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Abstract

This chapter reviews classical community indices that condense community data into one or a few meaningful
variables to simplify analysis and interpretation. Given that no indices can conclusively reveal all ecological
processes, the recommendation is to complement univariate approaches that disregard taxon identity with
multivariate approaches that preserve taxon identity to improve one’s understanding of both the autecology of
individual community members and synecology of the community. Common univariate indices include index
families such as diversity or maturity. Multivariate approaches include clustering and ordination. Recommendations

for computer software and R scripts are included.

4.1 Introduction

To be successful as an indicator, a single index
must perform one of two functions: either re-
flect a past ecological process or predict a future
ecological process. The success of community
indices to reflect ecological processes or predict
patterns depends on the relative completeness
of ecological knowledge. Limitations of commu-
nity indices are that they are density-independ-
ent and rely on pattern to reflect process, and
often several processes can result in similar
patterns. Productivity, resilience and stability are
some of the ecological characteristics relevant
to ecosystem management, and some early suc-
cessful attempts to link diversity with function
include Rosenberg (1976) and Schafer (1973)

et al., 2021). However, the link between ecosys-
tem processes and diversity is not always clear
even for well-studied communities, so it is not
surprising that linkages between ecosystem pro-
cesses and nematode diversity are also unclear
(Ettema, 1998; Brussaard et al., 2004). Appro-
priate sampling and statistical techniques are
critical to valid interpretation of diversity indi-
ces. Generally, stratified- or simple-stage cluster
sampling are touted as generating less bias in
diversity estimates than simple random sampling
(Gimaret-Carpentier et al., 1998). Systematic
sampling with equal sampling effort (volume,
area) is necessary for comparison among samples
(Neher and Campbell, 1996). Although nema-
tode communities vary by season (Neher et al.
2005), a general recommendation to sample at

and continue to be investigated (e.g. Lazarova
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one must consider the time lag that exists be-
tween nematode community composition and
evidence of ecosystem function (Neher et al.
2012).

Like other microscopic groups, nematodes
can be tedious and laborious to extract from
their environment, count, preserve and identify.
Most data sets that characterize nematode com-
munities are either: (i) quantitative, with several
replicates from several sites, but performed at
coarse taxonomic resolution (e.g. family or
genus); or (ii) have a fine level of taxonomic reso-
lution (e.g. species) but either lack replication or
are not quantitative. Admittedly, although mo-
lecular tools are not to be used exclusively but
rather as additional characters to identify nema-
todes, the advent of high-throughput amplicon
sequencing creates the potential to characterize
nematode communities, as well as associated
bacteria, fungi and protozoans, for many sites
with a level of taxonomic precision that was not
feasible previously. Likely, as high-throughput
amplicon sequencing becomes more popular
with nematode community characterizations,
data sets with many sites and identifications
with species-level precision will become more
popular and may incite the use of a variety of
tests and indices that are otherwise common-
place in general ecological literature but scarcely
used in the context of nematode ecology.

4.2 Univariate Identity-Independent
Indices

Depending on the context, the term ‘diversity’ is
sometimes used to simply describe the number
of taxa. In the context of quantitative commu-
nity ecology, the term ‘diversity’ is more com-
monly, and appropriately, used to describe an
integration of both numbers of taxa (species rich-
ness) and equitability among taxa (species even-
ness) (Hurlbert, 1971). Nematode diversity can
be computed at the species, genus or trophic
level. Most nematode communities are enu-
merated at coarser resolutions because species
identification based on morphology is difficult.
Besides, functional groups are a practical neces-
sity because the effect of individual species on
ecosystem processes has yet to be determined
(Chapin et al., 1992). At the trophic level, diver-
sity is a measure of food chain length and food
web complexity (Neher and Campbell, 1994).
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A trophic diversity index assumes that greater
diversity of trophic groups in soil food webs (i.e.
complexity) and longer food chains reflect improved
ecosystem function (Moore, 1993; Neher et al.,
2019). Furthermore, the appropriate spatial
resolution of diversity should be consistent with
the objectives of the study. Alpha diversity reflects
the species diversity of individual localities, beta
diversity reflects the difference of communities
across landscapes, and gamma diversity reflects
the differences between landscapes across regions
(e.g. Kerfahi et al., 2016). In the context of soils,
the concept of a landscape could have a variety of
interpretations but would generally be operation-
ally defined and would likely involve a treatment
or comparison of research interest, potentially
even as close as two experimental plots.

