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A type 1 retransmission permutation array of order 𝑛 

(denoted type-1 RPA(𝑛)) is an 𝑛 ×  𝑛 array, say A, in which 

each cell contains a symbol from the set *1, . . . , 𝑛+, such that 

the following properties are satisfied: 

 (i) every row of A contains all 𝑛 symbols, and 

 (ii) for 1 ≤  𝑖 ≤  𝑛, the i × ⌈𝑛 𝑖 ⌉ rectangle in the upper        

               left hand corner of A contains all 𝑛 symbols. 



1 2 3 4 5 6 7 8 9 10 

6 7 8 9 10 1 3 2 5 4 

5 10 4  6 2 9 1 8 7 3 

4 9  8 2 1 3 5 7 6 10 

3 8 5 7 6 4 9 2 10 1 

2 1 9 10 4 3 8 7 6 5 

7 10 1 2 3 9 8 6 5 4 

8 3 2 1 5 6 7 4 10 9 

9 4 7 8 3 10 6 2 1 5 

10 5 6 3 7 2 9 1 4 8 

𝑛 = 10 

Lets check: 

row latin ? 



1 2 3 4 5 6 7 8 9 10 

6 7 8 9 10 1 3 2 5 4 

5 10 4  6 2 9 1 8 7 3 
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10 5 6 3 7 2 9 1 4 8 
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𝑛 = 10 

Lets check: 

row latin ? 



1 2 3 4 5 6 7 8 9 10 

6 7 8 9 10 1 3 2 5 4 

5 10 4  6 2 9 1 8 7 3 

4 9  8 2 1 3 5 7 6 10 

3 8 5 7 6 4 9 2 10 1 

2 1 9 10 4 3 8 7 6 5 

7 10 1 2 3 9 8 6 5 4 

8 3 2 1 5 6 7 4 10 9 

9 4 7 8 3 10 6 2 1 5 

10 5 6 3 7 2 9 1 4 8 

𝑛 = 10 

Lets check: 

Left hand corner? 

𝑖 = 1 

1 x 10 



1 2 3 4 5 6 7 8 9 10 

6 7 8 9 10 1 3 2 5 4 

5 10 4  6 2 9 1 8 7 3 

4 9  8 2 1 3 5 7 6 10 

3 8 5 7 6 4 9 2 10 1 

2 1 9 10 4 3 8 7 6 5 

7 10 1 2 3 9 8 6 5 4 

8 3 2 1 5 6 7 4 10 9 

9 4 7 8 3 10 6 2 1 5 

10 5 6 3 7 2 9 1 4 8 

𝑛 = 10 

Lets check: 

Left hand corner? 

𝑖 = 1 

1 x 10 



1 2 3 4 5 6 7 8 9 10 

6 7 8 9 10 1 3 2 5 4 

5 10 4  6 2 9 1 8 7 3 

4 9  8 2 1 3 5 7 6 10 

3 8 5 7 6 4 9 2 10 1 

2 1 9 10 4 3 8 7 6 5 

7 10 1 2 3 9 8 6 5 4 

8 3 2 1 5 6 7 4 10 9 

9 4 7 8 3 10 6 2 1 5 

10 5 6 3 7 2 9 1 4 8 

𝑛 = 10 

Lets check: 

Left hand corner? 

𝑖 = 2 

2 x 5 



1 2 3 4 5 6 7 8 9 10 

6 7 8 9 10 1 3 2 5 4 

5 10 4  6 2 9 1 8 7 3 

4 9  8 2 1 3 5 7 6 10 

3 8 5 7 6 4 9 2 10 1 

2 1 9 10 4 3 8 7 6 5 

7 10 1 2 3 9 8 6 5 4 

8 3 2 1 5 6 7 4 10 9 

9 4 7 8 3 10 6 2 1 5 

10 5 6 3 7 2 9 1 4 8 

𝑛 = 10 

Lets check: 

Left hand corner? 

