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Microbes play a key role in mediating soil nitrogen (N) cycling in agroecosystems. However, it remains unknown

Conventional fertilization

how N management practices affect the taxonomic and functional structure of soil N-cycling microbes, and their
community assembly and co-occurrence networks in karst agroecosystems. Here, we conducted a field experi-
ment to examine the effects of mineral N addition (+N) and legume (Medicago sativa) intercropping (+L) on soil
N-cycling functional taxa and genes in a karst forage (Broussonetia papyrifera) agroecosystem. Results showed
that compared to the control and +L treatment, mineral N addition significantly increased the functional gene
diversity of nitrification-related microbes and the abundance of hao gene, but slightly reduced the abundances of
nifD and nifH genes related to N fixation by 33.3—56.0 %. The abundance of nifK gene was 3.7-fold higher in the
+L treatment than in the control. The assembly of microbial communities involved in ammonification, assimi-
latory nitrate reduction (ANR) and denitrification was controlled by a homogeneous selection process. Stochastic
processes played a dominant role in shaping the communities related to nitrification, dissimilatory nitrate
reduction (DNR), N fixation, and N assimilation. High soil pH and total N stimulated microbial N assimilation
and the related gene abundance (e.g., GDH2), but suppressed the abundances of genes involved in N fixation.
Both mineral N addition and legume intercropping significantly increased the niche breadth of the whole
community and the functional groups related to denitrification, ANR, DNR and N assimilation. Actinobacteria
related to N assimilation dominated the co-occurrence networks across the treatments. Compared to the control,
the network robustness was significantly increased in the +N and +L treatments. Our findings indicate that there
are distinct responses to the two N management practices among N-cycling functional groups and highlight the
importance of N fertilization in increasing the niche breadth of N-cycling microbes and stabilizing their co-
occurrence network in a karst agroecosystem.

N-cycling processes
Metagenomics
Community assembly

1. Introduction their functional potential directly determine soil N availability, and are

greatly affected by N management practices (Ma et al., 2022; Yang et al.,

Application of mineral nitrogen (N) fertilizers (e.g., urea) is a com-
mon measure to enhance agricultural productivity (Guo et al., 2024).
Applied N fertilizers are transformed into bio-available N through a
series of N-cycling processes catalyzed by soil microbes (Klimasmith and
Kent, 2022). The taxonomic structure of soil N-cycling microbes and

2023; Wang et al., 2024). For instance, mineral N addition can increase
ammonium (NHJ) and nitrate (NO3) content by stimulating abundances
of microbes related to mineralization, dissimilatory nitrate reduction
(DNR) and nitrification, as well as their N transformation rates (Yang
etal., 2023). However, less than 50 % of the transformed N is utilized by
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crops (Quan et al., 2021; Elrys et al., 2023). Most unexploited N re-
sources are further transformed to gases (e.g., N2O and NH3) or leached
(Bowles et al., 2018; Klimasmith and Kent, 2022), especially in fragile
karst agroecosystems (Li et al., 2020; Ren et al., 2022). Currently,
legume intercropping is generally recommended to control N losses in
karst agroecosystems (Liao et al., 2023a; Zhao et al., 2023). In contrast
with mineral N fertilizer, legumes can optimize soil N-fixing bacterial
communities and their N fixation function (Castellano-Hinojosa et al.,
2022). The fixed N by root-rhizobia symbiont can be transferred to roots
and then be slowly released to soil as labile N (e.g., ammonium and
amino acids) via root exudation (Paynel et al., 2001; Lesuffleur et al.,
2007; Moe, 2013). Most previous studies mainly focus on how mineral N
addition and legume intercropping affect the patterns of the taxonomic
diversity and community structure of soil N-cycling microbes (Sun et al.,
2021; Ma et al., 2022; Wang et al., 2024). However, how N management
practices affect the underlying ecological processes is poorly understood
in karst agroecosystems.