4.2.1 Identity-independent indices

and their calculation

A variety of identity-independent indices is
available to serve different purposes in different
circumstances (Table 4.1). Each diversity index
weights richness and evenness uniquely, but all
diversity indices generally function so that an in-
crease in either richness or evenness will always
increase diversity. In some reports, the term di-
versity continues to refer simply to the total
number of species; it is preferable, however, to
restrict the use of ‘diversity’ to incorporate both
the number of species and evenness. Formulae
for calculating several common indices are sum-
marized (Table 4.1) and accompanied by a cus-
tomized R-studio script written to compute all
indices (Table 4.2).

Determining numbers of species (richness)
requires standardization and clear reporting for
each experiment or sampling regime to prevent
artefacts of sampling effort when comparing
richness and diversity indices. Nematode density
generally varies widely from sample to sample,
so the number of nematodes enumerated is a
representative subset of the total number ex-
tracted, i.e. an unknown number at the time of
sampling. Therefore, species richness is the ap-
propriate term to refer to the total number of
species found when enumerating a uniform
number of extracted individuals (e.g. 200 from
each sample) from samples of a uniform initial
mass or volume. Species density differs by refer-
ring to the total number of species expressed as a
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Table 4.1. Selected richness, diversity and evenness indices that can be calculated for nematode
communities. (Author’s own table.)

Name Equation? Application Reference
Margalef’s (S Its use should be restricted to Margalef (1958)
richness Mars T In(N) comparing species richness among
large communities
Shannon’s H =-Z(p,Inp) Sensitive to rare taxa. This widely Shannon (1948)
diversity used and versatile index can be
applied for both large and small
sample sizes. The Shannon index is
generally more influenced by rare
species than the Simpson index
Hill’s N1 N1 = exp[-Z(p, In p)] = The value of this index can be Hill (1973)
exp(H’) interpretated as the number of
abundant taxa
Simpson’s D =2Xp? Weights common taxa. Probability that Simpson (1949)
dominance two randomly chosen individuals of
(infinite an infinite community belong to the
community) same class, thus inversely related
to diversity
Simpson’s N >n (n,—1) Like Simpson’s D but corrected for Simpson (1949)
dominance TONWN-1) finite communities. Mathematically,
(finite it is usually more appropriate in
community) ecological studies than Simpson’s
D but is used less often
Hill's N2 N2 = (Zp)™" =1/D The value of this index can be Hill (1973)
interpreted as the number of very
abundant taxa
Brillouin's He llog N! Use only on fully censused Brillouin (1962);
diversity N TIIN! communities because it is a true Pielou (1975)
statistic and, thus, free from
statistical error
Brillouin’s 1 N! Represents maximum possible Brillouin (1962);
. H =—Ih—F0——7"7"—+ .
maximum TN (XS evenness of a sample of N Pielou (1975)
diversity individuals and S species
Brillouin’s 1 N! Represents minimum possible Brillouin (1962);
minimum Hoin =510 evenness of a sample of N Pielou (1975)
N (N-S+1)! P
diversity individuals and S species
Brillouin’s J= H or J = H Evenness represents equality of Brillouin (1962);
evenness o InS abundances in a community. Use J Pielou (1975)
for samples (and J’ for collections)
to determine the evenness portion
of diversity; J or J’ represent
observed and maximum diversity,
respectively
Continued

) » . Downloaded from https://cabidigitallibrarc}/.qrglb
Subject to the CABI Digital Library Terms & Conditions, available at htfps://cabidigitallibr

Deborah Neher, on 12/23/25.
ary.org/terms-and-conditions



80 D.A. Neher and B.J. Darby

Table 4.1. Continued.