𝑖 = 3 

3 x 4 



1 2 3 4 5 6 7 8 9 10 

6 7 8 9 10 1 3 2 5 4 

5 10 4  6 2 9 1 8 7 3 

4 9  8 2 1 3 5 7 6 10 

3 8 5 7 6 4 9 2 10 1 

2 1 9 10 4 3 8 7 6 5 

7 10 1 2 3 9 8 6 5 4 

8 3 2 1 5 6 7 4 10 9 

9 4 7 8 3 10 6 2 1 5 

10 5 6 3 7 2 9 1 4 8 

𝑛 = 10 

Lets check: 

Left hand corner? 

𝑖 = 4 

4 x 3 



1 2 3 4 5 6 7 8 9 10 

6 7 8 9 10 1 3 2 5 4 

5 10 4  6 2 9 1 8 7 3 

4 9  8 2 1 3 5 7 6 10 

3 8 5 7 6 4 9 2 10 1 

2 1 9 10 4 3 8 7 6 5 

7 10 1 2 3 9 8 6 5 4 

8 3 2 1 5 6 7 4 10 9 

9 4 7 8 3 10 6 2 1 5 

10 5 6 3 7 2 9 1 4 8 

𝑛 = 10 

Lets check: 

Left hand corner? 

𝑖 = 5 

5 x 2 



1 2 3 4 5 6 7 8 9 10 

6 7 8 9 10 1 3 2 5 4 

5 10 4  6 2 9 1 8 7 3 

4 9  8 2 1 3 5 7 6 10 

3 8 5 7 6 4 9 2 10 1 

2 1 9 10 4 3 8 7 6 5 

7 10 1 2 3 9 8 6 5 4 

8 3 2 1 5 6 7 4 10 9 

9 4 7 8 3 10 6 2 1 5 

10 5 6 3 7 2 9 1 4 8 

𝑛 = 10 

Lets check: 

Left hand corner? 

𝑖 = 6 

6 x 2 



1 2 3 4 5 6 7 8 9 10 

6 7 8 9 10 1 3 2 5 4 

5 10 4  6 2 9 1 8 7 3 

4 9  8 2 1 3 5 7 6 10 

3 8 5 7 6 4 9 2 10 1 

2 1 9 10 4 3 8 7 6 5 

7 10 1 2 3 9 8 6 5 4 

8 3 2 1 5 6 7 4 10 9 

9 4 7 8 3 10 6 2 1 5 

10 5 6 3 7 2 9 1 4 8 

𝑛 = 10 

Lets check: 

Left hand corner? 

𝑖 = 7 

7 x 2 



1 2 3 4 5 6 7 8 9 10 

6 7 8 9 10 1 3 2 5 4 

5 10 4  6 2 9 1 8 7 3 

4 9  8 2 1 3 5 7 6 10 

3 8 5 7 6 4 9 2 10 1 

2 1 9 10 4 3 8 7 6 5 

7 10 1 2 3 9 8 6 5 4 

8 3 2 1 5 6 7 4 10 9 

9 4 7 8 3 10 6 2 1 5 

10 5 6 3 7 2 9 1 4 8 

𝑛 = 10 

Lets check: 

Left hand corner? 

𝑖 = 8 

8 x 2 



1 2 3 4 5 6 7 8 9 10 

6 7 8 9 10 1 3 2 5 4 

5 10 4  6 2 9 1 8 7 3 

4 9  8 2 1 3 5 7 6 10 

3 8 5 7 6 4 9 2 10 1 

2 1 9 10 4 3 8 7 6 5 

7 10 1 2 3 9 8 6 5 4 

8 3 2 1 5 6 7 4 10 9 

9 4 7 8 3 10 6 2 1 5 

10 5 6 3 7 2 9 1 4 8 

𝑛 = 10 

Lets check: 

Left hand corner? 

