A. * I A i A t A c I A -^ A < A c I At A -j A * | A t A i A t

2        2        2        2        2
I  At A(Ac —T A j A 1 A "1  l" A14 At A c "[  A c A i A j  l" A c At At >

06 = (13)0,

- Ai AtA^ "T" Ai AtAc  I  AtAi At  I  AtA4Ac "T" At A t A4

2 2 2 2 2
I-   At At A c   "T"   A 4 A i Ac      I-   A * At A t   "I-   Ac A i At   ~l     Ac AiAii

By computing the elementary symmetric functions of the 6¡, which are sym-

metric polynomials in xx, x2, x3, x4, x5, it is a relatively straightforward mat-

ter to express these elements in terms of sx, s2, s3, s4, s5 to determine the re-

solvent sextic f20(x) with 8 as a root. By making a translation, we may assume

sx = 0, i.e., that our quintic is

;i) f(x) = x  +px  + qx  + rx + s,
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in which case f20(x) is

f20(x) - x 4 Srx + (2pq  - 6p r 4 40r - 50qs)x

+ (-2a4 4 2\pq2r - 40p2r2 4 160a-3 - I5p2qs - 400qrs 4 I25ps2)x3

+ (p2q  - 6p\2r - 8aV 4 9/?V 4 76/?c/V - 136/?V + 400r4

- 50pq3s 4 90p2qrs - 1400ar2s 4 625aV 4- 500prs2)x2

4 (-2pq6 4 \9p2q\ - 51/?3aV 4 3a V 4 32/?V 4 76mV

- 256/?V 4 512r5 - 3\p3q3s - 5Sq5s 4 1 \lp*qrs 4 \05pq3rs

4 260p2qr2s - 2400qr3s - 108/?V - 325p2q2s2 4 525/? V

(2) 4 2750a2rs2 - 500/?rV 4 625pas3 - 3125*V
/8      ,-,      6 5   2 2  ,   ,-   2  4 2       ,   6  3      ,«„   3   2 3      ,.   4 3+ (q  - I3pq r + p q r + 65/? q r - 4p r - 128/» q r + \lq r

4 48/?V - 16/?tfV - 192/?V 4 256r6 - 4p5qis - I2p2q5s

4 18/? qrs 4 12/? q rs - \24q rs 4 196/? ?ri + 590/?# r 5

- 160/? #r s - 1600<3T s - 27/? s - 150/? «i - 125p^ s

- 99p5rs2 - 125p2q2rs2 4 1200/?W 4 3250tfW

- 2000/7/-V - \250pqrs3 4 3125/?V - 9375«4).

For the particular case when f(x) = x5 + ax + b , this polynomial is simply

f20W = x6 + Sax5 4 40aV 4 160aV 4 400aV

4 (512a5 - 3125¿?V 4 (256a6 - 9375a¿?4).

Theorem 1, The irreducible quintic f(x) - x5 + px + qx2 + rx + s e <Q[x] is

solvable by radicals if and only if the polynomial f20(x) in (2) has a rational

root. If this is the case, the sextic f20(x) factors into the product of a linear

polynomial and an irreducible quintic.

Proof. The polynomial f(x) is solvable if and only if the Galois group of f(x),

considered as a permutation group on the roots, is contained in the normalizer

of some Sylow 5-subgroup in S5. The normalizers of the six Sylow 5-subgroups

in S5 are precisely the conjugates of F20 above, hence are the stabilizers of the

elements 6X, ... , 66. It follows that f(x) is solvable by radicals if and only

if one of the 9¡ is rational. By renumbering the roots as x,,..., x5, we may

assume 6 = 0X is rational, so that the Galois group of f(x) is contained

in the specific group F20 above. Since f(x) is irreducible, the order of its

Galois group is divisible by 5. It follows that the 5-cycle (12 34 5) survives

any specialization (this element generates the unique subgroup of order 5 in

this F20 ). Because this element is transitive on 62, ... ,66 (in fact cycling

them as 62, 66, 63, 64, 05), the remaining roots 6j are roots of an irreducible

quintic over Q(6) = Q.    D
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Theorem 1 provides an easy criterion for the solvability of a general quintic

polynomial (see the examples below). We now consider the question of solv-

ing for the roots of f(x) when f(x) is solvable, i.e., solving for the roots

xx, ... , xs in terms of radicals over the field Q(sx,... ,s5, 6). We suppose

the rational root of f20(x) is the root 6 above, so the Galois group of f(x)

is contained in the version of F20 above. This determines an ordering of the

roots xi up to a permutation in F20 .