Name Equation? Application Reference
Brillouin’s relative H-H_, Unlike J and J’, V is not influenced by  Hurlbert (1971);
V=—-— S ;
evenness Hmin,, species richness (S) Pielou (1975)
Hill's evenness E - (N,) Ratio of very abundant taxa to rare Hill (1973)
217 (N,) taxa. Approaches value of 1 as a

single species become more
dominant in a community

Heip’s evenness (e -1 More sensitive to variations in rare Heip (1974)
Heip (S-1) species richness and/or abundance

2p, represents the proportion of the /-th taxa in a sample, or n, the number, with N individuals and S total species.
X (in Brillouin’s maximum diversity) is the integer portion of (N/S), Y = X + 1, and r = the remainder of X.

Table 4.2. R code to compute the various diversity indices from Table 4.1. (Author’s own table.)

library(vegan)
library(ggplot2)

## Diversity Indices

# Read in data and separate labels from read counts
speciesraw = read.csv('sequences.csv')

spdata = speciesraw[,-c(1:5)]
labels = speciesraw[,c(1:5)]

# Prepare commonly used calculations

S = ncol(spdata)
N = rowSums(spdata)
pind = spdata/N

# Calculate indices

DMarg = (S - 1) / log(N)

ShannonH = -(rowSums(pind*log(pind), na.rm = TRUE))
N1 = exp(ShannonH)

SimpsonD = rowSums(pind**2)

N2 =1/ SimpsonD

Brillouind = ShannonH / log(S)

HillE = N2/ N1

HeipE = (N1-1)/(S-1)

## Using vegan package

veganShannonH = diversity(spdata, index="shannon")
veganN2 = diversity(spdata, index="invsimpson")

## Graph selected indices

df = cbind(labels, ShannonH)
ggplot(df, aes(x=SEASON, y=ShannonH, fill=SEASON))+
geom_boxplot()
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uniform portion of all extracted individuals (e.g.
20% of the individuals from each sample). This
distinction is important because species richness
and density are not necessarily linear in rela-
tionship. For example, 20 species found among
200 individuals does not necessarily mean that
one will find 40 species from 400 individuals.
This type of extrapolation requires rarefaction
of original data to estimate the number of spe-
cies collected from a hypothetical number of

individuals or samples. Ecologists use this ap-
proach to generate species area curves which plot
the number of unique species accumulated for
each sample as they are sampled (Gotelli and
Colwell, 2001). A rarefaction curve used to
define uniform portions of extracted individuals
acts as an accumulation curve, and is performed
retrospectively, after samples have been collected
(Fig. 4.1A). Curves that do not fully approach a
hypothetical asymptote suggest that additional
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Fig. 4.1. Species rarefaction curves and co-occurrence analysis. (A) Species rarefaction curves for
nematode species sampled in the spring and autumn. Solid lines indicate the rarefaction curves, dotted
lines indicate extrapolated predictions, and shaded fill indicates bootstrapped confidence intervals.

(B) Visualization of the results of a species-based co-occurrence analysis using the R-language package
cooccur (Griffith et al., 2016). Pairwise comparisons with a blue box indicate a positive co-occurrence
pattern, while yellow boxes indicate negative co-occurrence patterns. (Data for both (A) and (B) come
from nematodes sampled at the Konza tallgrass prairie; Darby et al., 2013.)
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sampling is likely to yield additional species. The
Margalef index (Table 4.1) is useful to adjust the
number of species (S) for the number of individ-
uals enumerated (N).

