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Abstract. Soil organisms play principal roles in several ecosystem functions, i.e. promoting
plant productivity, enhancing water relations, regulating nutrient mineralisation, permitting
decomposition, and acting as an environmental buffer. Agricultural soils would more closely
resemble soils of natural ecosystems if management practices would reduce or eliminate culti-
vation, heavy machinery, and general biocides; incorporate perennial crops and organic material;
and synchronise nutrient release and water availability with plant demand. In order to achieve
these goals, research must be completed to develop methods for successful application of organic
materials and associated micro-organisms, synchronisation of management practices with crop
and soil biota phenology, and improve our knowledge of the mechanisms linking species to
ecosystem processes.

1.  Introduction

Jackson (1995) suggests that modern agriculture operates in a ‘paradigm of
ignorance.’ This concept is appropriate for the discipline of soil ecology, which
has been recognised as a scientific discipline for only 20 years. Some have
labelled soil ecology as a ‘last frontier’ (Andre et al., 1994). About 10% of
soil species have been identified (Hawksworth and Mound, 1991). Of the
world species, insects, fungi and nematodes are three groups that have not
been identified fully (Table 1). Our knowledge of soil organisms has been
limited by our ability to extract organisms from soil efficiently and by an
ability to appropriately identify juvenile stages. Furthermore, microbiology
and soil biology are often ignored by ecologists. Consequently, modern studies
of soil and sediment ecology are several steps behind those of other sub-
disciplines of ecology. Many aspects of decomposer ecology are not well
characterised for terrestrial soil or sediments in lakes, streams or oceans. Soil
and sediment ecologists are still completing the taxonomy and systematics of
soil organisms, revealing life history strategies, and just beginning to under-
stand relationships between organisms and their contribution to ecosystem
function (Crossley et al., 1992). One exception is that of earthworms and
nitrogen-fixing bacteria whose relationship to ecosystem function has been
known for decades. This apparent lack of knowledge does not, however,
diminish the importance of soil organisms. Evolutionary and geological
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evidence suggests that soil organisms have considerably longer histories on
earth than organisms that have received more attention such as mammals and
vascular plants (Main, this volume; Van Noordwijk and Ong, this volume).
Their longevity alone suggests they play an essential role(s) in ecosystem
function. 

This paper will introduce the discipline of soil ecology, with an emphasis
on characterising members of the soil community (Table 2) and their respec-
tive roles in ecosystem function. Second, approaches to design and manage-
ment of soil communities to optimise ecosystem function will be discussed.
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Table 1. Numbers of species in the world. 

Organism group Described species Estimated species % of estimated 
(

 

× 103) (× 103) species described

Dicot plants 170
Monocot plants 050
Ferns 010
Mosses and liverworts 017
Fish 019 00,21 095
Birds 009 000,9.1 099
Mammals 004 000,4 100
Reptiles and amphibians 009 000,9.5 095
Algae 040 00,60 067
Protozoa 030 0,100 030
Nematodes 015 0,500 003
Bacteria 003 00,30 010
Viruses 005 0,130 004
Fungi 069 1,500 005
Insects 800 2,000–10,000 000.08–0.4

Source: Hawksworth and Mound (1991).

Table 2. Hierarchy of size and abundance of organisms inhabiting soil. 

Class Example(s) Biomass Length Populations
(g m–2) (mm) (m–2)

Microflora Bacteria, fungi, algae, 1–100 n.a.a 106–1012

actinomycetes

Microfauna Protozoa 1.5–6.0 0.005–0.2 106–1012

Mesofauna Nematodes, arthropods, 0.01–10 0.2–10 102–107

enchytraeids, mites, 
springtails

Macrofauna Insects 0.1–2.5 10–20 102–107

Megafauna Earthworms 10–40 ≥ 20 0–103

a Not applicable.
Source: Dindal (1990) and Lal (1991).



Finally, research priorities will be summarised. Most discussion will focus
on nematodes, springtails (Collembola), and mites because they predominate
in total numbers, biomass and species of fauna in soil (Harding and Studdart,
1974; Samways, 1992).

2.  Soil food web

Mesofauna occupy all trophic levels within the soil food web (Figure 1) and
affect primary production directly by root-feeding and indirectly through their
contribution to decomposition and nutrient mineralisation (Crossley et al.,
1992). In soil, the basic food web structure is similar to other food webs by
containing primary producers, consumers and detritivores. Numbers and
biomass per volume of soil organisms decrease by orders of magnitude from
bottom to top positions in the food chain. In contrast to other food webs, soil
food webs tend to have longer food chains, greater incidences of omnivory,
and possibly greater complexity than other food webs. Further, all fauna
depend on primary producers (e.g. for litter).

Plants and organic debris provide habitats for soil organisms. Plants affect
soil biota directly by generating inputs of organic matter above- and below-
ground and indirectly by the physical effects of shading, soil protection and
uptake of water and nutrients by roots. Energy and nutrients obtained by plants
eventually become incorporated in detritus that provide the resource base of
a complex soil food web. Plant roots, for example, exude amino acids and
sugars that serve as a food source for micro-organisms (Curl and Truelove,
1986). Soil micro- and mesofauna are often aggregated spatially which is
probably indicative of the distribution of favoured resources, such as plant
roots and organic debris (Swift et al., 1979; Goodell and Ferris, 1980; Barker
and Campbell, 1981; Noe and Campbell, 1985; Griffiths, 1994).

Three basic energy pathways exist in soil: those of roots, bacteria and fungi
(Moore et al., 1988). The root pathway includes primary herbivores such as
pathogenic fungi, bacteria, nematodes, protozoa and their consumers. These
organisms decrease primary productivity by altering uptake of water and
nutrients, and may create abnormalities in root morphology and/or physiology.
The bacterial pathway includes saprophytic and pathogenic bacteria and their
respective consumers (e.g. protozoa, bacterial-feeding nematodes). The fungal
pathway includes saprophytic, mycorrhizal and pathogenic fungi and their
respective consumers (e.g. fungal-feeding nematodes, oribatid mites and
springtails). The root, bacterial, and fungal pathways unite at levels higher in
the food chain, i.e. omnivores and predators. Many microarthropods and
nematodes are omnivores and feed on a variety of food sources, such as algae,
fungi, bacteria, small rotifers, enchytraeids and small nematodes. Soil meso-
fauna are often categorised by specific feeding behaviours and are often
depicted as microbial-feeders. However, many organisms are at least capable
of feeding of other trophic groups. As a result, omnivory in soil communi-
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ties may be more prevalent than assumed previously (Walter, 1987; Walter et
al., 1986, 1988; Walter and Ikonen, 1989; Mueller et al., 1990; Bengtsson et
al., 1995). Predators include secondary, tertiary and quarternary consumers,
including certain nematodes, beetles, fly larvae, centipedes, spiders and mites.
Some mesofauna, such as nematodes and protozoa, may serve as predators
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Figure 1.  Soil food webs for a) grassland and b) cultivated wheat. Solid and dashed lines
represent potential feeding relationships that were and were not quantified, respectively. Source:
After Moore and de Ruiter (1991).



or prey depending on the other species in the community (Griffiths, 1994;
Yeates and Wardle, 1996). Soil microarthropods can be important predators
on small arthropods and their eggs (e.g. proturans, pauropods, enchytraeids),
nematodes, and on each other (Dindal, 1990). 