Let C be a fixed primitive 5th root of unity, and define the function fields k =

Q(sx, ... ,s5), K = k(6), and F = Q(xx, ... ,x5),so that F(Ç)/K is a Galois

extension with F2Qx(Z/5Z)x as Galois group. Define the automorphisms a, x,

and œ oí F to be a = (12345) (trivial on constants), x = (2 3 5 4) (trivial

on constants), a>: Ç h-> Ç   (trivial on xx, ... , x5).

Let A = Yli<j(xi ~ xj) denote the fixed square root of the discriminant

D = A of f(x). Note that for a solvable quintic, the discriminant D is

always positive: if the Galois group is dihedral or cyclic, then the Galois group

is contained in A5, so that D is actually a square; if the Galois group is the

Frobenius group, then -JD generates a quadratic extension which is a subfield

of a cyclic quartic extension, so again D > 0 (in fact, D is then the sum of

two squares).

Define the usual Lagrange resolvents of the root xx :

(xx, 1) = Xx 4 X2 4 X3 4 X4 4 X5 = 0,

rx = (xx ,Q = xx + x2C 4 x3C 4 x4i3 4 x5C4,

r2 = (xx, Ç )=xx+ x2Ç  4 x3C  4 x4C 4 x5Ç ,

r3 = (xx, Ç ) = xx+ x2C  4 x3C 4 x4C  4 x5C ,

r4 = (xx , C4) = x, 4 X2Ç  4X3C   4X4C   4X5C,

x\ = (ri 4r24r34r4)/5,

x2 = (C\+Ç3r2 + i2r34Çr4)/5,

x3 = (Ç3rx + Çr2 + Ç4r3 + Ç2r4)/5,

x4 = (Ç2rx + C4r2 + t;r3 + t;3r4)/5,

x5 = (Crx+Ç2r2 + C3r3 + i:4r4)/5.

2 3 4
(X, , Z) = X, 4X2Z 4X3z   4x4z   4X5z

with an indeterminate z (so z = £ gives the Lagrange resolvent rx). Expanding

(x,, z)5 gives

(4.1) Rx = r\ = (x, , C)5 = /„ + /,C 4 l2C2 4 l3C3 4 //,

so that

(3)

Write
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where lQ by definition is the sum of the terms in (xx, z)5 involving powers z'

of z with i divisible by 5, /, is the sum of the terms with i = 1 mod 5, and

so forth. Explicitly,

lr\   —   JWAtA* Ac      T     fcuAiAjAc      1      ZUAi  AtAc      I     ¿UAtAtAc      I     At      T     Ac

4 x, 4 x3 4- x4 4 20x¡ x3x4 4 30x, x2x4 4 30x, x2x3 4- 20x,x2x3

(5.0) 4 30x^3X5 4 30x^4X5 4 30x2x3x5 4 30x2x3x4

3 3 3 22 22
4 20x2x4x5 4 20x2x3x4 4 20x¡x2x4 4 30XjX2x5 4 30x^3X4

3 2        2 3
-(- ¿.\}X,X3Xc -p A ¿UAi X'yX'.X*Xq   t   J\JJí3 Jí4    s       ¿,\JJí3Jí4 Jíc ,