Evenness represents the relative uniformity
in abundance of each taxon within a sample.
Heip proposed an evenness index (Table 4.1) to
standardize the Shannon’s diversity index (H’)
by total number of species (S). Alternatively,
Brillouin developed a series of statistics for cen-
sused communities that are computationally
complex (Table 4.1). For example, Brillouin’s
maximum theoretical diversity (= H,__ ) is com-
puted with the assumption that all individuals
are distributed as uniformly as possible, and
minimum theoretical diversity is computed
assuming all individuals are distributed as asym-
metrically as possible. Two forms of evenness
can be computed, the first as diversity relative to
maximum diversity (= J) and the second (‘rela-
tive evenness’) as diversity relative to maximum
diversity but scaled to minimum diversity (= V).
The first type (not scaled to minimum diversity)
can be based on either of two estimates of diver-
sity depending on whether the user wishes to
assume a finite or infinite community enumer-
ation. We recommend using Brillouin’s sample
diversity relative to Brillouin’s maximum diver-
sity (= J) when assuming a finite community
enumeration, or Shannon’s population diversity
relative to the natural logarithm of richness (=])
when assuming infinite community enumer-
ation. The second type (= V, scaled to minimum
diversity) uses Brillouin’s calculation of diversity
from a censused community. Although nema-
tode communities are rarely, if ever, fully cen-
sused in nature, the assumption of complete
enumeration may be appropriate in some unique
applications; for example, small, isolated habi-
tats or virtual individuals in a computationally
simulated model community.

There are a variety of diversity indices that
incorporate both richness and evenness, and
they differ mostly as to the degree to which they
are influenced by dominant and rare species.
Shannon'’s diversity (Table 4.1) is a popular
diversity index. The exponent of Shannon’s index
(Hill's N1) can be interpreted as the number of
uniformly distributed species that would pro-
duce an identical Shannon'’s index as the non-
uniformly distributed community. For example,
consider a community with 20 non-uniformly
distributed species and a Shannon’s index of
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2.3.The exponent of 2.3 (Hill'sN1) equals 9.97,
so, intuitively, approximately 10 uniformly dis-
tributed species would be needed to produce a
Shannon’s index like the community of 20
non-uniformly distributed species. Furthermore,
Heip's evenness index = [(9.97 - 1)/(20-1)] =
0.47, indicating that about half of the observed
species would be necessary to produce a similar
Shannon'’s index if they were distributed uni-
formly. Simpson’s D index (Table 4.1) is con-
sidered a dominance index because it increases
as species are distributed more unevenly
(increasing dominance) and can be interpreted
intuitively as the probability that two randomly
selected individuals from an infinite community
will be the same. The reciprocal of Simpson'’s
index (Hill's N2) is often reported as a diversity
index, and like Hill's N1, Hill's N2 can be inter-
preted as the number of uniformly distributed
species that would produce a Simpson’s index
identical to that of the non-uniform community.
Notice that the minimum Simpson’s D possible
(i.e. least dominance by any taxa) is 1/S and the
maximum Hill's N2 possible (greatest equitabil-
ity) is S, so we could compute an evenness index
similar to Heip’s approach as N2/S. See Neher

and Darby (2006) for a deeper explanation of
interpretation of various diversity indices.

4.3 Community Assemblage Models

4.3.1 Species co-occurrence patterns

As high-throughput molecular sequencing
gains popularity in nematode ecology, allowing
greater taxonomic resolution and facilitating
characterization of nematode species for a greater
number of samples, we think that analysing
co-occurrence patterns among nematode species
may become a more fruitful way to understand
nematode community assemblages. For example,
a co-occurrence matrix from data at the species
level using presence—absence data obtained from
amplicon sequencing is helpful to define species
associates (Fig. 4.1B). Species co-occurrence
patterns have an important historical place in
the field of ecology and represent an attempt to
understand how communities form and are
assembled. Species co-occurrence patterns can
be linked back to the earliest concepts of community
formation, including the competing Gleason
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1926) and Clements (1936) concepts of com-
munity assemblage. Co-occurrence patterns
were again made the subject of ecologists’ atten-
tion by Diamond (1975) who suggested that
communities are structured with patterns of
positive or negative co-occurrences akin to a
‘checkerboard’ pattern, reflecting cooperative or
competitive relationships, respectively. This
theory, and its associated models, have been
debated extensively (Simberloff, 1978) and gen-
erated several studies on the proper use of null
models against which to test empirical presence—
absence data (Gotelli and Graves, 1996; Weiher