Soil food web structure varies with geography and climate. In North
America, shortgrass prairie (Bouteloua gracilis), lodgepole pine (Pinus
contorta ssp. latifolia), and mountain meadow (Agropyron smithii) have
similar food web structure (Hunt et al., 1987; Ingham et al., 1989). Although
structure is conserved, relative abundance of organisms within trophic or
functional groups may vary by ecosystem type. In Poland, bacterial-feeders
and root-feeding nematodes are most abundant in agricultural soils, omnivory
is more common in grasslands than agriculture, and fungal-feeders are rela-
tively more abundant in forest than agricultural soils (Table 3). In contrast,
relative numbers of organisms in each functional group differ in Swedish soils.
For example, ratios of organisms in fungal to bacterial pathways are greatest
in fertilised barley (Hordeum vulgare L.) followed in descending order by
meadow fescue (Festuca pratensis L.) and lucerne ley (Medicago sativa L.)
(Beare, 1997). In the Netherlands, disturbances such as cultivation and
addition of mineral fertilisers eliminate certain functional groups such as
predacious nematodes, omnivorous nematodes, and mycorrhizae that would
otherwise be present in undisturbed grasslands (Figure 1). Furthermore, testate
amoebae are reduced in abundance by at least 50% in agricultural compared
to natural ecosystems (Foissner, 1997). Other organisms, such as the
Enchytraeidae are less sensitive to cultivation than seasonal changes in climate
(van Vliet et al., 1995). 

Soil organisms vary in size by several orders of magnitude (Table 2).
Microflora and microfauna are the smallest in size and most abundant.
Mesofauna are moderate in size and abundance. Mesofauna generally do not
have the ability to reshape the soil and, therefore, are forced to use existing
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Table 3. Number of nematode genera per trophic group (percent of mean abundance), species
diversity, species richness, and numbers of nematodes in soils of Poland. 

Trophic Group Annual crop Perennial crop Grassland Forest
(rye, potato) (alfalfa)

Bacterial-feeders 0.9–15 (41) 15–16a 0.8–18 (29) .11–18 (39)
Fungal-feeders 0.2–4 (16) 04a 0.1–4 (6) 0.2–5 (21)
Root-feeders 0.6–11 (37) 11a 0.9–14 (38) 0.7–11 (23)
Omnivores/predators 0.2–7 (6) 11–14a 0.7–17 (27) 0.2–8 (18)
Species diversityb 3.1–4.2 0–a 3.9–4.9 3.2–4.3
Species richness .33–34 87–100 .74 .34–68
Mean no. nematodesc 3.5–5.0 0–a 2.3–3.3 2.3–3.7

a Not available
b Shannon’s index of diversity
c 106 per m2

Source: After Wasilewska (1979).



pore spaces, water cavities or channels for locomotion within soil. Most
microfauna and mesofauna inhabit soil pores of 25–100 µm diameter. Protozoa
(flagellates and small amoebae) occupy pores as small as 8 µm diameter
(Griffiths, 1994). Macrofauna and megafauna are the largest and least
abundant per unit area. Their size exceeds that of many soil pores and pore
necks. Therefore, their movement and activity re-form soil and create burrows
or channels.

Habitable pore space (voids of sufficient size and connectivity to support
mesofauna) accounts for a small portion of total pore space (Hassink et al.,
1993). Microfaunal community composition becomes increasingly dominated
by smaller animals as average pore volume decreases (as in compacted soil
or soils dominated by fine clays). Within the habitable pore space, microbial
and mesofaunal activity are influenced by the balance between water and air.
Maximum aerobic microbial activity occurs when 60% of the pore volume is
filled with water (Linn and Doran, 1984). Saturation (water-logging) and
drought are detrimental to soil faunal communities, because these conditions
result in anaerobiosis and dehydration, respectively. Microbes and small fauna
(e.g. nematodes, protozoa) depend on water films to live and move through
the soil system (Griffiths, 1994; Lavelle et al., 1995). In aerobic environments,
nematodes are more abundant when amoebae are present as food. This
suggests that amoebae feed on bacteria in pores inaccessible to nematodes and
then emerge to act as food for nematodes (Foster and Dormaar, 1991; Griffiths,
1994). 

3.  Soil function

The ‘first-link’ hypothesis can partly explain the origin of biodiversity in soil
but the relationship between biodiversity on soil function remains untested
(Lavelle et al., 1995). The hypothesis originated from observed changes in
structure of earthworm communities along thermo-latitudinal gradients and
extrapolation of observed patterns to plants based on the similarities observed
in the general function of both drilosphere and rhizosphere systems (Lavelle
et al., 1995). Janzen (1985) asserts that ‘plants wear their guts on the outside’;
they produce exudates that trigger microbial activity and subsequent miner-
alisation of nutrients. In guts of earthworms, intestinal mucus and movement
of soil through the gut are functional equivalents of root exudates and elon-
gation through soil, respectively. It has been demonstrated that the mutual-
istic digestion system of earthworms becomes increasingly more efficient with
increasing temperatures (Lavelle et al., 1995). It is assumed that increased
temperatures in soils give roots access to a greater volume of nutrient resources
because of more efficient mutualisms between soil microflora and plant roots.
This would be the first link of a cascade process in which the species richness
in the food web of consumers and decomposers would become larger in the
tropics than in colder temperate or arctic areas. 
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In some geographic areas, richness of species composition in grassland and
forest soils exceeds that of arable soils with annual crops (Table 3). In contrast,
Wardle (1995) reports several cases in which conventional agricultural prac-
tices stimulate diversity. For example, the diversity of nematode genera in
soils within asparagus (Asparagus officinale L.) systems was not affected by
management practices such as addition of sawdust mulch, cultivation or her-
bicide applications. Soil-associated beetle diversity, however, was increased
significantly by mulching and (sometimes) high weed densities.