/j = 20x,x3x4 4 30x¡x4x5 4 5x¡x2 + 10x,x4 4 lOx^

4 23 4 32 23 4
4 5x2x3 4 10x2x4 4 5x3x4 4 10x2x5 4 10x3x5 4 5x4x5

(5.1) + 5x,x5 + 20x¡x3x5 4 30x,x2x5 4 30x^2 x3 4 20x¡x2x4

4 30x2x3x4 4 20x2x3x5 4 20x2x4x5 4 30x3x4x5 4- 60x^2X3X4

2 2 22
4 60x2x3x4x5 4 60x¡x2x4x5 4 60xxx2x3x5 4 60x,x3x4x5,

12 = 20x,x4x5 4 10x,x2 4 5x^3 4 10x2x3 4 5x2x4 4 10XjX5

32 44 4 32 22
4 10x3x4 4 5XjX4 4 5x3x5 4 5x2x5 4 10x4x5 4 30x,x2x4

(5.2) 4 30x^3X4 4 20XjX2x3 4 20x,x2x5 4 30x2x3x5

3 2    2 2    2 2 2
4 20x2x3x4 4 30x2x4x5 4 30X[X3x5 4 60x,x2x3x5 4 60x,x2x3x4

22 2 3
4 60XjX2x4x5 4 60x2x3x4x5 4 60X[X3x4x5 4 20x3x4x5,

13 - 20x2x3x4 4 20X3X4X5 4 5x¡x4 4 10x,x2 4 10x,x5 4 10x2x3

,4 -        4,        4in23,        4      iri   2   34 5x2x5 4 5x¡x3 4 5x2x4 4 I0x3x4 4 5x3x5 4 I0x4x5

(5.3) 4 20x,x2x3 4 30x,x3x4 4 30XjX3x5 4 30XjX2x4 4 30x2x3x5

4 30x2x4x5 4 20x,x2x5 4 20X[X4x5 4 60X[X2x4x5

22 2 2

14 - 30XjX2x5 4 5X[X5 4 \0xxx3 4 5XjX2 4 5x2x3 4 10XjX4

4 I0x2x4 4 I0x2x5 4 5X3X4 4 10x3x5 4 5x4x5 4 20x,x2x4

(5.4) 4 30x,x2x3 4 30x2x3x4 4 20x2x3x5 4 20x,x3x4 4 20x2x4x5

4 30x3x4x5 4 20x,x3x5 4 30x,x4x5 4 60x,x3x4x5

2 22 2
4 60x,x2x4x5 4 60x,x2x3x4 4 60xxx2x3x5 4 60x2x3x4x5.

(Note also that setting z = l shows that

/0 4 /, 4 l2 4 /3 4 l4 = (X, 4 X2 4 X3 4 X4 4 X5) .

In particular, if s, = 0, we have /0 = -/, - l2 - l3 - l4.)
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Similarly we have

(4.2) R2 = r¡ = l0 + l3C + /, C2 + /4Ç3 4 //,

(4.3) R3 = r\ = l0 + l2C + /4C2 + lxC3 + /3C4,

(4.4) R4 = r54 = /04/4C + /3C24/2C3 + /,C4.

The Galois action over K on these elements is the following: The elements

/0, /,, l2, l3, l4 are contained in the field F and are fixed by a ;

t/0 = /0,    xlx = l2,    xl2 = l4,    xl3 = lx,    xl4 = l3,

and the action on the Lagrange resolvents is given by

or, = Ç r., rrx = corx = r3,

(6)
ar7 = Ç r2 ' rr. cor2 = r.,

ar3 = Ç r,,

arA

T/-3 = wr3 = r4,

xr4 = cor4 = r2.• 4 — b    <4:

It follows that /0 € .ri and that /,, l2, l3, l4 are the roots of a quartic polyno-

mial over K, and the field L — K(lx ) = K(lx, l2, l3, l4) is a cyclic extension of

K of degree 4 (with Galois group generated by the restriction of x - (2 3 5 4).