patterns of ecological interactions within a com-
munity. As species composition changes, it alters
the abiotic environment, which in turn selects
against the existing community favouring a
community composition that performs better
under the newly created abiotic environment.
The concept originated in plant ecology (Whit-
taker, 1975) but also applies to invertebrate
communities in soil and sediment. Succession
usually progresses directionally unless set back
by an environmental disturbance such as culti-
vation, pollution or nutrient enrichment (Neher.
1999). Therefore, quantitative measures of

and Keddy, 1999). Veech (2013) developed a
probabilistic model for analysing co-occurrence
patterns and provided software for the R environ-
ment (Griffith et al., 2016). This package computes
rates of all occurrences between each pairwise
species combination from a site by species
presence—absence matrix, plus their probability.
In this case, pairwise probabilities are obtained
from a hypergeometric distribution, much
like performing a Fisher's exact test. Other
software programs designed for more speciose
communities, like bacteria or fungi, compute
co-occurrence as correlation. However, read
counts from high-throughput amplicon sequen-
cing are poorly correlated with individual abun-
dance, making correlations between nematode
species only possible with specimen counts. Spe-
cies differ in their number of genomic rRNA
copy numbers, which is the locus typically used
for identification by amplicon sequencing.
Therefore, it would take species-specific ‘copy-
number corrections’ to convert high-throughput
sequencing reads to specimen counts (Darby et al.,
2013). Unfortunately, the accuracy of such
copy-number correction factors will vary by sea-
son if the species itself varies seasonally in its
number of somatic cells per individual (i.e. differ-
ences in the number of juveniles) or in the number
of reproductive cells (i.e. season reproductive pat-
terns). Ultimately, the most precise community
identifications will likely come from a combination
of specimen counts by morphology but using
sequencing data to assist the identifications.

4.3.2 Ecological succession

Ecological succession refers to a relatively pred-
icable or directional sequence of spatio-temporal
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ecological succession can serve as indicators
of disturbance. With improved knowledge of
synecology of nematode communities, one could
identify the type and intensity of disturbance
based on an index of succession. Bongers (1990
proposed an index of ecological succession for
application to nematodes and Ruf (1998) applied
a similar approach to mesostigmatid mites.
Maturity indices are used as a measure of the
ecological successional status of a soil commu-
nity. They are based on the principle that different
taxa have contrasting sensitivities to stress or
disruption of the successional sequence because
of their life-history characteristics. Successional
indices are described in greater detail in Chapter
5 of this volume.

4.3.4 Beta diversity

Beta diversity is another way to examine patterns
of ecological succession in nematodes. Whereas
alpha diversity reflects the communities at
individual localities, beta diversity describes
the comparison between communities across a
landscape. For example, Podani and Schmera
2011) developed indices that separated the
various components of beta diversity into spe-
cies similarity, richness differences and species
replacements (Fig. 4.2). These three indices
describe different aspects of beta diversity, or
the potential differences between communities
at different localities. For a community ecolo-
gist, calculating these indices across different
communities may help to identify mechanisms
of community assemblage or ecological succes-
sion. For example, as a community naturally
shifts in time, these indices reflect whether taxa
maintain similar richness and progress by
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(A) Sample
] 8 Species Similarity: S=a/n
810 b Richness Difference: D=Ilb-cln
§ 11 }a n Species Replacement: R = 2min{b,c}/n
»n 11
01 c
01