Disturbance certainly plays a role in altering diversity. Perhaps interme-
diate disturbance promotes macrofaunal diversity, and extreme or lack of dis-
turbance reduces diversity relative to undisturbed systems (Petraitis et al.,
1989; Hobbs and Huenneke, 1992). The ‘intermediate disturbance hypothesis’
(Connell, 1978) could explain why some groups of organisms are more
abundant in no-till (i.e. intermediate disturbance) than either conventionally-
tilled (i.e. extreme disturbance) or old-field (i.e. no disturbance) systems
(Wardle, 1995). If disturbance is common or harsh, only a few taxa that are
resistant to disruption will persist (Petraitis et al., 1989). If disturbance is mild
or rare, soil communities will approach equilibrium and be dominated by a
few taxa that can out-compete all other taxa. However, attainment of steady-
state equilibrium in agricultural or natural ecosystems is rare (Richards, 1987).
There is little data to support this hypothesis but temporal patterns in diver-
sity appear consistent with patterns detected during natural succession in plant
communities (Whittaker, 1975). 

Perhaps, it is more important to mimic the diversity of ecosystem function
observed in natural systems than to mimic diversity of community composi-
tion (Main, this volume; Van Noordwijk and Ong, this volume). For example,
an index of trophic diversity may serve as a measure of functional diversity
in soil communities (Figure 2). Reducing the frequency of cultivation (Hendrix
et al., 1986) and including perennial crops in agricultural systems
(Wasilewska, 1979; Freckman and Ettema, 1993; Neher and Campbell, 1994)
are two ways to increase trophic diversity in arable soils. Use of a trophic
diversity index assumes that greater diversity (an integration of taxa richness
and evenness) of trophic groups in soil food webs and longer food chains
correspond with improved ecosystem function. In order to test the validity of
such assumptions, it is important to identify ecological functions of soil and
how soil organisms are involved in those functions. To date, five ecological
functions of soil have been identified (sensu Larson and Pierce, 1991): 

– promote plant growth;
– receive, hold and release water;
– recycle carbohydrates and nutrients through mineralisation;
– transfer energy in the detritus food chain; and
– act as an environmental buffer.

Individual taxa may have multiple functions and several taxa appear to have
similar functions. However, taxa may not necessarily be redundant because
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taxa performing the same function are often isolated spatially, temporally, or
by microhabitat preference (Beare et al., 1995). Ettema (1998) suggests that
the extent of nematode functional redundancy in soil has been greatly over-
estimated. Although redundancy of single functions is common, distinct
physiological and environmental requirements drive species of the same func-
tional group to play widely different roles in soil ecosystem processes.

3.1. Promoting plant growth

Growth may be enhanced for plants in soils containing multiple functional
groups. For example, in North American grasslands containing blue gamma
grass (Bouteloua gracilis), soil food webs containing primary decomposers
and microbial grazers had greater primary productivity than systems limited
to only primary decomposers (Ingham et al., 1985). Increases in plant growth
have been observed for plants grown in soil containing protozoa and/or
nematodes (Verhoef and Brussaard, 1990; Griffiths, 1994; Alphei et al., 1996).
In glasshouse experiments, blue gamma grass withdrew more nitrogen from
fertilised soil in the presence of amoebae than in their absence (Zwart et al.,
1994). Protozoan grazing is necessary to release nitrogen from bacterial
biomass for plant uptake (Clarholm, 1985). Finally, shoot production was
enhanced 1.5 times in birch (Betula pendula) and 1.7 times in Scots pine
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Figure 2. Means and standard errors of two measures of nematode community composition:
1) trophic diversity in disturbed (open bars) and undisturbed (hatched bars) and 2) successional
maturity of free-living nematodes in disturbed (solid bars) and undisturbed (stippled bars) soils
of North Carolina, USA. Undisturbed is defined as 10+ year-old pastures, 30+ year-old forests,
and functioning wetlands. Disturbed is defined as annually cultivated arable soils, one to three
year-old forests and wetlands converted to agricultural production. Source: Neher et al. (unpubl.
data).



(Pinus sylvestris) when seedlings were grown in soils containing a more
complex food web (bacterial-feeding nematodes, fungal-feeding nematodes,
omnivores, springtails and oribatid mites) than when grown in simple systems
containing only bacterial- and fungal-feeding nematodes (Setälä et al., 1995).

Based on a simulation model of shortgrass prairie (Hunt et al., 1987), 14%
of nitrogen extracted by plants is accounted for by predation of bacteria by
amoeba (Zwart et al., 1994). Having similar carbon, nitrogen and phosphorus
content as their prey, protozoa incorporate only 10–40% of prey carbon,
respire the remaining carbon, and excrete excess (20–60%) nitrogen and
phosphorus into soil mostly as inorganic forms that can be assimilated by
plants (Griffiths, 1994; Zwart et al., 1994). 

Soil fauna not only alter the availability of nutrients for plants, but also
alter relative distributions of carbon and nitrogen within plants. For example,
plants grown in soils with only protozoa have less carbon in shoots and more
carbon in roots than plants grown without protozoa. The opposite pattern was
observed for plants grown in soils containing only nematodes (Alphei et al.,
1996). Soil fauna generally affect amounts of nitrogen in roots more than in
shoots (Alphei et al., 1996). One method of protozoa affecting nitrogen supply
to roots is by consuming Rhizobium spp. and, consequently, reducing nodu-
lation in the rhizospheres of common garden bean (Phaseolus vulgaris) (Zwart
et al., 1994).

The effect of soil fauna on plant growth cannot be attributed entirely to an
increased supply of nutrients to plants because nutrient leaching may also
increase in the presence of soil fauna (Alphei et al., 1996). Protozoa may
further stimulate plant growth by altering concentrations of plant hormones
(e.g. auxin, tryptophan) in the rhizosphere and/or suppressing pathogenic
bacteria (Jentschke et al., 1995; Alphei et al., 1996). Hormonal substances
may derive directly from protozoa or indirectly from lysis of bacterial cells
grazed by protozoa. 