Community assembly is essential in describing how microbial com-
munity structure is shaped by different ecological processes, including
both deterministic and stochastic processes (Ning et al., 2024). Deter-
ministic processes (i.e., niche-based theory) shape community structure
patterns by environmental filtering (e.g., pH and nutrients) and various
biological interactions (e.g., competition and mutualisms) (Ning et al.,
2020). Conversely, stochastic processes (i.e., neutral theory) control
community structure patterns by random birth, death, and dispersal
events (Ning et al., 2020). In agroecosystems, soil bacterial communities
that play a dominant role in mediating soil N cycling (Sun et al., 2021),
are shaped primarily by stochastic processes (Jiao et al., 2020). How-
ever, some specific N-cycling functional groups deviate from such
community assembly pattern. For example, the assembly of microbial
communities involved in N fixation, ammonification, nitrification and
denitrification is governed by deterministic processes in the acid and
saline soils (Fan et al., 2018; Li et al., 2021; Liu et al., 2022). Yet, we still
lack comprehensive knowledge of community assembly patterns of soil
N-cycling functional groups in the fragile karst agroecosystems where
soils are featured by high pH, shallow depth, and low retention of water
and nutrients (Wang et al., 2019; Jiang et al., 2020).

The balance between deterministic and stochastic processes is
mediated by N management practices (Wang et al., 2022; Zhou et al.,
2022). Mineral N addition and legume intercropping increase the rela-
tive importance of stochastic processes for soil microbial community
assembly by increasing soil N availability (Zhou et al., 2022; Wang et al.,
2023b). In contrast, long-term mineral N addition and legume inter-
cropping can acidify soils (Bolan et al., 1991; Wang et al., 2023c), which
can shift community assembly of soil N-cycling microbes from stochastic
to deterministic processes (Fan et al., 2018; Jiao and Lu, 2020).
Generally, soil microbial communities shaped by stochastic assembly
processes have wider niche breadth, and allow more taxa that encode
the same functions and occupy the same ecological niche to coexist,
leading to more complex co-occurrence network relationships (Fan
et al., 2018; Jiao et al., 2020; Zhou et al., 2022). The co-occurrence
patterns of soil N-cycling microbes may be more sensitive to changes
in some other functional groups because multiple N-cycling processes
interact with each other (Klimasmith and Kent, 2022). Rare taxa as key
N-cycling drivers have a relatively small niche breadth compared with
abundant taxa and are easily affected by environmental factors (Yang
et al., 2022; Cui et al., 2023). Furthermore, niche diversity of N-cycling
microbes increases with formation of macro-aggregates by legume roots
(Hartmann and Six, 2023). Whether increased niche breadth affects the
stability of co-occurrence networks of soil N-cycling microbes is yet to be
determined.

In the present study, we conducted a field experiment to investigate
how two N management practices, mineral N addition and legume
intercropping, affect the taxonomic and functional structure of soil N-
cycling microbes, as well as their community assembly processes and co-
occurrence networks in a karst forage (Broussonetia papyrifera)
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agroecosystem. The objectives of the present study were to 1) determine
how the two N management practices affect soil N-cycling microbial
communities and their community assembly processes; 2) determine
whether wider niche breadth weakens competitive interactions among
taxa and stabilizes the co-occurrence networks. We hypothesized that N
fertilization-induced shifts in soil N availability and pH would alter the
taxonomic and functional structure of soil N-cycling microbes, because
mineral N addition and legume intercropping can effectively increase
soil N availability and induce soil acidification during nitrification and N
fixation processes (Bolan et al., 1991; Wang et al., 2023c). We further
hypothesized that stochastic processes dominated soil N-cycling mi-
crobial community assembly, and their niche breadth and the stability of
co-occurrence networks would increase with increased soil N avail-
ability. Mineral N addition and legume intercropping can create optimal
environments for soil N-cycling microbes by providing more available N
resources and diverse micro-habitats, reducing competition for limited
resources and living spaces, and allowing more species to co-exist (Fan
et al., 2018; Hartmann and Six, 2023). Consequently, the stability of
co-occurrence networks is maintained when some taxa are lost due to
environmental stresses (Hernandez et al., 2021).

2. Materials and methods
2.1. Study area and experimental design

The study area was located at the Huanjiang Observation and
Research Station for Karst Ecosystems (107°51°—108°43’ E,
24°44°—25°33" N), Chinese Academy of Sciences, Guangxi Zhuang
Autonomous Region, China. The soil in the study area originates from a
dolostone base and is characterized by a high calcium content (Xiao
et al., 2020). The climate type in the region is subtropical monsoon. The
wet season occurs from April to September, whereas the dry season lasts
from October to March (Liao et al., 2023b). The mean annual temper-
ature is 18.5°C, and the mean annual precipitation is 1234 mm (Liao
et al., 2023a).

