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Abstract
Background and aims The relationship between tree
species and soil nutrient availability is critical for
evaluating plantation succession and promoting forest
restoration. This study was conducted to evaluate the
impact of exotic and native tress species on soil nutri-
ent availability.
Methods Four exotic species (Eucalyptus urophylla,
E. tereticornis, Acaia auriculaeformis, A. mangium)
and four native species (Castanopsis fissa, Schima
superba, C. hystrix, Michelia macclurei) were planted

and grown for one-year. Soil solution (DOC, DON,
NH4−N, NO3−N) was sampled and analyzed during
the study. After the experiment, soil properties were
determined, and plant tissues were analyzed.
Results DOC levels were greater in soils with trees
planted than controls without trees. Compared to native
species, exotic species had much faster growth rates and
greatly reduced DON and NO3−N concentrations.
Exotic species always had less P concentrations in
leaves and stems than native species. Furthermore, N-
fixing A. auriculaeformis led to greater soil available P
compared to other species.
Conclusions Based on these findings, we provide
some recommendations for afforestation practice.
This study highlights that a better understanding of
the pros and cons of exotic species would be beneficial
to advance afforestation in China and the world.

Keywords Soil solution . Nutrient availability, exotic
species . Native species . Afforestation, South China

Abbreviation
DOC Dissolved organic C
DON Dissolved organic N.

Introduction

In subtropical and tropical areas, millions of hectares
of forests are being deforested or degraded due to
human activities (FAO 2011; Lamb et al. 2005).
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Restoration at both regional and global scales, thus, is
critical for the sustainability of the global ecosystem
(Gardiner et al. 2003). Afforestation of former agricul-
tural land, rehabilitation of degraded natural ecosys-
tems, and conversion of single-species to mixed-
species plantations are among the major types of res-
toration practices currently being implemented
throughout the world (Lamb 1998; Lamb et al. 2005).

Much of the plantations in tropical and subtropical
regions were established with exotic species from a
small selection of genera (e.g., Eucalyptus, Acacia,
Pinus). For example, there were 39,700 km2

Eucalyptus and Acacia plantations in southern China
until 2011 (China Eucalypt Center 2011). Although
these exotic species usually are very productive, use of
these exotic species is in great dispute (Lamb 1998),
mostly due to their inferior ecological services com-
pared to native species in the original forests. To
improve ecological services (i.e., biodiversity, soil
and water conservation), the practice of planting na-
tive tree species has increased in the past several
decades in many tropical and subtropical regions, in-
cluding Malaysia, Australia, Costa Rica, Vietnam
(Lamb et al. 2005) and southern China (Zhou and
Yan 2000; Wang et al. 2008; Ren et al. 2007). Since
the 1990s, the coverage of ecological forests, mainly
planted with native species, has been increasing due to
the encouragement by local governments in southern
China (Zhou and Yan 2000).

During the last three decades, China has established the
largest area of plantation in the world, covering
616,884 km2 (National Bureau of Statistics of China
2011). Most of these plantations were established in
southern China, located in the tropical and subtropical
regions. As part of a large-scale afforestation campaign
launched in the 1980s, more than 20 tree species were
planted initially to evaluate their suitability to the regional
climate and soils (Li et al. 2001). Based on the initial
experimental results, the most common species used to-
day are exotic species Eucalyptus urophylla, Eucalyptus
tereticornis, Eucalyptus citriodora, Eucalyptus exserta,
Acacia auriculaeformis (N-fixing), Acacia mangium (N-
fixing), and native species Castanopsis fissa, Schima
superba, Castanopsis hystrix, Michelia macclurei (Li et
al. 2001; Wang and He 2006). This choice was based on
their biological characteristics (Qin et al. 2007; Zhao et al.
1995), stand qualities or yields (Chen et al. 1998; Lu et al.
2004), and readiness for forest management (Lin 2002;
Wang and He 2006; Zhu 2006). Only a few researchers

have studied the impacts of these species on nutrient
cycling in soils such as litter decomposition (Chen 2001;
Li et al. 2003) and nitrogen mineralization (Li et al. 2003;
Schlesinger and Lichter 2001). However, assessing the
impact of plant species on soil nutrient availability is of
particular importance for forest restoration (Rhoades and
Binkley 1996). In particular, the specific knowledge in
terms of the effects of exotic and native species on soil
properties is limited. A detailed understanding on the
plant-soil interactions between exotic and native species
is critical and imperative for evaluating the function of
different tree species in the production and succession of
plantations, designing more sustainable agroforestry sys-
tems, and promoting restoration on degraded lands
(Russell et al. 2007).