3.2. Receiving, holding and releasing water 

Dawson and Pate, Hatton and Nulsen, and Dunin et al. (this volume) stress
the importance of water in plant physiology and hydrogeology in designing
agricultural systems that mimic nature. Soil serves as an interface between
plants and geology. Soil water may have positive or negative impacts on soil
organisms. Soil microbial and megafaunal populations improve water infil-
tration by altering soil physical structure. For example, bacteria produce
polysaccharide adhesives and fungi produce thread-like hyphae that bind soil
particles into stable aggregates and reduce potential soil losses by erosion
(Gupta and Germida, 1988; Eash et al., 1994; Beare, 1997). Enchytraeidae
(van Vliet et al., 1995) and earthworms (Edward and Bohlen, 1996) create
burrows to improve infiltration and improve aeration. Van Vliet et al. (1995)
hypothesise that enchytraeids have more influence on soil structure in agri-
cultural fields than in forested areas. 
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As matric potential in soils declines to about –3 or –6 bars, bacterial res-
piration declines rapidly and is negligible at –20 bars (Griffin, 1981). Fungi
often tolerate matric potential in excess of –30 bars, conditions unsuitable
for growth of most bacteria except actinomycetes such as Strepomyces spp.
Under these dry conditions, diseases caused by fungal pathogens, such as
Fusarium culmorum on wheat (Triticum aestivum), become more severe. F.
culmorum thrives at matric potentials that reach –100 bars at the surface and
–30 bars in the rhizosphere (Griffin, 1981). Other fungi such as the take-all
pathogen on wheat, Gaeumannomyces graminis, may predominate in irrigated
soils (Griffin, 1981).

Ecosystem processes relate directly to the water content in soil. For
example, a negative linear relationship occurs between relative nitrogen
mineralisation and the logarithm of water potential. Decomposition of organic
matter is also influenced by soil matric potential. An initial rapid decrease in
decomposition within the –0.3 to –10 bar range is followed by another region
where decomposition decreases linearly with decreasing water availability.
The role of most bacteria is probably minimal once soils reach –15 bar water
potential resulting in actinomycetes (filamentous, gram- positive bacteria) and
fungi being the major decomposers in soils. Dry soils reduce the ability of
substrate molecules to diffuse to the bacterial cell and the ability of bacteria
to move to new substrates (Sommers et al., 1981). At the other extreme, water
potential influences decomposition where saturated conditions result in the
depletion of oxygen (O2) and the development of anaerobic conditions. Under
these conditions, anaerobic bacteria are the predominant organisms respon-
sible for decomposition. Comparison of decomposition rate to soil water
potential must incorporate metabolic shifts that occur in the transition from
aerobic to anaerobic conditions. In the former, carbon dioxide (CO2) is the
major end product and in the latter, CO2 may underestimate microbial activity
because methane (CH4) and other reduced carbon compounds may be signif-
icant end-products under saturation (Sommers et al., 1981). 

3.3. Recycling carbohydrates and nutrients through mineralisation

Fauna may contribute directly to mineralised forms of nitrogen by excretion
of ammonium (e.g. nematodes and protozoans) or nitrate (e.g. springtails)
(Anderson et al., 1983; Ingham et al., 1985; Teuben and Verhoef, 1992;
Darbyshire et al., 1994; Griffiths, 1994). As reservoirs of nutrients, microflora
and microfauna also contribute indirectly to mineralisation. Net increases in
nitrogen concentration in soil caused by mesofauna grazing on microbes have
been demonstrated in petri dish experiments (Trofymow and Coleman, 1982).
Nutrients immobilised in microbes are mineralised and subsequently become
available to plants (Seastedt et al., 1988; Söhlenius et al., 1988). 

Model simulations of soil food webs estimate that 97 and 99% of total
nitrogen flux can be attributed to the bacterial pathway in integrated farming
and conventional farming systems, respectively (Beare, 1997). Griffiths (1994)
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estimates from several independent food web studies that protozoa, especially
amoebae, are responsible for 20–40% of net nitrogen mineralisation under
field conditions. Estimates of protozoan contribution to net nitrogen miner-
alisation vary by geographic location and farming system. For example,
protozoa are estimated to mineralise about 54 and 90 kg of nitrogen per year
in no-till and conventionally tilled soils (Beare, 1997). In The Netherlands,
protozoa mineralise approximately 30 and 43 kg of nitrogen per year in
conventional and integrated farming trials (Beare, 1997). These estimates
likely underestimate total contributions to net mineralisation by protozoa
because bacteria simultaneously mobilise nutrients rapidly (Griffiths, 1994). 

In addition to protozoa, bacterial-feeding and predatory nematodes are
estimated to contribute (directly and indirectly) about 8 to 19% of nitrogen
mineralisation in conventional and integrated farming systems (Beare, 1997).
Although counter-intuitive, predatory nematodes sometimes demonstrate
stronger relationships with the amount of microbial food source than the
abundance of microbial-feeding fauna, which may serve merely as a conduit
by which resources pass from the bottom to top trophic levels (Wardle and
Yeates, 1993). 

Protozoa may out-compete nematodes for consumption of bacteria because
they have much shorter generation times (one to two days compared to four
to seven days) (Griffiths, 1994). However, it is assumed that nematodes and
protozoa do not compete directly. Although the abundance of protozoa may
correlate inversely with numbers of nematodes, nematodes are thought to have
a stimulating effect on protozoa (Alphei et al., 1996) by increasing bacterial
production (Griffiths, 1994). This hypothesis is supported by faster accumu-
lation of ammonium from cultures containing bacteria, ciliates and nematodes
than only bacteria and ciliates (Griffiths, 1994). When protozoa are active in
absence of nematodes, nitrate is the major ion leached and is accentuated in
the presence of earthworms (Alphei et al., 1996). Mites may stimulate amoebal
numbers by increasing the availability of bacteria and decreasing numbers of
nematodes in the presence of a large abundance of amoebae (Griffiths, 1994).
The latter hypothesis is supported by evidence that nitrogen mineralisation is
increased by amoebae feeding on flagellates in the presence of mites (Griffths,
1994), or increased nitrate leaching with protozoa and earthworms (Alphei et
al., 1996). The presence and abundance of earthworm activity have also been
linked to increased leaching of inorganic nitrogen in field and laboratory
conditions (Filser et al., 1995). Soil oxidation state was correlated positively
with nitrate leaching in conventionally tilled soils (Doran, 1980). In no-till
soils, both nitrification and denitrification were greater in surface soil (0–5
cm) compared to conventionally tilled soils, with the reverse pattern at greater
depths (5–21 cm) (Beare, 1997).

The bacterial pathway is not always the dominant force in net nitrogen
mineralisation. In Sweden, fungal contributions to nitrogen immobilisation
are about 3.5 times more than bacterial contributions (Beare, 1997). It is likely
that fungal-feeding microarthropods are more important in mobilising nitrogen
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from surface residues through grazing in no-till soils than bacteria and their
consumers (Beare, 1997). 