The experiment was conducted in a hybrid B. papyrifera monoculture
ecosystem, which had been utilized previously as farmland and subse-
quently converted into grassland through environmental restoration
initiatives. The dominant vegetation species in the study area included
Microstegium vagans, Apluda mutica, and Imperata cylindrica (Xiao et al.,
2020). In preparation for the experiment, all existing vegetation was
cleared and replaced with hybrid B. papyrifera in April 2017.

In February 2018, a total of 18 experimental plots were established.
Each plot consisted of 20 seedlings of B. papyrifera, spaced 30 cm apart
in five rows. To ensure isolation and prevent the exchange of nutrients
and water between the plots, PVC boards were used to enclose each plot.
These PVC boards were 40 cm in height and 3.0 mm in thickness,
extending 30 cm into the soil and rising 10 cm above the soil surface.
The width of the buffer strip between adjacent plots was 50 cm. The
experiment followed a totally randomized block design, with six repli-
cate plots for each of the three treatments: control (CK), mineral N
addition (+N), and legume (Medicago sativa) intercropping (+L). The
total mineral N fertilizer was applied at rates of 20 g N m~2 yr ! in the
+N plots. Urea was used as the form of mineral N fertilizer. In March
2018, 2019, and 2020, four furrows (5 cm deep) were excavated
manually using a shovel between two rows of B. papyrifera in the +L
plots. Each furrow was then sown with two grams of M. sativa seeds
acquired from Jiangsu Leerda Seed Industry Co., Ltd (Jiangsu, China).
All experimental plots were subjected to the same management practice,
including manual weed control without soil disturbance every two
months.

2.2. Soil sampling

Soil sampling was conducted on July 5, 2020. Five random soil cores
(5 cm in diameter, 0-10 cm in depth) were collected from each plot and
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then were mixed to form one composite sample. The sampling places
were away from plant roots. The composite sample was then passed
through a 2-mm sieve and divided into three subsamples. One sub-
sample was frozen at —80°C for metagenomic analysis, while another
subsample was stored at 4°C for the determination of soil microbial
biomass nitrogen (MBN), net mineralization rate, net nitrification rate,
and net ammonification rate. The remaining subsample was air-dried for
soil physico-chemical analysis.

2.3. Measurements of soil properties and net N transformation rates

Soil moisture content (SMC) was determined by oven-drying for 12 h
at 105°C. Soil pH was measured using a pH meter with a soil-water
suspension (1:2.5 w/v). Soil total nitrogen (TN) was measured with a
continuous flow analyzer (Skalar, Breda, Netherlands) after Kjeldahl
digestion. A continuous flow analyzer was used to determine soil
ammonium N (NH7-N) and nitrate N (NO3-N) after being extracted in
2 mol L™ KCL. Soil MBN was determined by chloroform fumigation
(Brookes et al., 1982, 1985; Wu et al., 1990). Non-fumigated and
fumigated soil samples were extracted in 0.5 mol Lt K2SO4 for dis-
solved nitrogen, which was determined using a continuous flow
analyzer. MBN was calculated as the difference between nitrogen con-
centrations in fumigated and non-fumigated extractions with a conver-
sion factor of 0.45.

A 14-day incubation experiment was conducted to determine soil net
N mineralization, nitrification and ammonification rates. For each
treatment, 50 g of fresh soil samples were put in glass bottles (250 ml)
and soil moisture content was adjusted to 60 % of the water holding
capacity. All bottles were sealed with polyethylene film to minimize soil
moisture loss, while allowing for aerobic conditions through small
pores. The glass bottles were then incubated at a constant temperature of
25°C. During the incubation period, soil moisture was maintained at
60 % of the water holding capacity by periodic weighing every three
days. The NH4-N and NO3-N concentrations of paired subsamples were
extracted with 2 mol L™! KCI at day 0 and 14, respectively, and quan-
tified by a continuous flow analyzer. The soil net mineralization rate was
calculated as the difference between the sum of NH}-N and NO3-N at
day 14 and at day 0. The soil net ammonification rate was calculated as
the NHJ-N concentrations at day 14 minus the NH4-N concentrations at
day 0. Similarly, the soil net nitrification rate was calculated by sub-
tracting the NO3-N concentrations at day O from the NO3-N concen-
trations at day 14.