In this present study, we designed a one-year com-
mon garden experiment in a homogeneous soil in
southern China to focus on species-specific effects of
exotic and native tree species on soil nutrient avail-
ability and nutrient uptake. The species selected in this
study were the most commonly used trees in forestry
programs of southern China (Li et al. 2001; Wang and
Lin 2001). The specific aims of this study were to: 1)
evaluate the impact of these exotic and native species
(with contrasting growth rates) on soil N and P avail-
ability; and quantify the growth of plants in relation-
ship to the availability of soil nutrients; and 2) provide
management recommendations for afforestation in this
region. We hypothesized that 1) exotic species, due to
their faster growth rates, would lower soil N and P
availabilities than native species and lead to nutrient-
limitation on plant growth; 2) N-fixing species could
alleviate the N limitation due to their N-fixing
capability.

Materials and methods

Experimental design

Four exotic species (Eucalyptus urophylla, Eucalyptus
tereticornis, Acaia auriculaeformis, Acaia mangium)
and four native species (Castanopsis fissa, Schima
superba, Castanopsis hystrix, Michelia macclurei)
were chosen for this study. Of these eight species, only
the two Acacia species are capable of N-fixation. All
eight species were heliophilous plants, and their seed-
lings were germinated from seeds in nutrient cups.
One seedling of each of the tree species (initial height

208 Plant Soil (2013) 364:207–218

Author's personal copy



30–40 cm) was planted per pot. In the planting, the
original soils adhering in seedlings’ roots were care-
fully washed out with water. Each plant species was
replicated in five separate pots. Unplanted pots served
as controls, also replicated five times.

Soil and pot installation

Soil was obtained from a forested land located in the
Heshan National Forest Research Station (112°540 E,
22°410 N), Chinese Academy of Science, in Guangdong
Province, China. The surface soil (0–20 cm) was collect-
ed, air-dried, sieved to remove gravel and debris >5 mm,
and mixed thoroughly. The soil was an Acrisol, with a silt
loam texture. The average soil pH was 4.54, soil organic
carbon (SOC) was 1.63 %, and soil total N was 0.83 g/kg.
A polyvinyl-chloride pot (height: 40 cm, diameter: 30 cm)
was used as the container and filled with air-dried soil
(25 kg/pot) without any fertilizer addition. All pots were
maintained in an open area in South China Botanical
Garden, Guangzhou. The monthly rainfall and mean air
temperature in the experimental site were recorded
(Fig. 1). All pots were watered biweekly. Any weeds that
were germinated in pots were removed regularly by hand.

A soil solution sampler with four silicon suction-
cups was installed in each pot at the depth of 10 cm
under the soil surface. The four suction-cups in each
sampler were distributed in a square at equidistance
(10 cm) to the planted seedling which was located at
the center of the pot.

Analyses of soil and plant materials

Seedlings were planted in October 2006, and soil
solution samples were collected four times in the

one-year study (December 2006, April 2007, July
2007 and October 2007). Soil solutions were sampled
at 24 h after a saturated watering. In total, 180 samples
were obtained and analyzed for the following param-
eters: dissolved organic carbon (DOC), total dissolved
N (TDN), ammonium N (NH4−N), and nitrate N
(NO3−N). DOC and TDN were determined using a
TOC analyzer (TOC-VSCH, Shimadzu Corp., Japan).
NH4−N was determined colorimetrically by the
salicylate-nitroprusside method on a Flow-Injection
Autoanalyzer (FIA, Lachat Instruments, USA).
NO3−N was determined colorimetrically after cadmi-
um reduction using the same FIA. Dissolved organic
nitrogen (DON) was calculated as the difference be-
tween the TDN concentration and the combined
NH4−N and NO3−N concentration (DIN).