𝑖 = 9 

9 x 2 



1 2 3 4 5 6 7 8 9 10 

6 7 8 9 10 1 3 2 5 4 

5 10 4  6 2 9 1 8 7 3 

4 9  8 2 1 3 5 7 6 10 

3 8 5 7 6 4 9 2 10 1 

2 1 9 10 4 3 8 7 6 5 

7 10 1 2 3 9 8 6 5 4 

8 3 2 1 5 6 7 4 10 9 

9 4 7 8 3 10 6 2 1 5 

10 5 6 3 7 2 9 1 4 8 

𝑛 = 10 

Lets check: 

Left hand corner? 

𝑖 = 10 

10 x 1 



1 2 3 4 5 6 7 8 9 10 

6 7 8 9 10 1 3 2 5 4 

5 10 4  6 2 9 1 8 7 3 

4 9  8 2 1 3 5 7 6 10 

3 8 5 7 6 4 9 2 10 1 

2 1 9 10 4 3 8 7 6 5 

7 10 1 2 3 9 8 6 5 4 

8 3 2 1 5 6 7 4 10 9 

9 4 7 8 3 10 6 2 1 5 

10 5 6 3 7 2 9 1 4 8 

𝑛 = 10 

Lets check: 

Left hand corner? 





A type 1 retransmission permutation array of order n (denoted 

type-1 RPA(n)) is an 𝑛 ×  𝑛 array, say A, in which each cell 

contains a symbol from the set *1, . . . , 𝑛+, such that the following 

properties are satisfied: 

 (i) every row of A contains all 𝑛 symbols, and 

 (ii) for 1 ≤  𝑖 ≤  𝑛, the i × ⌈𝑛 𝑖 ⌉ rectangle in the upper        

               left hand corner of A contains all n symbols.   



A type 1 retransmission permutation array of order n (denoted 

type-1 RPA(n)) is an 𝑛 ×  𝑛 array, say A, in which each cell 

contains a symbol from the set *1, . . . , 𝑛+, such that the following 

properties are satisfied: 

 (i) every row of A contains all 𝑛 symbols, and 

 (ii) for 1 ≤  𝑖 ≤  𝑛, the i × ⌈𝑛 𝑖 ⌉ rectangle in the upper        

               left hand corner of A contains all n symbols.   

 a type-2 array is one in which property (ii) instead holds for 

rectangles in the upper right corner of A. 



A type 1 retransmission permutation array of order n (denoted 

type-1 RPA(n)) is an 𝑛 ×  𝑛 array, say A, in which each cell 

contains a symbol from the set *1, . . . , 𝑛+, such that the following 

properties are satisfied: 

 (i) every row of A contains all 𝑛 symbols, and 

 (ii) for 1 ≤  𝑖 ≤  𝑛, the i × ⌈𝑛 𝑖 ⌉ rectangle in the upper        

               left hand corner of A contains all n symbols.   

 a type-2 array is one in which property (ii) instead holds for 

rectangles in the upper right corner of A. 

 a type-3 array is one in which property (ii) instead holds for 

rectangles in the lower left corner of A. 

 a type-4 array is one in which property (ii) instead holds for 

rectangles in the lower right corner of A. 
 



A type 1 retransmission permutation array of order n (denoted 

type-1 RPA(n)) is an 𝑛 ×  𝑛 array, say A, in which each cell 

contains a symbol from the set *1, . . . , 𝑛+, such that the following 

properties are satisfied: 

 (i) every row of A contains all 𝑛 symbols, and 

 (ii) for 1 ≤  𝑖 ≤  𝑛, the i × ⌈𝑛 𝑖 ⌉ rectangle in the upper        

               left hand corner of A contains all n symbols.   

 a type-2 array is one in which property (ii) instead holds for 

rectangles in the upper right corner of A. 

 a type-3 array is one in which property (ii) instead holds for 

rectangles in the lower left corner of A. 

 a type-4 array is one in which property (ii) instead holds for 

rectangles in the lower right corner of A. 
 

So Mike is asking for a type-1,2 RPA 



A retransmission permutation array A of order n is latin if 

every column of A contains all 𝑛 symbols (column latin). 