2.4. Metagenomic analysis

According to the manufacturer’s protocol, soil total DNA was
extracted from 0.5 g of fresh soil using the PowerSoil spin kit (QIAGEN
GmbH, Germany). The extracted DNA samples were then stored at
—80°C for library preparation and shotgun metagenomics sequencing
which were finished by the BioMarker Co., Ltd (Qingdao, China). A
Qubit 3.0 fluorometer (Thermo Fisher Scientifific, Waltham, MA, USA)
combined with Qubit TM dsDNA HS Assay Kit (Thermo Fisher Scienti-
fific, Waltham, MA, USA) was used to quantify the DNA concentrations.
Then, the quality of DNA samples was evaluated by 1 % agarose gel. In
this study, 10 ng of each DNA sample was used for library construction,
following the manufacturer’s protocol, using the VAHTS® Universal
Plus DNA Library Prep Kit (NEB, USA). The DNA fragments (approxi-
mately 350 bp) were generated by sonication. The quality of the con-
structed libraries was evaluated by using Qsep-400 (Bioptic, Taiwan,
China). Finally, high-quality libraries were sequenced on Illumina
NovaSeq6000 combined with NovaSeq 6000 S4 Reagent Kit (Illumina,
San Diego, CA, USA).

For data processing, Trimmomatic software (version 0.33) was
employed to remove low-quality reads using the default settings. Con-
tigs smaller than 300 bp were eliminated using MEGAHIT software.
Gene prediction was performed using MetaGeneMark software (version
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3.26) with the default settings (Zhu et al., 2010). Non-redundant genes
were obtained using MMseq2 (version 11-elalc). The gene similarity
and coverage cutoff values were set at 97 % and 90 %, respectively.
Taxonomic assignment was achieved by blasting the non-redundant
genes against the non-redundant protein database (Nr) of NCBI using
Diamond software (threshold value with E< 1e-5) (Buchfink et al.,
2015). Functional annotation was conducted by blasting the
non-redundant genes against the KEGG database (Kanehisa et al., 2004).
The gene abundances were normalized by dividing the gene length and
rarefied to the smallest number of sequences among the metagenomic
samples (Qin et al., 2012; Wu et al., 2022). In total, 28 marker genes
were selected and classified into various functional groups including
ammonification (ureA, ureB and ureC), nitrification (amoA, amoB, amoC
and hao), denitrification (narG , nirK, nirS, norB and nosZ), N fixation
(nifD, nifH and nifK), nitrogen assimilation (GDH2, gdhA, glnA, gltB, GLU,
GLUD1_2 and gudB), assimilatory nitrate reduction (ANR; nasA, nasB,
nirA and nirB), and dissimilatory nitrate reduction (DNR; napA and
nrfA).

2.5. Data analysis

Prior to the analysis, we assessed the normal distribution of the data,
which were transformed using natural logarithm if they did not meet the
assumption of normal distribution. One-way analysis of variance
(ANOVA) was performed followed by least significant differences (LSD)
test to determine pairwise differences in soil properties, gene abun-
dance, gene diversity, taxonomic diversity and network topological
properties between the treatments using the IsdTest function in the
PMCMRplus package. A co-occurrence network analysis was performed
to investigate the relationships among taxa involved in N cycling. Only
non-redundant genes that were present in at least 75 % of the samples
for each treatment were included in constructing the global network.
The Spearman correlation matrix was constructed using the corr.test
function in the psych package. The random matrix-based method was
used to retain the strong correlations with a Spearman’s coefficient >
0.96 and a p-value < 0.05 (false-discovery rate [FDR] adjusted) (Deng
et al.,, 2012). Sub-networks were extracted from the global network
using the induced subgraph function in the igraph package (Wei et al.,
2021). The sub-network topological properties were calculated using the
net properties.4 function in the ggClusterNet package (Wen et al., 2022).
The network natural connectivity was calculated by removing nodes in
the static network randomly to evaluate the network stability (Wu et al.,
2021).