At the end of the experiment, the surface soil (0–
20 cm) in each pot was sampled to analyze the fol-
lowing soil properties: soil extractable ammonium N
(NH4−N) and nitrate N (NO3−N), soil organic matter
(SOM), total N (TN), total P (TP) and available P.
NH4−N and NO3−N were extracted from 10 g of fresh
homogenized soil without roots using 50 ml of 2 M
KCL. Concentrations of extractable NH4−N and
NO3−N were determined by the FIA (Lachat
Instruments, USA). The remaining soil was air-dried
and ground to pass through a 2-mm sieve. Soil avail-
able P was extracted by Bray solution (Bray and Kurtz
1945), and determined by Mo-Sb Spectrochemistry.
Soil samples for TN,TP and TOC analysis were
ground to pass through a finer, 0.25-mm sieve. TN and
TP contents were determined by the micro-Kjeldahl
digestion procedure (Bremmer and Mulvaney 1982)
followed by colorimetric determinations using the FIA.
Organic C content was determined by wet combustion
method (Liu et al. 1996). Soil gravimetric water content
was determined by drying samples at 105 °C oven
for 24 h.

The height of each seedling was measured through
the study. After one-year growth, all seedlings were
harvested. Each plant was separated into root, stem
and leaf parts to determine the biomass and nutrient
concentrations of different tissues. All plant samples
were dried and weighed. A sub-sample of each plant
tissue was grounded in preparation for the analysis of
nutrient content. Plant organic C was measured by wet
combustion (Liu et al. 1996). Plant N and P concen-
trations were determined by colorimetry using FIA,
after micro-Kjeldahl digestion.
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Fig. 1 The monthly rainfall and mean air temperature in the
experiment site, Guangzhou, Guangdong, China
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Statistical analysis

Repeated measures analysis of variance (RM-ANOVA)
was performed to determine the effect of tree species on
soil solution chemistry through time. In the RM-
ANOVA analyses, sampling time (n04) and its interac-
tion with species were included in the within-subjects
model. An orthogonal contrast analysis was used to
compare the different performance of exotic species
versus native species, and planted treatments versus
unplanted control. One-way ANOVA was performed
to determine the effect of tree species on plant and soil
properties (plant N and P concentrations in different
tissues, and general soil properties like soil extractable
inorganic N, soil total N and soil organic C), followed
by the orthogonal contrast analyses. Homoscedasticity
was tested using the Levene’s test. Pearson’s correlation
analysis was used to analyze the relationship between
plant growth and soil nutrient availability, and a partial
correlation with plant growth as a controlling factor was
used to detect the relationship between soil nutrient
availability and plant N and P properties. All statistical
procedures were performed using SPSS Version 18.0
software (SPSS Inc., USA).

Results

Plant species effects on soil solution chemistry

RM-ANOVA showed that plant species significantly
affected the concentration of soil DOC (P00.03,
Table 1 and Fig. 2a). However, there was no significant
difference between the exotic and native species (P0
0.124). The unplanted soils maintained significantly
lower DOC than planted soils (P00.029). The concen-
tration of soil DOC under plants steadily increased

through time (P<0.002, Table 1 and Fig. 2a). For ex-
ample, in October 2006, both planted soils and
unplanted controls had the similar low DOC concentra-
tions (the mean concentration of DOC under plants:
4.97 mg/L, control: 4.91 mg/L). However, after 1 year’s
growth, the level of DOC under plants (all planted pots)
was 12.3 mg/L, 50 % higher than that in unplanted soils
(Control: 8.22 mg/L), with the highest level of DOC
found under exotic E. urophylla (18.7 mg/L).