The unique quadratic subfield of L over K is the field K(A). The field diagram

is the following:

F(C) (X, , x2, X3 , X4 , Xj , t J

((co:C~0)

F = Q(xx,x2,x3,x4,x5)

I       <<x = (12345)>

L = K(lx) = K(lx,l2,l3,l4)

L(C)

K(A) (r = (2354))

K = k(6)

k = <Q(sx, s2,s3,s4,s5)

Since the Galois group of L/K is cyclic of degree 4, it follows that /,, /2, l3, l4

are the roots of a quartic over K which factors over K(A) into the product of
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two conjugate quadratics:

(7)       [x2 4 (F, 4 T2A)x 4 (T3 4 T4A)][x2 4 (Tx - T2A)x 4 (T3 - T4A)]

with Tx, T2, T3, T4 e K. The roots of one of these two quadratic factors are

{lx, l4 (- t2/,)} , and the roots of the other are the conjugates {/2 (= xlx),

l3 (= x3lx)} for the specific /( defined in equations (5.1)—(5.4). We may fix the

order of the factors and determine the coefficients Ti explicitly by assuming

that the roots of the first factor in (7) are {lx, l4} . Then

/, 4 l4 = -Tx - T2A,        l2 + l3 = -r, 4 T2A,

lxl4 = T3 + T4A,        l2l3 = T3-T4A,

which defines the T¡ as explicit rational functions in xx,... ,xs. Writing these
2 5

elements as linear combinations of 1, 0, 6 , ... , 9 with symmetric functions

as coefficients would be relatively more straightforward if Z[s,,..., s5][6] were

integrally closed in K, but unfortunately this is not the case. We proceed as

follows. In a relation of the form

P = aQ 4 ax 6 4 a2d2 4 c*303 4 aß4 4- a5d$,

where the ai are rational symmetric functions, if we apply the automorphisms

(12 3) and ( 1 2) (which generate a complement to F20 in S5 and so give the

automorphisms of K - k(6)), we obtain the system of equations

2 3 4 5
P = aQ 4 ax6x 4 a26x + a36x 4 a49x 4 a50, ,

(\23)P = a0 + ax82 + a2e\ 4 a302 4 a402 4 a502 ,

( 1 3 2)P = a0 4 a, 03 4 a-,02 4 a3d] 4 a4d\ + aid\,

( 1 2)P = a0 4 a, 04 4 a2624 4 a^] 4 a4d\ 4 Q504 ,

(2 3)P - a0 4 a,05 4 a202 4 a3d\ 4 a404 4 Q5055,

2 3 4 5
(1 3)P = ao4a106 4a206 4a306 4 a406 4a506,

from which we may solve for the a¡ using Cramer's rule. The denominator ap-

pearing in Cramer's rule is the Vandermonde determinant - n;<,(0, ~0,-) > and

it is not difficult to see that this is A F , where F is a symmetric polynomial.

In particular, if P is a polynomial, this gives a bound for the denominator

necessary for the rational symmetric functions ai (since then the numerator in

Cramer's rule is a polynomial).

3. Computational matters

As a practical matter, the computation of the relevant symmetric functions

is done by first computing the weights and degrees of the polynomial in the

numerator of Cramer's rule for each a¡, then determining which symmetric
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monomials in sx, ... , s5 are involved (for example, there are 258 monomials

of weight 50 involved in the computation of the numerator of a0 for T4).

The problem then is to determine explicitly the coefficients involved in writ-

ing a given polynomial (expressed as a determinant) as a linear combination

of these monomials. Because of the high weights involved, it is impractical to

simply expand the appropriate polynomials in xx,..., xs and apply the usual

lexicographic algorithm. It is also impractical to substitute simple values for

xx, ... , x5 into these polynomial identities and then solve the resulting linear

system of equations, since a sufficiently independent choice of variables to pro-

duce a determined system of equations produces relatively large (viz. 258x258)

matrices with large entries (viz. ~ 10    ).

The computations here were performed first by solving the equation x5 -

sxx4 4 s2x - s3x 4 s4x - s5 for the roots x,, ... , x5 to sufficiently high pre-

cision (typically ~ 100 digits) for a given set of values of sx = 0, s2, ... , s5

(for example, with s2 = s5 = 0 and sufficiently independent integer values

for s3, s4), then computing the determinant involved in Cramer's rule and

rounding to achieve a system of equations with relatively small (~ 10 ) in-

teger coefficients. By judicious choice, the number of equations is manageable

(involving only the monomials without sx, s2, and s5, for example). When all

such "easy" coefficients were determined, a /?-adic approach was used: equa-

tion (1) was solved for x,, ... , x5 to sufficiently high precision with sx = 0, s2

(say) equal to a prime p , and s3, s4, ss sufficiently independent integer values.