Null model analysis was based on the framework described by Ning
et al. to classify community assembly processes into homogeneous se-
lection, heterogeneous selection, dispersal limitation, homogenizing
dispersal, and drift (Ning et al., 2020). The analysis was performed using
the gpen function in the iCAMP package. Levins’ niche width index was
calculated using the niche.width function in the spaa package to evaluate
the niche breadth of N-cycling functional groups (Cui et al., 2023).

Permutational multivariate analysis of variance (PERMANOVA) was
carried out to determine the pairwise dissimilarity of soil N-cycling
microbial communities between the treatments using the pairwise.adonis
function in the pairwiseAdonis package. Pearson’s correlation analysis
was conducted to examine the relationships between soil biotic-abiotic
variables and functional gene abundance and diversity using the corr.
test function from the psych package (Peng et al., 2022). Mantel test was
conducted using the mantel test function (999 permutations) in the
linkET package to evaluate relationships between N-cycling microbial
communities and soil variables (Li et al., 2022). All figures were created
using the ggplot function in the ggplot2 package, the ggbarplot function in
the ggpubr package, and Adobe Illustrator CS6. All statistical analyses
were conducted in R version 4.2.1.
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3. Results
3.1. Soil properties and nitrogen transformation rates

Compared to the control (CK), mineral N fertilization (+N) and
legume intercropping (+L) slightly increased soil pH, NH4-N, MBN, and
net ammonification rate by 1.1-1.8 %, 13.1-14.2 %, 3.8—17.7 %, and
5.8—28.3 %, respectively (Fig. S1). Soil NO3-N increased by 119—167 %
in the +N treatment compared to the CK and +L treatments (p < 0.05,
Fig. S1). The soil net mineralization rate and net nitrification rate
exhibited a decrease in the +N treatment compared to the CK treatment
(p < 0.05, Fig. S1). Legume intercropping marginally reduced SMC by
10.2 % compared to the +N treatment (p = 0.074, Fig. S1).

3.2. Soil N-cycling microbial community structure and taxonomic and
functional diversity

The PERMANOVA analysis indicated a marginal difference in the
community structure of N fixation-related microbes between the +N and
+1, treatments (R? = 0.143, p = 0.080, Table S1). Compared to the CK
treatment, the diversity of the nitrification-related genes and the whole
functional genes increased in the +N treatment (p < 0.05, Fig. 1). The
taxonomic and functional diversity of microbes related to nitrification
was greater in the +N treatment than in the +L treatment (p < 0.05,
Fig. 1 and Fig. §2).

3.3. Abundances of soil N-cycling functional genes

The abundance of the hao gene related to nitrification was 10.4-fold
higher in the +N treatment (mean = 5.2) compared to the CK (mean =
0.5) and +L treatments (mean = 0.5) (p < 0.05, Fig. 2). In the +L
treatment, the abundances of ureA gene associated with ammonification
(p < 0.05) and nirA gene related to ANR (p = 0.076) were reduced
compared to the CK treatment (Fig. 2). Compared to the CK and +L
treatments, the abundances of genes (nifD and nifH) related to N fixation
were reduced by 33.3—56.0 % in the +N treatment (Fig. 2). The abun-
dance of nifK gene involved in N fixation was 3.7-fold higher in the +L

Agriculture, Ecosystems and Environment 374 (2024) 109177

treatment (mean = 5.5) than in the CK treatment (mean = 1.5) (p =
0.10, Fig. 2). Mineral N fertilization and legume intercropping slightly
increased the abundances of denitrification- (e.g., narG, nirS, norB and
nosZ) and DNR-related genes by 5.1—210 % and 16.7—56.6 %, respec-
tively (Fig. 2).

3.4. Assembly of soil N-cycling microbial communities and the key abiotic
factors affecting taxonomic and functional structure of soil N-cycling
microbes