DON concentration was also affected by plant spe-
cies (P<0.001, Table 1). In both December 2006 and
April 2007, 2 months and 6 months after the planting
experiment, the largest values of DON concentration
were found in the unplanted controls (Fig. 2b), while
the exotic species had lower DON concentration than
the native species (P<0.001). The temporal pattern of
soil DON contrasted that of DOC. In April 2007,
DON increased 1–2 mg/L in exotics and up to
20 mg/L in control in comparison to that in
December 2006 (Fig. 2b). Thereafter, DON concen-
trations in both July and October 2007 were substan-
tially lower than the previous two sampling dates (P<
0.001, Table 1).

The NH4−N concentration in soil solution was also
influenced by plant species (P00.043, Table 1), but
there was no difference between exotic and native
plants (P00.83). However, a strong temporal variation
was observed (P<0.001, Table 1, Fig. 2c). Solution
NH4−N was the greatest at the first sampling (5.0 mg/
L) and decreased rapidly through time, reaching val-
ues less than 1 mg/L in exotic plant treatments, and 1–
2 mg/L in control and native species treatments by
April 2007 (Fig. 2c and Fig. S1).

Opposite of NH4−N, concentration of NO3−N in
soil solution varied significantly by plant species (P
<0.001, Table 1, Fig. 2d). The highest values of
NO3−N concentration were all in soil-only controls,

Table 1 The RM-ANOVA analysis of soil solution variables (n0180)

Source DOC DON NH4−N NO3−N

F P F P F P F P

Time* 31.4 <0.001 60.4 <0.001 2039 <0.001 113 <0.001

Time × species* 2.03 0.07 6.95 <0.001 11.1 <0.001 11.9 <0.001

Species 3.68 0.03 9.53 <0.001 2.29 0.043 33.0 <0.001

Time was regarded as a within-subjects factor in the RM-ANOVA, and the statistic values of time effects and the interaction between
time and species were tested with Lower-bound method due to the denying of Mauchly’s Test of Sphericity
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and NO3−N concentrations under native species were
greater than those under exotic species (P<0.001).
However, among the four native species, NO3−N con-
centrations also varied greatly: C. fissa had a NO3−N
concentration similar to the four exotic species and less
than the remaining three native species (i.e., S. superba,
C. hystrix and M. macclurei) (Fig. S1). The temporal
pattern of NO3−N depended on plant species (P<0.001,
Table 1). For example, in April 2007, as much as
4.0 mg/L NO3−N was accumulated in the control and
native species treatments relative to the previous

sampling in December (Fig. 2d and Fig. S1), while in
the four exotic species treatments, the NO3−N concen-
tration was constant through time and then decreased to
less than 0.03 mg/L in July and October 2007.

Effects of plant species on soil properties

One-way ANOVA showed that plant species affected
soil organic carbon (SOC), soil C/N ratios, soil
NO3−N and available P (P<0.05, Table 2) after the
1-year study, but had no effect on soil total N (TN),
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Fig. 2 Concentrations of
DOC (a), DON (b), Ammo-
nium N (c), and Nitrate N
(d) in soil solution under
different tree species and
Control in four sampling
events (Data are means
+1SE, n05). Statistical
results are shown in Table 1.
Only 4 species were shown
in this figure, the full ver-
sion (8 species plus Control)
was shown in supplementa-
ry material Figure S1

Table 2 Description of chemical properties for soils influenced by eight trees species commonly used in southern China plantations.
Values represent soil properties after 1 year of tree growth in pots (Data are represented as means ±1 SE, n05)

Species TN (g/kg) TP (g/kg) SOC (%) C/N NH4−N (mg/kg) NO3−N (mg/kg) Available P
(mg/kg)

Soil pH

EU 0.91±0.06 0.18±0.01 1.54ab±0.02 17.2ab±1.29 1.33±0.17 0.82bc±0.04 0.91b±0.04 4.3d±0.04

ET 0.92±0.04 0.20±0.01 1.59ab±0.03 17.4ab±0.73 1.06±0.08 0.51c±0.12 1.09ab±0.05 4.3d±0.01

AA 1.13±0.05 0.21±0.01 1.46b±0.06 13.0b±0.63 1.04±0.04 0.60c±0.02 1.28a±0.08 4.3cd±0.01