The determinant was calculated and the value of the known monomials sub-

tracted, giving a value V which should be an integer (which was rounded after

checking). If n is the smallest power of s2 appearing in the remaining mono-

mials to be determined, then V/p" should be an integer (providing another

useful check on the computations), namely the sum of the values corresponding

to the remaining monomials when the exponent of s2 has been reduced by n .

In particular, V/p" mod/? corresponds to those remaining terms whose original

exponent of s2 was precisely n. Solving such systems, we can determine the

coefficients mod/? for the terms involving first s2, then for the terms involving

s2, etc., which reduces both the number of equations involved and also the size

of the coefficients (namely, < p) of the system considerably. Performing this

/?-adic computation for several primes p then determines the coefficients. In

practice, these terms were determined modulo the first eight primes greater than

1000, and the coefficients determined modulo the product of the first and the

last seven of these values to be sure the values were in agreement. Once the

coefficients were determined, they were checked.

4. Ordering the resolvents

If we write

(8.0) /0 = (a0 4 axe 4 a262 4 a363 4 a484 + a5d5)/F
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and

(8.1)      tx = (bxo + bxxe + bX2e2 4 bX3e3bX4e4 + bX5e5)/(2F),

(8.2) T2 = (b20 + b2X6 + b22e2 4 ¿?2303 4 Z>2404 4 b2565)/(2DF),

(8.3) T3 = (b30 + b3x6 + b32e2 4 ¿?3303 4 b3464 4 b3505)/(2F),

(8.4) T4 = (b40 + b4X6 + b4262 4 ¿?4303 4 ¿?4404 4 b4/)/(2DF),

C T

the values are given explicitly for the general polynomial f(x) = x  + px +
T

qx  4 rx 4 5 in the Appendix (on microfiche) in terms of p, q, r, s. For the

particular case when f(x) = x5 + ax 4 b, these values are

(8.1')

(8.2')

Tx = (512a5- 15625¿?44 768a40 4 416a3024ll2aV

T2 = (3840a5 - 78125¿?4 4 448Oa40 4 248Oa30

424a044 405)/(5O¿>3),

3 „2

476Oa203 4 14Oa04 4 3O05)/(512a52? 4 6250¿>5)

5      .     ,D11,A,4 -v.,-,,O     4.T3 = (-18880a 47812506  - 34240a 6
(8.3') 3     V

(8.4')

-2126Oa302 - 598Oa203 - 1255a04 - 24095)/(2b2),

T4 = (68800a5 4 25OOOa40 4 11500aV

4325Oa203 4 375a04 4 lOO05)/(512a5 4 6250Z?4).

If we compute these expressions in terms of our given rational 6 , and choose

a specific A as our square root of D, then the roots of the quadratics in (7)

give us {lx, l4} and {/2, /3}, up to a permutation of the two pairs. This is

not sufficient to solve for the resolvents Rx, R2, R3, R4, however, since for

example if our choice of the roots in fact corresponds to {/,, l3, l2, l4}, then

we do not simply obtain a permutation of the R¡ (this permutation is not

obtained by an element of F20). This difficulty is overcome by introducing

an ordering condition. For this, observe that (/, - /4)(/2 - /3) = (fA for some

element cf e K. Computing this element as before, we write

(9) 0 = (o0 4 ox6 4 o262 4 o363 4 o4d4 4 o5d5)/(DF),

where again the values of ox, ... , o5 for general f(x) are given in the Ap-

pendix. For the special case of f(x) = x + ax + b we have

tf = (-1036800a5 4 48828125Z?4 - 228OOOOa40 - 1291500aV

- 3995OOa203 - 76625a04 - 161OO05)/(256a5 4 3125¿>4).