 

 

We denote a latin RPA of order n as an LRPA(n) 

 

 

 



A type-1,2,3,4 LRPA(4): 

 
1 2 3 4 

4 3 2 1 

2 1 4 3 

3 4 1 2 

• An 𝑟 × ⌈𝑛 𝑟 ⌉ rectangle is called basic if it does not contain an            

𝑟′ × ⌈ 𝑛 𝑟′  ⌉ rectangle where 𝑟′ <  𝑟 and ⌈ 𝑛 𝑟 ⌉  =  ⌈ 𝑛 𝑟′  ⌉. 
 

• In verifying property (ii), it suffices to consider only basic rectangles. 

The basic rectangles that must be verified in the above example 

have dimensions 1 × 4,  2 × 2 and  4 × 1. 
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have dimensions 1 × 4,  2 × 2 and  4 × 1. 



A type-1,2,3,4 LRPA(4): 

 
1 2 3 4 

4 3 2 1 

2 1 4 3 

3 4 1 2 

• An 𝑟 × ⌈𝑛 𝑟 ⌉ rectangle is called basic if it does not contain an            

𝑟′ × ⌈ 𝑛 𝑟′  ⌉ rectangle where 𝑟′ <  𝑟 and ⌈ 𝑛 𝑟 ⌉  =  ⌈ 𝑛 𝑟′  ⌉. 
 

• In verifying property (ii), it suffices to consider only basic rectangles. 

The basic rectangles that must be verified in the above example 

have dimensions 1 × 4,  2 × 2 and  4 × 1. 



A type-1,2,3,4 LRPA(4): 

 
1 2 3 4 

4 3 2 1 

2 1 4 3 

3 4 1 2 

• An 𝑟 × ⌈𝑛 𝑟 ⌉ rectangle is called basic if it does not contain an            

𝑟′ × ⌈ 𝑛 𝑟′  ⌉ rectangle where 𝑟′ <  𝑟 and ⌈ 𝑛 𝑟 ⌉  =  ⌈ 𝑛 𝑟′  ⌉. 
 

• In verifying property (ii), it suffices to consider only basic rectangles. 

The basic rectangles that must be verified in the above example 

have dimensions 1 × 4,  2 × 2 and  4 × 1. 



A type-1,2,3,4 LRPA(8): 

 
1 2 3 4 5 6 7 8 

5 6 7 8 1 2 3 4 

8 4 6 2 7 3 5 1 

7 3 5 1 8 4 6 2 

2 1 4 3 6 5 8 7 

6 5 8 7 2 1 4 3 

4 8 2 6 3 7 1 5 

3 7 1 5 4 8 2 6 

This array satisfies two symmetry properties: 

•  𝑎𝑖,𝑗 + 𝑎𝑖,𝑛+1−𝑗 =  𝑛 +  1  where 𝑛 =  8. 

•  𝑎𝑗,𝑖=  𝜋(𝑎𝑖,𝑗)  where  π =  (1)(2 5)(3 8)(4 7)(6). 



Li, Liu, Tan, Viswanathan, and Yang published a paper entitled 

Retransmission ≠ repeat: simple retransmission permutation can 

resolve overlapping channel collisions (Eighth ACM Workshop on Hot 

Topics in Networks, 2009) in which they utilize  type -1, 2 RPA(𝑛) to 

resolve overlapping channel collisions.    

 

 



Li, Liu, Tan, Viswanathan, and Yang published a paper entitled 

Retransmission ≠ repeat: simple retransmission permutation can 

resolve overlapping channel collisions (Eighth ACM Workshop on Hot 

Topics in Networks, 2009) in which they utilize  type -1, 2 RPA(𝑛) to 

resolve overlapping channel collisions.    

 

 

Suppose a message is divided  

into 𝑛 pieces and broadcast 

using 𝑛 consecutive groups  

(i.e., sets of carrier frequencies). 