Not only may soil fauna stimulate net mineralisation of nutrients but they
may also promote nutrient immobilisation. In Sweden, more nitrogen was
immobilised in surface applied than buried straw in soils cropped to meadow
fescue or lucerne. Perhaps competition for available nitrogen occurred between
plant roots and residue-borne decomposers (Beare, 1997). Furthermore,
phosphorus is immobilised in the presence of nematodes and more so when
both protozoa and nematodes are present (Alphei et al., 1996). Earthworms
may temporarily immobilise nutrients in microbes while they pass through the
earthworm gut (Filser et al., 1995). The relative balance of nutrient mineral-
isation and immobilisation is not solely a function of soil faunal activities
but also depends on the presence of nitrifying bacteria and the mobility of
nutrients ions and loading of exchange surfaces (Alphei et al., 1996). 

3.4. Transferring energy in the food chain

Bacteria (including actinomycetes), fungi, algae and protozoa are primary
decomposers of organic matter. Nematodes, large protozoa, springtails and
mites feed on microbes in contact with decaying organic matter, but not on
the organic matter itself. Microbial-grazing mesofauna affect growth and meta-
bolic activities of microbes and alter community composition, thus regulating
decomposition rate of organic matter (Wasilewska et al., 1975; Trofymow and
Coleman, 1982; Whitford et al., 1982; Yeates and Coleman, 1982; Seastedt,
1984). Protozoa alter the composition and activity of the microbial commu-
nity by selectively grazing on small, slow-growing cells which act to maintain
taxonomic and metabolic diversity of microflora. It is assumed that this type
of grazing preference maintains a bacterial population in a ‘youthful’ state
and maintains decomposition activity (Griffiths, 1994). Amoebae apparently
have a stimulatory effect when added to bacterial cultures based on evidence
of increased respiration, ammonification and siderophore production (Griffiths,
1994). Other fauna have indirect effects on decomposition. For example,
microarthropods and Enchytraeidae fragment detritus and increase surface area
for further microbial attack (Berg and Pawluk, 1984; Van Vliet et al., 1995).
Subsequently, protozoa re-inoculate new substrates by phoretic transport or
excretion of viable bacteria (Griffiths, 1994). Examples of invertebrate-
microbe mutualisms are prevalent in soil. For instance, most soil invertebrates
(e.g. termites and earthworms) do not seem to possess suitable enzymes to
directly digest most resources in soil, such as cellulose, lignin, tannin and
humic complexes. Instead, the enzymes seem to be produced by ingested
microbes rather than by the invertebrate itself (Lavelle et al., 1995).

Carbon and nitrogen dynamics are tightly linked in terrestrial ecosystems
suggesting that classic food web theory is insufficient to analyse relations
between food web structure and ecosystem processes. Food web structure may
influence decomposition rate even if trophic interactions are controlled by the
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rate of detritus input (Bengtsson et al., 1995). An increased number of trophic
levels would increase decomposition rate given that consumers do not
influence each others consumption rate or mortality (Bengtsson et al., 1995).
This hypothesis is supported by several laboratory studies (Setälä and Huhta,
1991; Bengtsson et al., 1995). 

Perhaps ecosystem function depends more on the presence and abundance
of particular functional groups rather than complexity of food webs or bio-
diversity alone (Andrén et al., 1995). The ‘snow chain’ hypothesis predicts a
succession of decomposer organisms that respond to changes in substrate
quality. This hypothesis is analogous to the addition of snow chains to tires
when making the transition from clear to snow-covered roads. Evidence of
succession occurs among soil animals. Initially, a peak of enchytraeids and
bacterial-feeding nematodes are present. Once the substrate is decomposed
somewhat and changed qualitatively, numbers of microarthropod and
nematode omnivores and predators increase with a subsequent decline in
numbers of bacterial-feeding nematodes and enchytraeids (Andrén et al.,
1995). 

In desert ecosystems containing creosote-bush (Larrea tridentata), food
webs with additional trophic groups correspond with faster rates of decom-
position than food webs with fewer trophic groups (Whitford et al., 1982).
Decomposition rates were slower for systems without mites (treated with the
insecticide, chlordane) than with mites (no insecticide). Without mites,
nematode grazing may have decreased the decomposition rate. The presence
of mites reduced nematode populations and released microbial populations
from predation, which resulted in faster decomposition rates. Consequently,
predatory mites maintain nematode grazer populations at levels that presum-
ably increase microbial activity and decomposition rates. 

3.5. Acting as an environmental buffer

Soils act as an environmental buffer physically, chemically and biologically.
Physically, soils may filter materials such as pesticides and fertiliser through
its porous matrix and reduce the transfer of leachates into ground and surface
water. Fulvic and humic acids of organic matter play a major role in the
binding of pesticides in soil. Pesticides, or their degradation intermediates,
can also be polymerised or incorporated into humus by the action of soil
microbial enzymes (Bollag et al., 1992). Additional chemical buffering
functions of soil are responsible for regulating the availability of nutrients by
cation exchange capacity (principally influenced by organic matter and clay
content), serve as a sink for carbon dioxide, and are a source of alleopathic
chemicals. Carbon compounds are stored in plant, microbe and animal bodies,
in debris and in abiotic carbonate compounds. During decomposition
processes, respiration releases carbon dioxide as a by-product. Cultivation
releases carbon dioxide to the atmosphere, both through burning of fossil fuels
to run the tractor and disturbing the soil, which increases decomposition rates.
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Soil microbes, especially fungi, may secrete allelopathic substances that
suppress germination of seeds or make seeds unpalatable to predators (Janzen,
1977). This has been demonstrated in the California chaparral with
Adenostoma fasiculatum (Wicklow, 1981). Fire eliminates the alleopathic
effect temporarily. However, it returns after re-establishment of the micro-
bial community. Agronomists have utilised fire to manage soil fungal
pathogens of wheat, barley and rice. 

The presence of particular groups of organisms has been associated with
the suppression of plant disease. First, the springtails Proisotoma minuta and
Onychiurus encarpatus consume the soilborne fungal plant pathogen
Rhizoctonia solani which causes damping-off disease on cotton seedlings.
Springtails prefer feeding on the fungal pathogen in soil compared to the
biocontrol fungi Laetisaria arvalis, Trichoderma harzianum, and Gliocladium
virens (Curl et al., 1988). Springtail species can also distinguish and graze
selectively on different species of vesicular-arbuscular mycorrhizae (Thimm
and Larink, 1995). Second, amoebae of the Vampyrellidae perforate conidia
of Cochliobolus sativus on barley (Old, 1967). Protozoa have been reported
to play an active role in disease suppression by consuming pathogenic nema-
todes, bacteria and fungi (Zwart et al., 1994). Generally, plant pathogens have
faster growth rates than protozoan predators, so it is unlikely that protozoa
will suppress plant pathogens completely in soil. However, for crops grown
in liquid media, this balance may tip the other way (Zwart et al., 1994).
Finally, abundances of the bacterium Pseudomonas fluorescens increase
and may act as a biocontrol agent of the take-all pathogen Gaeumannomyces
gramminis under conditions of no-till, continuous wheat production (Ryder
et al., 1990). 