Perfect nestedness

11111
11110
11100
11000

Fig. 4.2. lllustrating the use of species similarity, richness difference and species replacement indices of
beta diversity. (A) Indices are calculated for each pairwise sample in a site-by-species presence—absence
matrix. (B) Index values for all pairwise comparisons can be plotted on a ternary diagram. (C) The
aggregate distribution of indices can reflect beta diversity patterns of anti-nestedness, perfect gradient or
perfect nestedness between communities. (The ggtern package of R software was used to generate the
graphs from unpublished data of co-author Brian Darby.)

species replacement, or whether they change by
the addition or subtraction of individual species.
One helpful feature of these indices is that the
three values sum to 1.0, which allows one to plot
the values on a ternary plot to illustrate the
dominant component of beta diversity between
each pairwise comparison (Fig. 4.2).

4.4 Multivariate Techniques

Multivariate analysis offers both descriptive and
inferential procedures to analyse multiple vari-
ables simultaneously to reveal the collective
interactions of all variables and the effect each
variable has on the others. Descriptive proced-
ures help to illustrate the overall structure of a
data set while inferential procedures help to test
hypotheses of interactions. Therefore, multivari-
ate analysis has two complementary applications,
exploratory hypothesis-generating and inferential
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hypothesis-testing, that can be combined into a
two-phase approach that might begin with an
exploratory phase that seeks patterns in nature
by asking ‘To what can I ascribe the variation
in my data?’ The second phase, then, tests the
hypotheses that were generated by asking ‘Can I
reject the null hypothesis that species are unre-
lated to each other or postulated environmental
factor(s)?’ In this way, multivariate analysis is
useful in evaluating nematode community struc-
ture as a biological indicator by keeping the
identity of individual taxa explicit throughout
the analysis. Below, we discuss two types of multi-
variate analysis commonly applied to nematode
communities: cluster analysis and ordination.

4.4.1 Cluster analysis

Cluster analysis treats each multivariate obser-
vation (sample) as a vector and attempts to
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Fig. 4.3. Graphic representations among samples of nematode communities illustrated either as

(A) similarities in a dendrogram or (B) dissimilarities on a multidimensional scaling (MDS) biplot.
Bray—Curtis similarity was computed on non-transformed abundance data for each pairwise combination
of samples. A dendrogram and biplot show the same data in two formats of duplicative information.
(INustrations were created using ANOSIM and CLUSTER modules of Primer-E Version 5.2.9 software;

Clarke and Gorley, 2001.)

group vectors that are like each other into clus-
ters (Fig. 4.3). Cluster analysis begins with a
(dis)similarity matrix, often computed as the
Euclidean distance or Bray—Curtis similarity
among all pairs of vectors. Hierarchical clustering
algorithms are either agglomerative or divisive.
Agglomerative clustering begins with each vector
representing a unique cluster and sequentially
combining the two nearest clusters into one
until an optimal number of clusters is attained.
Divisive clustering begins with one cluster con-
taining all vectors and sequentially divides the
cluster into two until an optimal number of clus-
ters has been obtained. Agglomerative cluster-
ing is most common and there are several
methods of determining the distance of vector
clusters from each other. The single linkage (or
nearest neighbour) method determines the distance
between two clusters as the minimum distance
(e.g. Euclidean) between the two most similar
vectors of each cluster, while the complete linkage
(e.g. furthest neighbour) method determines the
distance between two clusters as the maximum
distance (e.g. Euclidean) between the two most
dissimilar vectors of each cluster. The average
linkage method defines the distance between two
clusters as the average distance of all elements
from each cluster, while the centroid method de-
fines the distance between two clusters as the
distance between the two mean (or median) vec-
tors of a cluster, called the centroids. Finally,
Ward’s method joins clusters to minimize the
increase in sum of squares within and between
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clusters. The result of hierarchical cluster ana-
lysis is a dendrogram (i.e. tree diagram) that
shows each step of the clustering procedure and
the distance at which the clusters merge (e.g.
Fig. 4.3A).