The assembly of the soil N-cycling microbial communities was
dominated by both stochastic (i.e., dispersal limitation, homogenizing
dispersal, and drift) and deterministic (i.e., homogeneous and hetero-
geneous selection) processes, with varying relative importance among
functional groups (Fig. 3). A relatively high proportion of homogeneous
selection contributed to the assembly of microbial communities
involved in ammonification (59.6—65.4 %), ANR (80.0—84.6 %), and
denitrification (53.8—58.5 %) among treatments (Fig. 3). Stochastic
processes played a dominant role in shaping the communities related to
nitrification, DNR, N fixation, and N assimilation (Fig. 3). Mineral N
addition increased the relative importance of drift (58.5 % vs. 51.9 %)
and dispersal limitation (35.4 % vs. 15.4 %) on the community assembly
of nitrification-related microbes compared to the CK treatment (Fig. 3).
Additionally, compared to the CK treatment, the relative importance of
dispersal limitation (50.8 % vs. 46.2 %) and homogenizing dispersal
(15.4 % vs. 9.6 %) on the assembly of assimilation-related microbial
communities was increased in the +N treatment (Fig. 3). Legume
intercropping increased the relative importance of heterogeneous se-
lection on the assembly of microbial communities involved in N fixation
(3.8 % vs. 0.0 %) and N assimilation (15.4 % vs. 5.8 %) compared to the
CK treatment (Fig. 3).

Soil pH, TN and MBN were significant deterministic factors con-
trolling the structure of the N-cycling functional taxa (Fig. 4a). Addi-
tionally, soil pH, TN, NHi-N and MBN were important factors
influencing the structure of functional genes associated with ammoni-
fication, DNR, and N assimilation (Fig. 4b). Pearson’s correlation anal-
ysis showed that higher soil pH and TN facilitated microbial N
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assimilation (p < 0.05, Fig. 4a, b). Moreover, soil pH and TN were
positively related to the abundances of genes related to DNR (nrfA) and
assimilation (GDH2) (p < 0.05, Fig. 4c). However, TN was negatively
correlated with the abundances of genes involved in soil microbial N
fixation (p < 0.05, Fig. 4c). Increases in the abundances of napA and nrfA
genes associated with DNR significantly enhanced the soil net ammo-
nification rate (p < 0.05, Fig. 4c). In contrast, high abundance of genes
related to N fixation as well as N ammonification corresponded with
reduced net ammonification rate (p < 0.05, Fig. 4c).

3.5. Niche breadth of soil N-cycling microbes and co-occurrence network
relationships among N-cycling taxa

Niche breadth of the whole N-cycling microbial community was
greater in the +N and +L treatments compared to the CK (p < 0.001,
Fig. 5). Mineral N addition increased the niche breadth of functional
groups except the N fixation group (p < 0.001, Fig. 5). Legume inter-
cropping increased the breadth of functional groups related to denitri-
fication, ANR, DNR, and N assimilation (p < 0.01, Fig. 5), but reduced
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Fig. 4. Correlations between soil factors and soil N-cycling microbial communities and functional genes. The taxonomic (a) and functional (b) structure based on
Bray-Curtis distance is related to each soil factor by partial Mantel test. The thickness of the lines indicates the strength of the partial Mantel’s r statistic, while the
color represents the statistical significance based on 999 permutations. Pairwise comparisons of soil factors are displayed with a color gradient, representing the
Pearson’s correlation coefficient. (c) Pearson’s correlation analysis on the relationships between soil factors and functional genes. The correlation coefficient values
are displayed with a color gradient. Significant correlations are indicated by symbols (#0.05 < p < 0.10; *p < 0.05; **p < 0.01; ***p < 0.001). pH, soil pH; SMC, soil
moisture content; TN, soil total nitrogen; NHJ-N, soil ammonium nitrogen; NO3-N, soil nitrate nitrogen; MBN, microbial biomass nitrogen; NMR, net mineralization
rate; NNR, net nitrification rate; NAR, net ammonification rate; ANR, assimilatory nitrate reduction; DNR, dissimilatory nitrate reduction; H’Ammo, Shannon di-
versity of genes related to ammonification; H’'Nitri, Shannon diversity of genes related to nitrification; H’Denitri, Shannon diversity of genes related to denitrification;
H’DNR, Shannon diversity of genes related to dissimilatory nitrate reduction; H’ANR, Shannon diversity of genes related to assimilatory nitrate reduction; H’Fix,

Shannon diversity of genes related to nitrogen fixation; H’Assi, Shannon diversity of genes related to nitrogen assimilation.

the niche breadth of communities related to ammonification (p < 0.05,
Fig. 5). Overall, the niche breadth of the whole N-cycling microbial
community and all functional groups except the N-fixation group were
greater in the +N treatment than in the +L treatment (p < 0.001, Fig. 5).