4.  Designing and maintaining soil communities for optimum function

Modern agricultural methods have replaced or substituted natural and seasonal
patterns of ecological processes with inorganic materials. These substitutions
of nature are likely to have environmental and ecological costs due to the
loss of natural cycles among organisms and their environment through time.
The paucity of studies quantifying these costs compels some scientists to
declare that generalisations such as ‘conventional farming destroys life in
the soil’ or ‘ecofarming stimulates soil life’ are not supported by adequate
evidence (Foissner, 1992; Wardle, 1995; Giller et al., 1997). 

Regardless, we have evidence that increased detrital food webs containing
more groups of organisms are associated with faster decomposition and
nutrient turnover rates (Setälä et al., 1991) and increased primary production
(Setälä and Huhta, 1991). Balanced with organisms that immobilise nutri-
ents, the net effect is regulation of nutrient availability to plants and other
organisms. We cannot conclude that soil biodiversity causes ecosystem
function because there is insufficient evidence to support this claim.
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To better mimic nature, soil ecosystems must be designed and managed to
foster food webs containing multiple functional groups or taxa (i.e. complex
community) and be relatively mature successionally. This can be achieved
by incorporating four types of activities: 

– reduction or elimination cultivation, heavy machinery and general biocides;
– incorporating perennial crops and organic material;
– synchronising nutrient release and water availability with plant demand;

and
– monitoring biological activity.

4.1. Reduction or elimination of cultivation, use of heavy machinery and 
4.1. general biocides

Decomposition rates are sensitive to physical disturbances such as cultivation.
For example, decomposition rates are 1.4 to 1.9 times faster in convention-
ally tilled than in no-till soils with surface residues (Beare, 1997). Fungi are
more likely to regulate decomposition of surface-applied residues in no-till
soils and bacteria regulate decay rates in incorporated residues in conven-
tionally tilled soils (Beare, 1997).

Soils managed by conventional, reduced, or no tillage practices have
distinct biological and functional properties (Doran, 1980; Hendrix et al.,
1986). Plant residue is distributed throughout the plough layer in fields
managed with conventional tillage. Under these conditions, organisms with
short generation times, small body size, rapid dispersal and generalist feeding
habits thrive (Steen, 1983). These soils are dominated by bacteria and their
predators such as bacterial-feeding nematodes and astigmatid mites (Andrén
and Lagerlöf, 1983; Yeates, 1984; Hendrix et al., 1986; Beare et al., 1992;
Beare, 1997) and are considered to be in an early stage of succession. Many
microarthropods have omnivorous feeding habits in systems which are culti-
vated frequently (Beare et al., 1992). Alternatively, reduced tillage leaves most
of the previous crop residue on the soil surface and results in changes in
physical and chemical properties of the soil (Blevins et al., 1983). Surface
residues retain moisture, dampen temperature fluctuations, and provide a
continuous substrate that promotes fungal growth. Furthermore, the domi-
nance of fungi in early stages of decay of surface residues can be explained
by the initially high lignin to nitrogen ratio. Bacteria move in as secondary
colonisers after decay is initiated (Beare, 1997). Relative abundance of fungi
and their consumers in no-till soils represent a more mature successional state,
more closely resembling undisturbed natural ecosystems (Yeates, 1984;
Boström and Söhlenius, 1986; Hendrix et al., 1986; Holland and Coleman,
1987; Walter, 1987; Neher and Campbell, 1994; Beare, 1997). 

Sometimes agricultural disturbances, such as cultivation, do not reduce soil
biodiversity. Instead, cultivation appears to affect species composition but not
diversity and more so for macrofauna than microfauna (Wardle, 1995).
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Diversity of microfauna is mostly unresponsive to cultivation and there is no
general trend for macrofauna. Some species are effected negatively, and others
positively, by cultivation (Wardle, 1995). The lack of response of the diver-
sity of groups of small organisms to cultivation may reflect their slight overall
response to cultivation or possibly their poorer taxonomic resolution in most
studies.

Soil fumigation with general biocides has short and/or long-term impacts
on soil community composition and abundance. Biocides may either impact
the microbes or fauna directly with toxic effects or indirectly through reduced
vegetation or other non-target effects (Andrén and Lagerlöf, 1983). Methyl
bromide and benomyl have direct toxic effects on nematodes and earthworms,
respectively (Yeates et al., 1991; Ettema and Bongers, 1993; Edwards and
Bohlen, 1996). Phenoxy acetic acid herbicides (e.g. 2,4-D, 2,4,5-T, MCPA)
do not depress soil fauna directly with toxic effects, but indirectly through
reduced vegetation and smaller additions of organic matter to soil (Andrén
and Lagerlöf, 1983). Conversion of continuous hop (Humulus lupulus) pro-
duction to a cereal rotation of winter wheat (Triticum aestivum) and spring
barley (Hordeum vulgare) demonstrate the long-lasting effects of intensive
biocide input, especially fungicides with copper, which accumulate and remain
in soil for more than three years (Filser et al., 1995). Heavy metals, such as
copper, eliminate sensitive species such as earthworms and the springtails
Folsomia quadrioculata and Isotomiella minor. Other springtails tolerate
heavy metals and increase in dominance, for example Mesaphorura kraus-
baueri and Onychiurus armatus (Filser et al., 1995). Broad-spectrum insec-
ticides such as chlorpyrifos, isofenphos, and aldicarb are toxic to non-target
insects, such as predaceous and parasitic arthropods (Koehler, 1992; Potter,
1993). Insecticides are usually more toxic than herbicides or fungicides and
disturb soil protozoa critically, i.e. populations often do not fully recover
within 60 days (Foissner, 1997). Edwards and Bohlen (1996) and Neher and
Barbercheck (1998) provide more thorough reviews of effects of biocides on
soil community composition. 