AM 0.87±0.02 0.18±0.01 1.34b±0.06 15.6ab±1.03 1.18±0.09 0.66c±0.03 0.99ab±0.03 4.5ab±0.04

CF 0.83±0.05 0.17±0.01 1.57ab±0.02 19.1a±1.32 1.12±0.07 0.63c±0.02 0.90b±0.05 4.4cd±0.02

SS 1.03±0.01 0.19±0.02 1.41b±0.09 16.6ab±0.87 1.36±0.09 0.93bc±0.11 0.96b±0.05 4.6a±0.07

CH 0.85±0.04 0.17±0.01 1.48ab±0.05 14.9ab±1.32 1.30±0.12 1.29b±0.19 1.04ab±0.07 4.5ab±0.03

MM 0.98±0.02 0.19±0.00 1.90a±0.17 19.4a±1.77 1.13±0.06 0.67c±0.02 1.07ab±0.07 4.4bc±0.02

Control 0.93±0.04 0.19±0.01 1.53ab±0.06 16.5ab±0.61 1.33±0.07 2.83a±0.26 1.05ab±0.05 4.4cd±0.01

P values ns ns <0.05 <0.05 ns <0.05 <0.05 <0.01

Different lowercase letters indicate significant (LSD, P<0.05) difference. EU Eucalyptus urophylla, ET Eucalyptus tereticornis, AA
Acaia auriculaeformis, AM Acaia mangium, CF Castanopsis fissa, SS Schima superba, CH Castanopsis hystrix, MM Michelia
macclurei
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total P (TP) and extractable NH4−N. The lowest C/N
ratio (13.0) was found in the N-fixing exotic A. auric-
ulaeformis, associated with the highest value of TN
(1.13 g/kg), and the C/N ratio under A. auriculaefor-
mis was less than that under the native C. fissa and M.
macclurei (P<0.05, Table 2). Soil extractable NO3−N
concentration in unplanted controls (2.83 mg/kg) was
greater than those in planted soils (P<0.05, Table 2).
This pattern was consistent with the trend of NO3−N
concentration in soil solution (Fig. 2d). Moreover, a
correlation (r00.93, P00.001) was found between soil
extractable NO3−N and soil solution NO3−N in the
last sampling. Acacia auriculaeformis maintained the
greatest available P in the soil (1.28 mg/kg), and
was greater than those under C. fissa, S. superba
and E. urophylla (P<0.05).

Plant growth and N and P distribution

The concentration of N and P in each type of plant
tissue differed among plant species (Table 3). The
highest values of root N concentration in N-fixing
Acacia species (19.5–21.4 mg/g) were twice as much
as those in the native species, and 400 % higher than
those in the Eucalyptus species (3.88–5.74 mg/g).
Eucalyptus had consistently low N concentrations in
each plant parts in comparison to other species (P<
0.05, Table 3), while the Acacia plants had the highest.
Compared to exotic species, native species tended to
have greater concentrations of P in stem (P00.001),
and leaf (P00.006), but not in root (P00.722). The N/
P ratios in all plant parts were greatest in A. auricu-
laeformis, higher than all other species (P<0.05). The
E. urophylla had the smallest N/P in leaves (7.27±
0.36) and roots (12.4±3.86), while S. superba had the
smallest N/P (10.7±2.70) in stems.