𝑔1 𝑔2 𝑔3 𝑔4 

1 2 3 4 



Li, Liu, Tan, Viswanathan, and Yang published a paper entitled 

Retransmission ≠ repeat: simple retransmission permutation can 

resolve overlapping channel collisions (Eighth ACM Workshop on Hot 

Topics in Networks, 2009) in which they utilize  type -1, 2 RPA(𝑛) to 

resolve overlapping channel collisions.    

 

 

 

A second channels may overlap  

in an arbitrary number 𝑗 ≤  𝑛 of  

groups.    

 

(here 𝑗 = 2 and pieces 3 and 4 of the message are lost) 

 

 

1 2 3 4 𝑥1 𝑥2 𝑥3 𝑥4 

𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6 



Li, Liu, Tan, Viswanathan, and Yang published a paper entitled 

Retransmission ≠ repeat: simple retransmission permutation can 

resolve overlapping channel collisions (Eighth ACM Workshop on Hot 

Topics in Networks, 2009) in which they utilize  type -1, 2 RPA(𝑛) to 

resolve overlapping channel collisions.    

 

 

 

We can now broadcast the  

second row in the RPA(4) 

to send the complete message 

(even if 𝑔3 and 𝑔4 are occupied) 

1 2 3 4 𝑥1 𝑥2 𝑥3 𝑥4 

4 3 2 1 𝑥1 𝑥2 𝑥3 𝑥4 

𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6 



Li, Liu, Tan, Viswanathan, and Yang published a paper entitled 

Retransmission ≠ repeat: simple retransmission permutation can 

resolve overlapping channel collisions (Eighth ACM Workshop on Hot 

Topics in Networks, 2009) in which they utilize  type -1, 2 RPA(𝑛) to 

resolve overlapping channel collisions.    

 

 

A type-1, 2 RPA(𝑛) gives a schedule  

for rebroadcasting messages in 𝑛  

“rounds” in such a way that all 𝑛  

pieces of a message are received  

in the minimum number of rounds, 

regardless of the overlap value, 𝑗. 

1 2 3 4 

4 3 2 1 

𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6 

𝑥1 𝑥2 𝑥3 𝑥4 

𝑥1 𝑥2 𝑥3 𝑥4 



 A sudoku square is a type-1,2,3,4 LRPA(9) 
R.A. Bailey, P. Cameron and R. Connelly, Sudoku, gerechte designs, 
resolutions, affine space, spreads, reguli, and Hamming codes, American 
Mathematical Monthly, Volume115, Number 5, May 2008, pp 383–404. 

 



 A sudoku square is a type-1,2,3,4 LRPA(9) 
R.A. Bailey, P. Cameron and R. Connelly, Sudoku, gerechte designs, 
resolutions, affine space, spreads, reguli, and Hamming codes, American 
Mathematical Monthly, Volume115, Number 5, May 2008, pp 383–404. 

 A gerechte design is a latin square of order 𝑛, where the 
cells are divided into n regions, each containing n cells, 
such that each symbol occurs once in each region. 

J. Courtiel, E. R. Vaughan, Gerechte Designs with Rectangular Regions  
arXiv:1104.0637v1, 2011. 

 

The authors prove for all 

positive integers 𝑠 and 𝑡, 
any gerechte framework 

where each region is either 

an 𝑠 ×  𝑡  rectangle or 

a 𝑡 ×  𝑠 rectangle is 

realizable. 



C.J. Colbourn and K.E. Heinrich. Conflict-free access to 

parallel memories, Journal of Parallel and 

DistributedComputing 14 (1992), 193–200.  

 
In this paper (and other related papers), fixed sized, arbitrarily 
positioned rectangles in a latin square are required to contain 
each symbol at most once. 