Discriminant analysis is a related approach
based on an a priori expectation of group members
whereas cluster analysis has no preconceived
expectation of group members and therefore
conducts a posteriori aggregation. With discrim-
inant analysis, one hypothesizes that there are
two or more distinct groups and then determines
whether the observations divide significantly
among those two predicted groups (Afifi et al.,
2020).

4.4.2 Ordination

Ordination techniques are popular in commu-
nity analysis due to their ability to visualize
multidimensional data in two-dimensional space
(Afifi et al., 2020). There are two main classes of
ordination techniques: direct and indirect gradi-
ent analysis. Indirect gradient analysis, also called
unconstrained, seeks to interpret patterns from
within a data set. Direct gradient analysis seeks to
extract patterns from known gradients and is
therefore constrained by the environmental vari-
ables supplied. Indirect gradient analysis is div-
ided into distance-based and eigenanalysis-based
methods, whereas all direct gradient analyses
are eigenanalysis-based methods. Examples of
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distance-based indirect gradient ordination
include polar ordination (PO), principal coordin-
ates analysis (PCoA) and non-metric multidi-
mensional scaling (NMDS). In PO, two samples
most different from each other based on their
species composition serve as end points and
all other samples are plotted relative to them.
In this way, new samples can be added to
polar ordination without changing the structure
of the ordination diagram. PCoA simply maxi-
mizes linear distance measures of the ordination
in metric space (using a Euclidean or Bray—Curtis
distance matrix), while NMDS is analogous to a
non-parametric variant of PCoA by maximizing
rank distance measures of the ordination in
non-metric space (e.g. Fig. 4.3B).

Redundancy analysis (RDA) and canonical
correspondence analysis (CCA) are two types of
direct gradient analysis that constrains the dis-
tribution of taxa by environmental variables
(Fig. 4.4). They vary by whether there is a linear
(RDA) or unimodal (CCA) link between suites of
taxon data with suites of environmental variables.
Environmental variables can include treatment
classes (coded as nominal O or 1 variables) or

chemical or physical properties (such as pollu-
tants or temperature) as continuous variables.
All these procedures can be performed in R,
either through Base R software, or through
packages such as labdsv or vegan (Oksanen
et al.. 2022). Alternatively, Canoco (ter Braak
and Smilauer. 2012) and Primer-E (Clarke and
Gorley, 2001) software packages are simple tools
to perform these procedures. In Canoco, abun-
dances are transformed as log(x + 1) prior to
analysis, which is a historically used transform-
ation in nematology. Transformations are un-
necessary in Primer-E because the scaling is
non-metric multidimensional. CCA results are dis-
played graphically with biplots. In CCA biplots,
each vector for an environmental variable defines
an axis, and site or taxa scores can be projected
on to that axis. An indication of relative import-
ance of a vector is its length; the angle indicates
correlation with other vectors and CCA axes.
Eigenvalues for CCA axes indicate the import-
ance of the axes in explaining relationships in
the genera—environment data matrices. The first
axis represents the greatest explained variation,
and subsequent axes represent progressively less
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Fig. 4.4. Nematodes in 20 families (out of 39) are illustrated as either (A) principal components analysis
(PCA) or (B) canonical correspondence analysis (CCA). PCA is unconstrained, illustrating taxa (arrows)
versus samples (grey dots). CCA is constrained by environmental variables representing factorial
combinations of three ecosystems (A = agriculture, F = forest, W = wetland) and two disturbance levels
(D = disturbed, U = undisturbed) sampled 12 times over two years in North Carolina. The longer vectors
explain more variation than shorter vectors. Vectors with acute angles are correlated positively and those
in opposite quadrants are correlated negatively. Right angles are orthogonal or independent of each
other. (Biplots were generated using Canoco Version 5 software; ter Braak and Smilauer, 2012. Data from