The two exotic Eucalyptus and two exotic Acacia
species hadmuch faster growth rates than the four native
species, resulting in taller plants (P<0.001, Fig. 3). In
December 2006, only 2 months after the initial planting,
the height of four exotic species have increased 6–8 cm,
while in four native species there were almost no change
in height (Fig. 3). The fastest growth rate was measured
for E. tereticornis and A. auriculaeformis, whose
heights had increased more than 80 cm in 1 year
(Fig. 3). Castanopsis fissa had the fastest growth rate
among native species, which increased in height by
31.6 cm in 1 year (Fig. 3); for other three native plants,
height increase was less than 22.8 cm. T
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Plant height is associated positively with plant bio-
mass (r00.891, P<0.001). There was no significant
difference among individual seedlings on height at the
beginningof theexperiment.Therefore,weassumed that
the biomass in the original seedlings were the same
amongspecies.Thebiomassofexoticplantsweregreater
than the native species (P<0.001, Fig. 4a). Furthermore,
total N amount in the two N-fixing species (A. auricu-
laeformis: 3,500 mg/plant and A. mangium: 2,500 mg/
plant) were 200 %–300 % as much as those in the
Eucalyptus species and 400 %–500 % of the native
species (Fig. 4b). The greatest amount of P was found
in A. mangium (150 mg/plant). Exotic species accumu-
lated more than 100 mg P in each plant, and these
amounts were 200 %–500 % more than in the native
plants (Fig. 4c).

The relationships among growth rate, plant N and P
concentrations and soil variables

Plant growth rate was correlated negatively with P con-
centration in leaves and stems (r0−0.573, P<0.01 and
r0−0.484, P<0.01, respectively, Table 4). Plant tissues
N concentrations had no significant relationships with
plant growth rate. However, the leaf N/P ratio was
correlated positively with the growth rate (r00.417, P
<0.05). Furthermore, significantly negative correlations
were found between plant growth rate and soil available
N variables (DON: r0−0.657, P<0.01; soil solution
NO3−N: r0−0.754, P<0.01; soil NO3−N: r0−0.416,
P<0.05; and soil NH4−N: r0−0.362, P<0.05), while a
positive relationship between soil available P and plant
growth rate was found (r00.442, P<0.05). Using partial
correlation analysis with plant growth rate as a

controlling factor, soil available P was associated posi-
tively with root, stem and leaf N concentration (r0
0.464, r00.451 and r00.443, respectively, P<0.01 for
root N concentration and P<0.05 for stem and leaf N,
Table 4). In addition, no relationship was found between
soil extracted N (soil NO3−N and NH4−N) and plant N
and P traits (Table 4).

Discussion

Plant species effects on soil nutrient availability

Many studies have shown that dissolved organic mat-
ters (DOM) play a critical role in a large number of
soil processes (McDowell 2003). Recent findings em-
phasized the turnover of DOC in soil as a major
pathway of elements cycling (James and Lungo
2005). In this present study, plant growth enhanced
the level of DOC in soil solution. This result was in
agreement with many previous studies which have
found that plant growth could increase soil DOC
(Khalid et al. 2007; Lu et al. 2000; Yano et al.
2005). Plant root exudates, which induced decompo-
sition of soil organic matter and stimulated soil micro-
bial activity, could be responsible for the increased
DOC levels in planted soils (Farrar et al. 2003;
Grayston et al. 1997; Nardi et al. 2000; Nardi et al.
2002; Toal et al. 2000). Khalid et al. (2007) found that
the content of phenolic substances increased in soil
solution in the presence of plants. Cheng et al. (2003)
found that presence of roots could stimulate microbial
activity in the mineralization of soil organic matter,
and that further enhance the release of soluble prod-
ucts from soils. In this study, DOC increased even in
control pots, likely due to the breakdown of SOC
during the study (1.63 % at the beginning to 1.53 %
at the end).

In this study, as what we had hypothesized, exotic
species always had lower NO3−N concentration than
the native species, which was in accordance with their
high growth rates. Because the availability of NO3−N
in soil could be reflected easily in its solution content
(Khalid et al. 2007; Yanai et al. 1995), much lower soil
NO3−N level under fast growing exotic species indi-
cates that these species have greater demand of soil N,
even among N-fixing Acacia. The correlation analysis
also showed that soil solution NO3−N and soil extract-
able NO3−N was both associated negatively with plant
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growth. Moreover, although root nodules have been
observed in N-fixing species (data not shown), there
were no differences in soil NH4−N or NO3−N between
these N-fixing species and Eucalyptus species. This
result was consistent with our findings in an early field
experiment (Wang et al. 2010a). In that study, we
compared soil N availability among several young
plantations, and found that the N-fixing A. crassicarpa
monoculture had low soil N availability as E. uro-
phylla monocultures, and were all less than native
species plantation. Thus, in the case of exotic Acacia

plants, both ‘newly’ fixed N and ‘old’ mineralized N
have been used to support fast plant growth, while in
exotic Eucalyptus plants, fast plant growth greatly
reduced soil N, both in extractable pools and in soil
solution.