The co-occurrence network analysis revealed that Actinobacteria
related to N assimilation dominated the networks (Fig. 6a, c). Compared
to the CK, the complexity (i.e., nodes, edges and average degrees) of the
co-occurrence networks was reduced under the two N fertilization
practices, especially in the +N treatment (p < 0.01, Fig. 6b). The natural
connectivity (i.e., robustness) of networks was reduced to a greater
degree in the CK (slope = —41.4) than in the +N (slope = —18.4) and +L
(slope = —28.5) treatments by removing the same proportion of nodes
(Fig. 6d).

4. Discussion

4.1. Soil pH and TN altered the taxonomic and functional structure of soil
N-cycling microbes and their N assimilation potential

Soil bacteria play a dominant role in mediating soil N cycling (Sun
et al., 2021). Their communities are very sensitive to changes in soil pH
and N levels (Geisseler and Scow, 2014; Fan et al., 2018). However,

there were no significant changes in soil pH, TN and NH4-N under the
two N fertilization practices in our study. Previous studies have
confirmed that both soil microbial nitrification and N fixation can result
in soil acidification (Bolan et al., 1991; Wang et al., 2023c). In contrast,
soil pH tended to slightly increase in the present study which may be
explained by the buffering capacity offered by high calcium content in
karst soil (Chen et al., 2023). Generally, urea rapidly dissolves and its’
availability quickly decreases within 60 d (Wang et al., 2023a). How-
ever, soil sampling was conducted about 120 d after mineral N addition.
Some available N resources (particularly NH}-N) are rapidly utilized by
plants and microbes, while the unexploited N resources are lost via
leaching or gas emission (Dan et al., 2023). In addition, karst soil has a
high pH which can drive NH;-N reduction through NH; volatilization
and nitrification (Rochette et al., 2013; Wang et al., 2023a). Neverthe-
less, soil pH and TN were key factors affecting the taxonomic and
functional structure of soil N-cycling microbes, which is partially
consistent with the first hypothesis. In return, shifts in N-cycling func-
tional groups can affect soil N availability (Zhu et al., 2023).

It is well known that soil microbial nitrification and N fixation play
an important role in mediating soil N availability (Frey et al., 2023).
Mineral N addition can stimulate nitrification potential in karst soil
(Yang et al., 2023). Our results suggested that the abundances of genes
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related to nitrification (except hao) did not significantly increase after
mineral N addition because mineral N addition-disturbed microbial
communities can rapidly return to the previous state (Geisseler and
Scow, 2014). However, the taxonomic and functional diversity of
nitrification-related microbes and nitrification potential (e.g., amoA,
amoC and hao) were greater in the mineral N addition treatment than in
the legume intercropping treatment. This can at least partially explain
why soil NO3-N content increased in the mineral N addition treatment
more than in the legume intercropping treatment. In our study, legume
intercropping marginally increased microbial N fixation potential (e.g.,
nifK), which is an alternative pathway of increasing soil N availability
(Dynarski and Houlton, 2018; Smercina et al., 2019). The fixed N by
root-rhizobia symbiont can be transferred to soil as labile N (e.g.,
ammonium and amino acid) via root exudation, which can be directly
exploited by microbes (Paynel et al., 2001; Lesuffleur et al., 2007; Moe,
2013). However, a meta-analysis study suggests that mineral N addition
suppresses biological N fixation potential (Zheng et al., 2019). In the
current study, there were significantly negative correlations between the
abundances of N-fixation-related genes and soil TN content, despite the
fact that soil TN only slightly increased with mineral N addition due to
plant and microbial uptake, leaching or gas emission during a short
period of time. It implies that N fertilization-induced increase in soil TN
content may have a long-lasting negative effect on soil biological N
fixation potential. These results suggest that there are distinct strategies
to increase soil N availability between mineral N addition and legume
intercropping. With soil N availability increasing, soil microbes gain
access to more N resources, leading to more soil microbial biomass N
accumulation (Elrys et al., 2023). Especially in karst soil, high soil
NO3-N content stimulates microbial N assimilation (Zhu et al., 2023).
This is why soil MBN and the abundance of GDH2 related to N assimi-
lation increased with higher soil pH and greater TN in our study.