Neher et al., 2005.)
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variance. Unfortunately, CCA analyses are
restricted to illustrating one instance in time.
Therefore, repeated measures of communities
through time are consolidated into a single biplot
that loses information about temporal patterns.
Principal response curves (PRC) are a multi-
variate method for the analysis of repeated-
measurement designs (van den Brink and ter
Braak, 1998, 1999). PRCis based on RDA; each
experimental unit and sampling times and unit-
by-time interactions are treated as dummy
explanatory variables. The result is a diagram
showing the sampling periods on the x-axis and

the first principal component of the variance
explained by treatment on the y-axis (Fig. 4.5).
For illustrative purposes, undisturbed condition
was treated as a ‘control’, representing a zero
baseline, and ‘disturbed’ of the same experimental
unit as the ‘treatment’ to focus on the differences
between the two states of condition through
time. Monte Carlo permutation tests permuting
whole time series are applied to compute statis-
tical significance.

The type of analysis chosen depends on the
research question but is critical in terms of out-
put and interpretation. Nematode community
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Fig. 4.5. Nematodes in 20 families (out of 39) are illustrated that were sampled repeatedly for 12 times
over two years in factorial combinations of three ecosystems (A = agriculture, F = forest, W = wetland)
and two disturbance levels (D = disturbed, U = undisturbed). The x-axis (black, solid line) represents
undisturbed agriculture as a reference baseline for comparison of relative differences for disturbed
agriculture (black, dashed), disturbed (dashed) and undisturbed (solid) forests (orange), and disturbed

(dashed) and undisturbed (solid) wetlands (blue). On the right are the species scores (Resp. 1) for taxa
that explain the fluctuations and contrasts of the ecosystem communities through time. For example, the
cluster of taxa at the top (Hoplolaimidae, Tylenchidae, Cephalobidae, Rhabditidae and Criconematidae)
distinguish UW from others; the Alaimidae through Diphtherophoridae are associated with the baseline
reference; and Dorylamellidae through Tripylidae and Anguinidae follow dips in AD, WD and forests.
(Principal response curve (PRC) plot was generated using Canoco Version 5 software; ter Braak and
Smilauer, 2012. Data from Neher et al., 2005.)
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data collected 12 times over a period of two years
was analysed three different ways (Figs 4.4 and
4.5). For example, there is only 50% of taxa in
common when unconstrained (Fig. 4.4A) or
constrained (Fig. 4.4B). By constraining, one gains
information about which taxa are associated
with environmental variables. For example, An-
guinidae, Longidoridae and Hoplolaimidae are
relatively abundant in disturbed forest, agriculture
and wetland sites, respectively (Fig. 4.4). PRC
plots separate times sampled to further refine
which taxa explain differences among treat-
ments and how those varied through time (Fig. 4.5).
This information is lost in a CCA (Fig. 4.4B) and
there is a 20% difference in taxa explaining vari-
ation. From the PCA, we learn that Hoplolaimidae
and Anguinidae are associated with fluctuating
communities in wetlands and forests, respectively.

4.5 Conclusion

Classical community composition can be analysed
using metrics that either disregard or preserve
the identity of taxon within the community.

Identity-independent methods such as diversity
and evenness indices are relatively simple to
compute and analyse statistically. However, the
user must exercise caution by selecting the form
of index most appropriate to the goals of the
study and resisting the temptation to singularly
extrapolate to a greater ecological meaning
without substantial supplementary evidence.
Alternatively, indices that incorporate and/or
maintain taxon identity can more convincingly
be linked to ecological process and function.
Measures of ecological succession and species
assemblage are univariate forms that can be
analysed using traditional statistical tools such
as regression and analysis of variance. A variety
of multivariate methods are accessible through
commercial software packages. Many multivari-
ate approaches capture a one-time snapshot of
community composition. However, repeat-
ed-measures approaches are becoming available
to evaluate changes in community composition
through time. Practitioners should be aware of
the many limitations, assumptions and caveats of
community assemblage and multivariate tech-
niques by consulting with expert statisticians.
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