For any specific quintic f(x), choose a square root A' of the discriminant

D, then define the roots of the first quadratic in (7) to be l[ and /4 , and the
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roots of the second quadratic to be ï2 and í3, ordered so that (l[ -l'4)(l'2-l3) —

0A1. If our choice of square root A' is the same as that corresponding to A de-

termined by the ordering of the roots above, then our choice of l[, l'2, l'3, /4 is

either lx, l2, l3, l4 or l4,l3,l2,lx. If our choice of square root A' corresponds

to -A, then our choice of l[, 1'2, 1'3, l4 is either l2, l4, lx, l3 or l3,lx,l4,l2.

The corresponding resolvents computed in (4.1)-(4.4) are then simply per-

muted (namely, (Rx, R2, R3, R4), (R4, R?, R2, Rx), (R3, Rx, R4, R2),

(R2, R4, Rx, R3), respectively), which will simply permute the order of the

roots x¡ in (3), as we shall see.

It remains to consider the choice of the fifth roots of the /?. to obtain the

resolvents ri. We now show that, given Rx = rx , each of the five possible

choices for rx uniquely defines the choices for r2,r3,r4, hence uniquely defines

the five roots of the quintic.

Consider the expressions rxr4 and r2r3, which by the explicit Galois actions
— 1 2

above are fixed by a, xœ , and x , hence are elements of the corresponding

fixed field K(A\ß).
As mentioned above, the discriminant D for any solvable quintic is a positive

rational number. It follows that under any specialization, the elements rx r4 and

r2r3 are elements of the field Q(V5D). Since the r¡ are uniquely defined up

to multiplication by a fifth root of unity, this uniquely determines r4 given r,,

and r3 given r2. It remains to see how r2 is determined by rx.

Consider now the elements rxr2 , r3rx , r4r3, r2r4 , which are invariant under

a and cyclically permuted by both x and œ. It follows that these are the roots

of a cyclic quartic over K, and that in particular

(10)
rxr2 +r4r3 = «4vAv/5,

r3rx 4 r2r4 — u - vA%/5

-l
for some u, v e K, where  \/5  is defined by the choice of £ : C 4 C     =

(-14^/2.

Lemma. Given r{, there is a unique choice of r2, r3, r4 such that rxr4, r2r3 e

K(A\ßi) and such that the two equations in (10) are satisfied.

Proof. We have already seen that rx uniquely determines r4 and that r2 unique-

ly determines r3 by the conditions r{r4, r2r3 e K(A\/5). It remains to show

that rx uniquely defines r2 subject to the equations in (10).

If r2 were replaced by er2 for some nontrivial fifth root of unity e, then

r3 would be replaced by er3 (where eê = 1 ), since their product must lie in

K(A\ß). If this new choice for r2 and r3 (together with the fixed rx and r4)

also satisfied the equations in (10), we would have

rxr2 + r4r2 = u + vA\ß, rx(er2)2 + r4(ër3)2 = u + vAyß,
2 2 r~        äHQ _        2 2 r~

Vi + r2r4 = U~ ^AV 5 (fi^)**! + (£^2)r4 = U ~ V^v 5.
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Equating the expressions for u 4 vA\ß gives

rxr\ _     1-ê2 _ J_
2 ~      i 2 —    2 '

r4r3        1 - e      e

and equating the expressions for u - vA\J~5 gives

hh =    l~e_ = c
r2r 1 - e14i2

These two equations give (rx/r4)5 — 1, which implies that rx/r4 is a fifth root of

unity. This is a contradiction, since this element generates a quintic extension

of L(Q which survives any specialization (the order of the Galois group of the

irreducible f(x) is divisible by 5), and completes the proof.   D

The elements u and v are computed as before:

u = -25q/2,
(H) 2 3 4 5

v = (c0 4 cx6 4 C20   4 C30   4 C49  4 C565)/(2DF),

where the coefficients c( for the general f(x) are given in the Appendix. For

the special case of f(x) = x + ax + b these are:

u = 0,

v = (-2048a7 4 25000aV - 3O72a60 - 625OaZ?40
(11)