Soil solution DON is also regarded as a major mode
of N export in terrestrial ecosystems, and plays an
important role in determining the balance and accu-
mulation of N (Qualls 2000). Previous studies have
shown that compared to NO3−N, DON also represents
a significant “leak” of N in various ecosystems
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(Dittman et al. 2007; Finzi and Berthrong 2005; Jones
et al. 2004). In the current study, the soil solution
DON and NO3−N were negligible in the fast-
growing exotic species. The results, thus, indicated
that the exotic fast growing species could retain N in
plant biomass and leach less during heavy rainfall (as
typical during the rainy growing season in southern
China). Our field observations in young plantations
also found that exotic species could increase N reten-
tion in biomass and had much lower N leaching loss
than native species (Wang et al. 2010a). Nutrient re-
tention is important for afforestation in southern
China, where most of plantations were established on
degraded land, and the eluviations by heavy rainfall
lead to soil depletion (Ren et al. 2007). The results in
this study, combined with the results in our field
studies (Wang et al. 2010a), manifested that, in affor-
estation of poor soils with high leaching potential,
exotic fast-growing species were better than native
species at reducing nutrient loss.

Contrast to our hypothesis, the fast-growing A.
auriculaeformis had the most soil available P among
all treatments. The result was the same as our obser-
vation in older plantations in the area (Wang et al.
2010b). In a 23 year old plantation, we found that A.
auriculaeformis maintained higher soil available P
than A. mangium, Eucalyptus species, S. superba and
other native tree species (Wang et al. 2010b). Some
plants have been shown to produce low-molecular
weight organic acids, which could release phosphate
through chelating Fe or Al in soils (Ae et al. 1990).
Although the mechanisms through which A.

auriculaeformis improve soil P availability warrant
further study, the results of this pot experiment, com-
bined with field observations in older plantations
(Wang et al. 2010b), suggested that A. auriculaeformis
could improve soil P availability in comparison with
other species tested. We thus hypothesize that the root
of A. auriculaeformis could secrete more low-
molecular weight organic acids to improve the soil P
availability.

Nutrient Accumulation in Plants

The exotic Eucalyptus always had the least concentra-
tion of N in leaves, stems and roots, while the two N-
fixing exotics had the greatest values. As a result, the
two N-fixing species had more than two times N
content in its biomass than non-N-fixing species.
However, contrast to our hypothesis, no difference
on soil N availability was found between N-fixing
species and non-fixing species. This result was in
contrast to the observations in 13 year and 23 year
old Acacia plantations in this region (Li et al. 2001;
Wang et al. 2010b), where the researchers found that
N-fixing Acacia plantation contained higher soil N
availability than non-N-fixing species. In the old
Acacia plantations, the higher litter mass and higher
litter N concentrations should be responsible for the
higher soil N availability (Li et al. 2001). However, in
this one year pot experiment, the litter fall was limited.
As aboveground and belowground litter inputs was a
major pathway of plant-soil interactions, in a longer
time frame, N-fixing Acacia species could contribute

Table 4 Pearson correlation and partial correlation coefficients among growth rate, plant N and P concentrations and soil variables

Growth Rate DOC DON NH4−N NO3−N Available P Soil NO3−N Soil NH4−N

Growth Rate 1 0.21 −0.657a 0.03 −0.754a 0.442b −0.416b −0.362b

Leaf [N] −0.23 −0.221 0.086 −0.172 −0.032 0.443b −0.048 −0.013
Stem [N] −0.29 −0.112 −0.025 0.085 −0.018 0.451b −0.001 −0.052
Root [N] 0.06 −0.170 −0.235 0.209 −0.287 0.464a −0.263 −0.224
Leaf [P] −0.573a −0.086 0.273 −0.431 −0.027 0.097 −0.096 0.136