Type of array Existence result 

type-1 RPA(𝑛) all integers 𝑛 ≥  1 

type-1,2 RPA(𝑛) all integers 𝑛 ≥  1  

This is Mike’s problem 



Type of array Existence result 

type-1 RPA(𝑛) all integers 𝑛 ≥  1 

type-1,2 RPA(𝑛) all integers 𝑛 ≥  1  

type-1,3 RPA(𝑛) all integers 𝑛 ≥  1 

type-1,4 RPA(𝑛) all integers 𝑛 ≥  1 

type-1,2,3,4 RPA(𝑛) all even integers 𝑛 ≥  1 

type-1,2,3,4  latin RPA(𝑛) even integers 𝑛 ≤  16, 𝑛 =  36 

type-1,2,3,4 latin RPA(𝑛) odd integers 𝑛 ≤  9 



Suppose 𝑛 =  10. The basic rectangles have dimensions 

1 × 10,  2 ×  5,  3 ×  4,  4 ×  3, 5 × 2  and  10 ×  1. 

We begin by filling in the 1 × 10 basic rectangle: 

 

 
 

1 2 3 4 5 6 7 8 9 10 



6 7 8 9 10 

Suppose 𝑛 =  10. The basic rectangles have dimensions 

1 × 10,  2 ×  5,  3 ×  4,  4 ×  3, 5 × 2  and  10 ×  1. 

We begin by filling in the 1 × 10 basic rectangle: 

 

 
 

Next, we consider the 2 ×  5 basic rectangle. We place the 

symbols  6, 7, 8, 9, 10 in the first five cells of the second 

row of this rectangle: 

1 2 3 4 5 6 7 8 9 10 

1 2 3 4 5 6 7 8 9 10 



6 7 8 9 10 

Suppose 𝑛 =  10. The basic rectangles have dimensions 

1 × 10,  2 ×  5,  3 ×  4,  4 ×  3, 5 × 2  and  10 ×  1. 

We begin by filling in the 1 × 10 basic rectangle: 

 

 
 

Next, we consider the 2 ×  5 basic rectangle. We place the 

symbols  6, 7, 8, 9, 10 in the first five cells of the second 

row of this rectangle: 

1 2 3 4 5 6 7 8 9 10 

1 2 3 4 5 6 7 8 9 10 



Next we deal with the 3 x 4 basic rectangle: 

 

 

 

 

We need the symbols 5 and 10 in that rectangle 

1 2 3 4 5 6 7 8 9 10 

6 7 8 9 10 



1 2 3 4 5 6 7 8 9 10 

6 7 8 9 10 

5 10 

Next we deal with the 3 x 4 basic rectangle: 

We move the symbols 5 and 10 to the first two cells 

in the third row. 
 



Next is the  4 x 3 basic rectangle: 

             

 

 

 

 

 

We move the symbols 4 and 9 to the first two cells in the 

fourth row. 

1 2 3 4 5 6 7 8 9 10 

6 7 8 9 10 

5 10 

4 9 



Next is the  5 x 2 basic rectangle: 

             

 

 

 

 

 

 

We move the symbols 3 and 8 to the first two cells in the 

fourth row. 

1 2 3 4 5 6 7 8 9 10 

6 7 8 9 10 

5 10 

4 9 

3 8 



Finally we get to the 1 x 10 basic rectangle: 

             

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 

6 7 8 9 10 

5 10 

4 9 

3 8 

2 

7 

10 

9 

8 

move 2, 7,10, 9 and 8 to the last rows of the first column 



The partial latin square below satisfies condition 2 of the 

definition of a type-1 RPA 

             

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 

6 7 8 9 10 

5 10 

4 9 

3 8 

2 

7 

10 

9 

8 



We merely need to fill the remaining cells so that each row 

contains all the symbols 1—10. 

 

             

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 

6 7 8 9 10 

5 10 

4 9 

3 8 

2 

7 

10 

9 

8 



We merely need to fill the remaining cells so that each row 

contains all the symbols 1—10. 