- 1664a502 - 3125¿?V - 448aV

- 96a304 - 16a205)/(32OOOaV 4 390625Z?7).
C T T

Theorem 2. Suppose the irreducible polynomial f(x) = x + px 4 ax 4 rx 4

5 e Q[x] is solvable by radicals, and let 6 be the unique rational root of the

associated resolvent sextic f20(x) as in Theorem 1. Fix any square root A of the

discriminant D of f(x) and fix any primitive fifth root of unity Ç. Define l0

as in equation (8.0), and define lx, l4 and l2, l3 to be the roots of the quadratic

factors in (7), subject to the condition (lx - /4)(/2 - /3) = 0A in (9). Then the

Galois group of f(x) is:

(a) the Frobenius group of order 20 if and only if the discriminant D of

f(x) is not a square, which occurs if and only if the quadratic factors in

(7) are irreducible over Q(VD) ,

(b) the dihedral group of order 10 if and only if D is a square and the

rational quadratics in (7) are irreducible over Q,

(c) the cyclic group of order 5 if and only if D is a square and the rational

quadratics in (7) are reducible over Q.

Let rx be any fifth root of Rx in (4.1), and let r2, r3, r4 be the corresponding

fifth roots of R2, R3, R4 as in the lemma above. Then the formulas (3) give the

roots of f(x) in terms of radicals and xx, x2, x3, x4, x5 are permuted cyclically

by some 5-cycle in the Galois group.
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Proof. The conditions in (a) to (c) are simply restatements of the structure of

the field L - K(lx) = K(lx, l2, l3, l4) under specialization.

We have already seen that the choice of A and the roots I, of the quadratics

determines the R¡ up to an ordering: (Rx, R2, R3, R4) or (R4, R3, R2, Rx)

if the choice of A is the same as that in the computations above, and (R3, Rx,

R4, R2) or (R2, R4, Rx, R3) if the choice of A is the negative of that used in

the computations above. It is easy to check that the corresponding resolvents

ri are then simply (r, ,r2,r3, r4), (r4, r3, r2, rx), (r3 ,rx,r4, r2), and (r2, r4,

rx, r3), respectively (this is the action of the automorphism x = (2 3 5 4) above).

The formulas (3) then give the roots x; in the orders (Xj, x2, x3, x4, x5),

(x,, Xj, X4, x3, x2j, (x,, X3, Xj, x2, X4J, ana (Xj, X4, X2, x^, X3J, respec-

tively. In terms of the 5-cycle a = (1 2 3 4 5) above, these correspond to cyclic
— 1      2 3

permutations by a, a    , a , and a , respectively.

Finally, any choice of primitive fifth root of unity ( produces precisely the

same permutations of the roots x;, so the roots of f(x) are produced in a

cyclic ordering independent of all choices.   D

Remark. Suppose f(x) G Q[x] is an irreducible polynomial of degree n whose

Galois group is, for example, known to be the cyclic group of order n . If the

roots of f(x) are given (numerically in C, say), how can one order the roots

so that they are cyclically permuted by some element in the Galois group? For

n = 5, a solution is provided by Theorem 2, and the situation for n = 4 is

solved implicitly above (this is the reason for considering the factorization in

equation (7) and the ordering condition (/, - /4)(/2 - /3) = 0A). Such orderings

are necessary in the computation of regulators as in [3], and the question for

general n seems an interesting one.

5. Examples

(1) Let f(x) = x5 4 15x 4 12, whose discriminant is D = 2103455. The

corresponding resolvent sextic f20(x) is the polynomial

x6 4120x5 4 9000x4 4 540000x3 4 20250000x2 4 324000000x,

which clearly has 9 = 0 as a root. It follows that the Galois group of f(x) is the

Frobenius group F20 and that f(x) is solvable by radicals. With A = 7200\/5 ,

where Ç 4 (~ = (-1 4 v/5)/2, the roots lx, l2, l3, l4 of the quadratics in (7)

(subject to the ordering condition in (9)) are

/, = -375- 750^4 75/V625 + 29^,

l4 = -375 - 750^ - 75/^625 4 29^,

12 = -375 4 750v/5-75iV625-29v/5,

13 = -375 4 750^ 4 75/\/625 - 29\/5.
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Then

Rx = -1875 - 75\/l635 4 385^4 75\/l635 - 385^,

R4 = -1875 4 75^/1635438575 - 75^1635-385^,

R2 = 5625 - 75\/l490 4 240^ - 75\/l490 - 240^,

R3 = 5625 4 75^1490 4 240^ 4 75^1490-240^.