Benefits of eliminating general biocides are illustrated by two case studies
(Ingham, 1998) involving strawberry (Fragaria × Ananassa Duch.). The first
study was in California, USA, where strawberries are grown as an annual crop
in monoculture. Annual applications of methyl bromide were used to decrease
the population density of certain root pathogens. However, there were major
environmental costs. For example, nitrate leached into ground water reaching
concentrations of 150 ppm (3 ppm is toxic to humans). Natural disease
suppression was lost which may partly be explained by a 50-fold reduction
in numbers of bacterial species. A remediation program was implemented to
reverse the apparent environmental problems. Spent mushroom compost (high
fungal content) was applied to soil at a rate of 60 tons per hectare. Abundances
of microflora and microfauna increased and a balance of fungi and bacteria
(and their respective consumers) returned to the soil after four to five years,
accompanied by nitrate leaching and increased natural disease suppression
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(Ingham, 1998). The second study was in Costa Rica where strawberries were
grown as perennials. Disease management was maintained and pesticides
replaced by transplanting strawberry seedlings in plugs containing compost
colonised by a mixture of bacteria, fungi and their respective consumers. This
compost promoted the establishment of a complex food web defined as a
balance of bacteria and fungi, and their respective grazers. This practice
transfers a relatively complex soil food web to the field and obviates the need
to manipulate the entire field (Ingham, 1998). In the long-term, managing soil
to achieve relatively balanced fungal and bacterial components will reduce
fertiliser requirements because soil organisms will maintain processes of
nutrient mineralisation and decomposition at sustainable levels. 

4.2. Incorporating perennial crops and organic matter

Introduction of perennial crops into agricultural systems has several advan-
tages. Root growth is more extensive and less ephemeral than with annual
crops and supports a soil community with many omnivores and predators. Soil
community composition with perennial crops resembles that of natural
ecosystem soils more closely than is the case with annual crops (Ferris and
Ferris, 1974; Wasilewska, 1979; Freckman and Ettema, 1993; Neher and
Campbell, 1994). Differences between soils with perennial (e.g. meadow
fescue) and annual (e.g. barley) crops may be less pronounced for perennial
crops younger than three years old than with more mature crops (Boström and
Söhlenius, 1986). Furthermore, perennial plants restore function in water infil-
tration and reduce compaction and, thus, increase rooting depth. 

Organic matter can be added to soil as crop residues, urban sludge, manure,
green manure, cover crops or compost. Addition of organic matter to soil has
multiple benefits. First, organic matter adds nutrients and cation exchange
sites to retain nutrients. Second, organic matter increases porosity to soil
(Andrén and Lagerlöf, 1983). Third, organic matter includes microbes and
microbial grazers (Andrén and Lagerlöf, 1983; Weiss and Larink, 1991) which
restore ecosystem processes such as decomposition, nutrient mineralisation
and disease suppression. For example, populations of fungal-feeding nema-
todes (Weiss and Larink, 1991), potworms (enchytraeids), springtails and
sometimes mesostigmatid mites increase with applications of manure which
provide a better substrate for growth (Andrén and Lagerlöf, 1983). However,
there are exceptions, as in Dutch polder soil (van de Bund, 1970). 

Although it is difficult to separate their individual effects, concurrent
additions of organic matter and elimination of general biocides have the
benefit of allowing omnivores and predaceous species to increase in preva-
lence, which promotes natural disease suppression. In these cases, natural
community interactions such as competition, antagonism, competitive exclu-
sion and niche partitioning must be understood for effective results. There is
a fine balance between disease suppressive agents and pathogens. Some
pathogenic fungi may be stimulated initially by additions of organic residues.
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Caution is advised when considering simple solutions to disease and
nutrient management. For example, application of mycorrhizal fungi is often
considered a favourable practice. A parallel good practice is the promotion
of fungal-feeding nematodes, which are usually less abundant than root-
feeding or bacterial-feeding species in agricultural soils. However, fungal-
feeding organisms such as springtails, nematodes and mites may actually
reduce the beneficial effect of promoting mycorrhizae by consuming mycor-
rhizae. Despite the reduced benefit of mycorrhizae, the plant-fungus symbiosis
remains given the soil food web contains interactions among saprophytic
microbes and their faunal grazers to ensure efficient mobilisation of nutri-
ents in the rhizosphere (Setälä, 1995). 

As with any practice, there are risks associated with applications of organic
matter. For example, high doses of manure or sludge fertilisers can harm
mesofauna because of toxicity (e.g. anhydrous ammonia), high osmotic
pressure due to salt accumulation (Andrén and Lagerlöf, 1983), or heavy metal
accumulation (Weiss and Larink, 1991). The repellent nature of ammonium
can affect soil invertebrates adversely (Potter, 1993). However, potential for
toxic effects can be decreased by applying composted manure or sludge (Ott
et al., 1983). One must consider the period of time material is composted prior
to incorporating it into soil. For example, the plant-pathogenic fungus
Rhizoctonia solani may cause damping-off disease in soil when fresh or
immature compost material high in cellulose content is added. However, in
aged compost, cellulose is degraded and the biocontrol fungus Trichoderma
spp. can grow and parasitise the pathogen effectively, thus suppressing disease
(Chung et al., 1988).

4.3. Synchronising nutrient and water availability with plant demand

Fertiliser addition affects soil microflora and indirectly impacts soil meso-
fauna by changing their food resources (Weil and Kroontje, 1979). Additions
of nitrogen may acidify soil and, consequently, inhibit microbial growth and
activity. Nitrogen may also affect the quality of microbes as a food source
for mesofauna (Darbyshire et al., 1994). Booth and Anderson (1979) grew
two species of fungi in liquid media with 2, 20, 200, or 2000 ppm nitrogen
and determined the fecundity of the springtail Folsomia candida while feeding
on the fungi. Fecundity increased with increasing nitrogen content up to 200
ppm, although F. candida did not show a preference for feeding on fungi
with a greater or lesser nitrogen content.

The effect of fertilisation on microarthropod species diversity and abun-
dance within taxa, and the subsequent impact on decomposition and nutrient
mineralisation processes, are not well understood. For example, synthetic
fertilisers increase nematode diversity but applications of manure decrease
nematode diversity (Wasilewska, 1989). Applications of synthetic nitrogen
fertiliser on Swedish arable soils growing spring barley (Hordeum distichum
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L.) changed community composition but not numbers and biomass of nema-
todes, springtails and mites (Andrén et al., 1988). 