 

             

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 

6 7 8 9 10 1 2 3 4 5 

5 10 1 2 3 4 6 7 8 9 

4 9 1 2 3 5 6 7 8 10 

3 8 1 2 4 5 6 7 9 10 

2 1 3 4 5 6 7 8 9 10 

7 1 2 3 4 5 6 8 9 10 

10 1 2 3 4 5 6 7 8 9 

9 1 2 3 4 5 6 7 8 10 

8 1 2 3 4 5 6 7 9 10 



It is easy to show that the above process works for all 
𝑛 ≥ 1 since: 

 Each basic rectangle contains each symbol at least once, and 

 Each row in a basic rectangle contains no symbol twice. 

 

Hence we get our first theorem. 

 

Theorem: 

 

For all integers  𝑛 ≥  1, there exists a type-1 RPA(𝑛). 



Theorem:  If there exists a type-1 RPA(𝑛), then there exists a 

type-1,3 RPA(𝑛).   (So these exist for all 𝑛) 

 

 

Theorem:  If there exists a type-1 RPA(𝑛), then there exists a 

type-1,4 RPA(𝑛). (So these exist for all 𝑛) 

 

 

 

 

 



Theorem:  If there exists a type-1 RPA(𝑛), then there exists a 

type-1,3 RPA(𝑛).   (So these exist for all 𝑛) 

 

 

Theorem:  If there exists a type-1 RPA(𝑛), then there exists a 

type-1,4 RPA(𝑛). (So these exist for all 𝑛) 

 

 

 

Theorem: If 𝑛 is even and there exists a type-1,2 RPA(𝑛), then 

there exists a type-1,2,3,4 RPA(𝑛). 

 

 



Suppose 𝑛 is even. 

 

We’ll construct arrays 𝐴 = (𝑎𝑖,𝑗) where for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛 it holds 

that     𝑎𝑖,𝑗 + 𝑎𝑖,𝑛+1−𝑗 = 𝑛 + 1 

 



Suppose 𝑛 is even. 

 

We’ll construct arrays 𝐴 = (𝑎𝑖,𝑗) where for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛 it holds 

that     𝑎𝑖,𝑗 + 𝑎𝑖,𝑛+1−𝑗 = 𝑛 + 1 

 

Suppose we construct a type-1 RPA(𝑛), ensuring that after the basic 

rectangles have been filled in, no row contains two symbols that sum 

to 𝑛 +  1 (except for the first row, which is already a permutation of the 

n symbols). 

 

Then we can easily fill in the rest of A to construct a type-1, 2 RPA(𝑛): 

 1. For every filled cell (𝑖, 𝑗) , we define 𝑎𝑖,𝑛+1−𝑗 = 𝑛 + 1 − 𝑎𝑖,𝑗 

 2. At this point, no row contains any symbol more than once, so 

     it is then a simple matter to complete each row to  a   

     permutation of the n symbols. 



As an easy example we’ll make a  

 

type-1,2 RPA(8)  



Suppose 𝑛 =  8. The basic rectangles have dimensions  

1 ×  8,  2 × 4,  3 × 3,  4 × 2,  and  8 × 1 

We begin by filling in the 1 × 8 basic rectangle:  

 

 

 

 

1 2 3 4 5 6 7 8 



Suppose 𝑛 =  8. The basic rectangles have dimensions  

1 ×  8,  2 × 4,  3 × 3,  4 × 2,  and  8 × 1 

We begin by filling in the 1 × 8 basic rectangle:  

 

 

 

Next, we consider the 2 ×  4 basic rectangle. We place the 

symbols  5, 6, 7, 8 in the first four cells of the second row of this 

rectangle, note that no two of these symbols sum to 9: 

 

1 2 3 4 5 6 7 8 

1 2 3 4 5 6 7 8 

5 6 7 8 



Now we consider the 3 × 3 basic rectangle.  We fill in the first two 

cell of the third row with the symbols 4 and 8 (note 4 + 8 ≠ 9):  

 

 

 

 

 

1 2 3 4 5 6 7 8 

5 6 7 8 

4 8 



Now we consider the 3 × 3 basic rectangle.  We fill in the first two 

cell of the third row with the symbols 4 and 8 (note 4 + 8 ≠ 9):  