Stem [P] −0.484a 0.128 0.564 −0.517 0.191 −0.027 −0.052 0.039

Root [P] −0.19 0.371b −0.082 0.037 −0.289 0.092 −0.144 0.032

Leaf N/P 0.417b −0.142 −0.149 0.191 0.025 0.409b 0.057 −0.155
Stem N/P 0.33 −0.225 −0.374b 0.269 −0.178 0.308 0.018 −0.054
Root N/P 0.15 −0.420b −0.278 0.211 −0.114 0.366b −0.074 −0.133

a Correlation is significant at the 0.01 level (2-tailed). b Correlation is significant at the 0.05 level (2-tailed). Growth rate was regarded as
a controlling variable in the analysis of relationships between soil variables and plant N and P variables
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positively to soil N availability by their higher N
content in aboveground litters and roots (Khanna
1997; Wang et al. 2010a; Wang et al. 2010b).

Phosphorus is often deficient in this region, and is
regarded as a key nutrient that constrains productivity
in plantations (Liu et al. 2012; Wang et al. 2010a; Xu
et al. 2002; Xu et al. 2005). In this study, soil available
P was lower than 1.5 mg/kg, and was correlated pos-
itively with plant growth rate (r00.442, P<0.05). We
also found that exotic fast-growing species have accu-
mulated two times more P in biomass than native
species. Contrary to our hypothesis, fast-growing ex-
otic plants may not cause immediate P depletion.
Conversely, the result suggests that faster growth rate
may combine with higher soil P supply. Binkley et al.
(2000) have found that soil P supply under fast-
growing Eucalyptus saligna was double that under
Albizia falcataria, an N-fixing species but with slower
growth rate. Furthermore, in our study the plant
growth rates were associated negatively with P con-
centrations in plant leaf and stem; the faster the growth
rates, the lower the leaf and stem P concentrations.
These results, thus, indicated that fast-growing species
had higher soil P supply and P use efficiency to meet
their high growth rate. Consequently, fast-growing
plants, here the exotics, may have a better capacity
to transfer P from soil to plant, and in the long term,
through litter decomposition and nutrient mineraliza-
tion, contribute positively to soil nutrient availability.

Recommendations for management

Selection of plant species plays an important role in
afforestation (Eviner and Hawkes 2008; Wang et al.
2010a). The use of exotic species in afforestation, was
in great dispute (D’Antonio and Meyerson 2002; Lamb
1998). Thus, evaluation of the pros and cons of exotic
species versus native species and selecting some native
species to replace exotics is critical to advance plant-soil
interactions and to provide better recommendations for
management (Wang et al. 2010a).

Our study found that: 1) Exotics, with their fast-
growth rates, could retain more N in plant biomass and
minimize leaching loss from the soil; 2) N fixing
Acacia performed better than Eucalyptus in N acqui-
sition, but did not improve soil N availability in the
short term; 3) The fast-growing exotics took up more
P than natives, but did not lead to P depletion in soils.
4) Planting of A. auriculaeformis could improve soil P

availability. 5) native species C. fissa had the growth
rate comparable to exotic plants. Based on these find-
ings, we recommend that: 1) The use of exotic species
versus native species in afforestation should be site
dependent, in degraded land with poor soils, exotics
are better than natives in nutrient retention. 2) Acacia
is better than Eucalyptus in improving ecosystem N
budget, but in their early stage, N-fixing Acacias are
actually good N miners rather than N providers. 3)
Planting of A. auriculaeformis is a better choice than
other species tested in improving soil P availability. 4)
C. fissa is a fast-growing native species, and may
potentially replace or supplement fast-growing exotic
species in afforestation of southern China. 5) In the
future study, the comparison of exotic vs. native spe-
cies should include taxa with more comparable growth
rates (fast-growth vs. slow-growth) or symbiotic asso-
ciations (N-fixing vs. non-N-fixing), which will not
only test more appropriately the original idea but also
will encourage the diversification of potential species
for afforestation, especially for degraded area with
conservation proposes.
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