Viewing these as real numbers, and letting r, be the real fifth root of Rx,

we conclude that the corresponding r2, r3, and r4 are the real fifth roots of

R2, R3, and R4, respectively, and then (3) gives the roots of f(x). For ex-

ample, the sum of the real fifth roots of Rx, R2, R3, R4 above gives five times

the (unique) real root of x 4 15x 4 12.
C 1  T £

(2) Let f(x) = x  - 5x 4 12, whose discriminant is D = 2   5 . The corre-

sponding resolvent sextic f20(x) is the polynomial

x6 - 40x5 4 lOOOx4 4 20000x3 4 250000x2 - 66400000x 4 976000000,

which has 6 = 40 as a root, so that f(x) has solvable Galois group. Since

in this case the quadratic factors in (7) are x2 4 1250x 4 6015625 and x2 -

3750x44921875 , which are irreducible over Q, it follows that the Galois group

of f(x) is the dihedral group of order 10. If A = 8000, the roots lx, l2, l3, l4

of the quadratics in (7) (subject to the ordering condition in (9)) are

/, = -625 4 750v/rÏÔ,

/4 = -625-750v/^T5,

l2= 1875 4 375y/^ÏÔ,

l3 = 1875- 375V^ÎÔ.

Then

Rx = -3125- 1250^ - ^ y7*00 + 20v/5 - ^\/l00 - 20^,

R4 = -3125 - 1250^4^^100 4 20^4^^100-20^,

R2 = -31254 1250v^4 ^^100 4 20^- ^V100"20^

R3 = -31254 1250^- ^\/l00 4 20^ 4-^\/l00 - 20v/5.
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Again viewing these as real numbers, and letting rx be the real fifth root of

Rx, we conclude that the corresponding r2, r3, and r4 are the real fifth roots

of R2, R3, and R4, respectively, and then (3) gives the roots of f(x). For

example, the sum of the real fifth roots of Rx, R2, R3, R4 above again gives

five times the (unique) real root in this example.

(3) Let f(x) = x5 - HOx3 - 55x2 4 2310x 4 979, whose discriminant is

D = 5   11. The corresponding resolvent sextic f20(x) is the polynomial

x6 4 18480x5 4 47764750x4 - 580262760000x3 - 1796651418959375x2

4 2980357148316659375X-36026068564469671875,

which has 0 = -9955 as a root, so that f(x) has solvable Galois group. Since

in this case the quadratic factors in (7) are (x - 797500)(x 4- 61875) and

(x - 281875)(x 4 405625),   it follows that the Galois group of f(x) is the
ID       7

cyclic group of order 5. If A - 5 11 , the roots lx, l2, l3, l4 of the quadratics

in (7) (subject to the ordering condition in (9)) are

/, = 797500,

l4 = -61875,

12 = 281875,

13 = -405625.

Then

Rx =5511(41C4 26C24 6C34 16C4),

R2 = 5511(6C 4 41C2 416Ç3 4 26£4),

R3 = 5511(26C 4 16C2 4 41 f3 4 6C4),

tf4 = 55ll(16£4 6C24 26i34 41C4).

Here,

.      1375 4 6875^ 1375-6875\/5
u + vA=---,        u - vA =---,

so with rx any fifth root of Rx, r4 is the fifth root of R4 such that rxr4 is real,

and r2, r3 are the fifth roots of R2, R3 whose product is real and which satisfy

r3rx 4 r2r4 = (1375 - 6875\/5)/2. This is the Casus Irreducibilis for quintic

polynomials, where the five real roots of the quintic are expressed by radicals

of necessarily nonreal complex numbers (in general, if only real radicals are

required for a solvable polynomial, all of whose roots are real, then the Galois

group is a 2-group, cf. [2]).
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