Appropriate timing of water is important for disease management. For
example, frequent irrigation episodes may increase potential of root rot
diseases caused by Phytophthora spp. The reproductive biology of
Phytophthora spp. is stimulated by changes in the matric potential of soil
(Duniway, 1983). Water drainage stimulates production of asexual spores such
as sporangia, whereas subsequent saturation (i.e. irrigation event) stimulates
the sporangia to germinate indirectly by producing multiple zoospores that
are flagellated and may move great distances in surface water (Figure 3).
Phytophthora root rots have been well documented world-wide, including
those on jarrah (Eucalyptus marginata) and Banksia in Australia and on many
vegetable and tree crops in the US (Erwin et al., 1983). 
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Figure 3. Percentages of tomato leaf disks colonised during five successive irrigations plotted
as a function of the distance from the point source where Phytophthora parasitica was buried
in irrigation furrows. Means for four replicate furrows and standard errors are shown. Source:
Neher and Duniway (1992).



4.4. Monitoring biological activity 

The successional status of a soil community may reflect the history of dis-
turbance. Succession in cropped agricultural fields begins with depauperate
soil after cultivation and clearing of native vegetation which acts like an island
to which organisms migrate. First, opportunistic species, such as bacteria and
their predators, are colonists of soil. Subsequently, fungi and their predators
migrate into the area (Boström and Söhlenius, 1986). Microarthropods, such
as springtails, mites and fly maggots can colonise nearly bare ground and
rise quickly in population density. Top predator microarthropods, such as
predaceous mites and nematodes, become established later and may have a
function similar to keystone predators in other community food webs (Elliott
et al., 1988). Finally, macro- and megafauna such as earthworms, millipedes,
slugs, centipedes, wood lice, sow bugs and pill bugs join the soil community
(Strueve-Kusenberg, 1982).

Succession can be interrupted at various stages by agricultural practices,
such as cultivation and applications of fertiliser and pesticides (Ferris and
Ferris, 1974; Waskilewska, 1979). The quantification of successional stage
using a ‘maturity index’ (Bongers, 1990) proves promising as a monitoring
tool of community composition and function (Freckman and Ettema, 1993;
Neher and Campbell, 1994; Neher et al., 1995; Neher and Barbercheck, 1998).
Maturity indices are based on the principles of succession and relative
sensitivity of various taxa to stress or disruption of the successional pattern.
Maturity indices, based on life strategy characteristics, were developed orig-
inally for nematode communities, but have potential for adaptation to other
groups of organisms. Interpretation of maturity indices depends on the type
of ecosystem (Figure 2). Successional maturity was greater in older forests
(> 30 years) and functional wetlands than young forests (< 3 years) and
wetlands converted to conventionally tilled agriculture, respectively (Figure
2). The opposite pattern was observed for agricultural soils, where succes-
sional maturity was greater in conventionally tilled soil with annual crops (i.e.
disturbed) than permanent pastures (i.e. undisturbed). Indices that describe
associations within biological communities, such as a maturity index, are less
variable than measures of abundance of a single taxonomic or functional
group, and are more statistically reliable as measures of ecosystem condition
(Neher et al., 1995; Neher and Campbell, 1996). Because index values for
New Zealand (Yeates, 1994) and the US (Neher and Campbell, 1996) were
greater than those published in European studies, it is suggested that bio-
geography may be a confounding factor in interpreting index values. Maturity
and trophic diversity indices measure different aspects of soil communities
and, together, are complementary. 
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5.  Essential research

Our challenge is to understand concepts and mechanisms that mimic nature,
qualitatively and quantitatively, at appropriate spatial (centimetres to hectares),
ecological (population, community, ecosystem and landscape) and temporal
(seconds to centuries) scales. Most studies have focused on single factors in
an effort to reveal underlying mechanisms, resulting in a lack of understanding
of how multiple and interacting environmental and biotic factors affect soil
biodiversity, nutrient cycling, pest populations and plant productivity. Future
research should include studies on productivity of soil animals under various
management systems, the analysis of single factors to elucidate causative
mechanisms, and studies on the relationship between soil animals, crop pro-
duction and sustained yield (Foissner, 1992). Holistic systems and their
dynamics must be understood to effectively design agricultural systems in
concordance with nature. With this information, we should be able to tailor
agricultural practices to positively affect beneficial soil organisms and the
functions they perform to optimise crop productivity. To achieve the ultimate
goal of designing and managing agricultural systems as mimics of nature,
the following research goals must be achieved.

5.1. Methods for successful application of compost materials and/or 
5.1. biocontrol agents

Simple techniques are usually favoured but may also disregard ecological
interactions among organisms, added and between those added and those
already existing in the soil. Basic natural history and fundamental niche
requirements must be understood at the individual and population level. At
the community level, potential competitive exclusion, predation and/or antag-
onism by organisms already occupying that niche or utilising the resources
must be considered. At the ecosystem level, methods to optimise the role
that soil organisms play in nutrient cycling, energy flow, and disease man-
agement must be evaluated.

5.2. Timing of management implementation

While many studies have examined the impact of additions or removals of
materials, they have not considered the seasonal impacts or time lags that
occur between implementation and response, whether the treatment is biotic
or abiotic. By understanding appropriate temporal relationships, nutrient and
water supplements can be scheduled according to plant and soil community
use. Interactions of intra- and interspecific crop phenology and root archi-
tecture relative to soil community composition and function must be integrated
to avoid intense competition for nutrients between microbes and plants.
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5.3. Explicit relationships between soil organisms and ecosystem function

Current understanding is limited to trophic or functional group resolution.
However, resolution at a species-level is desirable. Additionally, a more
thorough understanding of the sequence of community succession relative to
soil function dynamics would be useful in making long-term predictions of
community composition associated with ecologically sound agricultural
systems.

6.  Conclusions

Clearly, soil microbes and fauna play important roles in ecosystem function.
Unfortunately, many modern agricultural practices correspond with a decline
in abundance and alter the composition of soil communities, which subse-
quently impacts ecological processes. Interruption to the cycling of carbon,
nitrogen, phosphorus and/or water prevents crops from obtaining all require-
ments for primary productivity. Production deficiencies are replaced by
fossil-fuel based inputs that eventually replace natural cycles and processes.
To restore ecosystem functions of soil organisms, agricultural systems must
be designed to reduce or eliminate cultivation, heavy machinery, and general
biocides. In addition, systems should incorporate perennial crops and increase
soil organic material. In order to achieve these goals, more research is needed
to determine the impact of multiple and interacting management practices on
biodiversity, nutrient cycling, decomposition, pest populations, and their
concurrent impact on agricultural productivity. With this information, we can
maximise our ability to tailor agricultural practices to optimise crop produc-
tivity while positively affecting beneficial soil organisms and the functions
they perform. 
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