4.2. Community assembly, ecological niche breadth and co-occurrence
network of soil N-cycling microbes as affected by different N management
practices

Partially consistent with the second hypothesis, the assembly of soil
microbial communities involved in nitrification, DNR, N fixation, and N
assimilation was dominated by stochastic processes. This finding con-
trasts with previous studies that deterministic processes dominate the
assembly of microbial communities related to N fixation, and nitrifica-
tion in acidic and saline soils (Fan et al., 2018; Li et al., 2021; Liu et al.,
2022). Instead, soil pH levels in our study were in the neutral range of
7.1-7.2, which can alleviate environmental selection pressure (Fan
et al., 2018). Regardless, the relative importance of stochastic assembly
processes in microbes related to nitrification and N assimilation
increased with mineral N addition, which is consistent with previous
evidence that the importance of stochastic assembly processes is stim-
ulated with N addition (Zhou et al., 2022). Nonetheless, the importance
of deterministic assembly processes on these functional groups should
not be overlooked. This phenomenon explains why the structure of
microbial communities involved in nitrification, DNR, N fixation, and N
assimilation was positively correlated with soil pH and TN. Determin-
istic assembly processes played a dominant role in shaping the com-
munities associated with ammonification, denitrification, and ANR.
Both soil pH and TN were key abiotic factors affecting the structure of
microbes involved in ammonification, denitrification and ANR.

Consistent with the second hypothesis, mineral N addition and
legume intercropping increased the ecological niche breadth of the
whole N-cycling microbial community. Compared to the legume inter-
cropping treatment, mineral N addition had a greater impact on the
niche breadth of the whole N-cycling microbial community and all N-
cycling functional groups except the N fixation-related group. Generally,
microbial communities with wide niche breadth are more adaptable to
environmental shifts (Jiao et al., 2020; Cui et al., 2023). Furthermore,
wider niche breadth allows more taxa to coexist in agroecosystems,
leading to an increase in the stability of co-occurrence networks (Jiao
et al., 2020). N fertilization practices can supplement N resources for
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microbial growth and metabolism, which facilitates reduction of both
interspecific and intraspecific competition for limited available N re-
sources (Liu et al., 2022). Likewise, the two N fertilization regimes both
increased network stability with node removal compared to the control.
Microbial taxa involved in N assimilation dominated the co-occurrence
networks establishing strong positive relationships with other taxa,
indicating both a potential collaboration with other functional taxa in N
assimilation and resistance to environmental stresses. In the karst re-
gion, extreme climate events (e.g., drought) occur frequently (Zhang
et al., 2019), which can lead to a reduction in soil microbial diversity,
especially for prokaryotic microbes (de Vries et al., 2018; Preece et al.,

2019). Thus, optimal N fertilization practices facilitate to maintain the
stability of soil N-cycling microbial communities and N-cycling function
in the karst agroecosystem.

5. Conclusions

Mineral N addition and legume intercropping altered the taxonomic
and functional structure of soil N-cycling microbial communities in a
karst forage ecosystem. Compared to the legume intercropping, mineral
N addition presented a much stronger influence on taxonomic and
functional diversity of nitrification-related microbes. The potential of
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soil nitrate transformation (e.g., hao) increased with mineral N addition,
resulting in greater soil NO3-N content. Legume intercropping facili-
tated an increase in soil N availability by increasing microbial N fixation
potential (e.g., nifK). Soil N-cycling microbial community assembly was
co-driven by both stochastic and deterministic processes. Soil pH and TN
were the deterministic factors influencing the taxonomic and functional
structure of soil N-cycling microbes and their N transformation poten-
tials. Interestingly, high soil pH and TN stimulated microbial N assimi-
lation, which facilitates to increase soil N retention in a karst
agroecosystem. The two N fertilization practices could support wider
niche breadth of soil N-cycling microbes and maintain the stability of co-
occurrence networks, which benefits to improve resistance of soil N-
cycling microbial communities to the elimination of some species. The
current study provides insights into how mineral N addition and legume
intercropping affect the taxonomic and functional structure of soil N-
cycling microbial communities and underlying community assembly
processes and co-occurrence patterns in a short period of time. In the
future, long-term monitoring of functional groups related to nitrifica-
tion, N fixation, and N assimilation will be required in conjunction with
stable isotope labelling techniques to effectively manage soil N avail-
ability in karst agroecosystems.
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