 

 

 

 

 

Next look at the 4 × 2 basic rectangle. We have to fill in the 

symbols 3 and 7 (note that 3 + 7 ≠ 9):  

1 2 3 4 5 6 7 8 

5 6 7 8 

4 8 

1 2 3 4 5 6 7 8 

5 6 7 8 

4 8 

3 7 



The last basic rectangle has size 8 × 1.   It is completed by filling 

in the symbols 2,6,8,7 into the first cells of the last four rows  

1 2 3 4 5 6 7 8 

5 6 7 8 

4 8 

3 7 

2 

6 

8 

7 



Now, we ―reflect‖ each row (using the bijection 𝑥 ⟼ 9− 𝑥) 

1 2 3 4 5 6 7 8 

5 6 7 8 1 2 3 4 

4 8 1 5 

3 7 2 6 

2 7 

6 3 

8 1 

7 2 



Finally, we fill in the remaining cells in each row so that each row 

is a permutation. 

1 2 3 4 5 6 7 8 

5 6 7 8 1 2 3 4 

4 8 2 3 6 7 1 5 

3 7 1 4 5 8 2 6 

2 1 3 4 5 6 8 7 

6 1 3 4 5 7 8 3 

8 2 3 4 5 6 7 1 

7 1 3 4 5 6 8 2 



This may look easy, but it can’t be done blindly without 

problems occurring.  For example, here are the basic rectangles 

in the RPA(10) we constructed earlier. 

1 2 3 4 5 6 7 8 9 10 

6 7 8 9 10 

5 10 

4 9 

3 8 

2 

7 

10 

9 

8 



If we reflect as we did for the RPA(8) (now using the bijection 

𝑥 ⟼ 11 − 𝑥 ),  we get  

1 2 3 4 5 6 7 8 9 10 

6 7 8 9 10 1 2 3 4 5 

5 10 1 6 

4 9 2 7 

3 8 8 3 

2 9 

7 4 

10 1 

9 2 

8 3 



If we reflect as we did for the RPA(8) (now using the bijection 

𝑥 ⟼ 11 − 𝑥 ),  we get  

1 2 3 4 5 6 7 8 9 10 

6 7 8 9 10 1 2 3 4 5 

5 10 1 6 

4 9 2 7 

3 8 8 3 

2 9 

7 4 

10 1 

9 2 

8 3 

Note that in row 5 both symbols 3 and 8 occur twice so it will 

not be possible to make this  row a permutation    



We fill in the cells of the square one basic rectangle at a time. 

 

 

We will work to avoid the problem that we just had in the 𝑛 = 10 

case. 

 

 

Once filled, basic rectangles will satisfy three properties: 

 



Property 1:  

 

In a basic rectangle the number of filled cells per row is 

nonincreasing. 

 



Property 1:  

 

In a basic rectangle the number of filled cells per row is 

nonincreasing. 

 

So a filled basic rectangle may look like:  



Property 2:  

 

For any two symbols 𝑎, 𝑏 in the same row of a basic 

rectangle R, 

 𝑎 + 𝑏 ≠ 𝑛 + 1 

 



Property 3:  

If R and R’ are is a basic rectangles with R’ following R 

when the basic rectangles are ordered by number of rows, 

then if 𝑎, 𝑏  are two symbols in 𝑅′ ∖ 𝑅, then 𝑎 + 𝑏 ≠ 𝑛 + 1 

 

𝑅′ ∖ 𝑅 
𝑅’ 

𝑅 



The algorithm: 

Step 1:  Fill in the first basic rectangle, having size 1 ×  𝑛 from left to 

right with 1, 2, … , 𝑛 

 

Step 2 through 𝒃:  (𝑏 = the number of basic rectangles) 

 For each 𝑘, 2 ≤ 𝑘 ≤ 𝑏 do the following: 

 Let the kth  basic rectangle be denoted 𝑅 and the previous one be 𝑅’ 

 Let 𝑆 denote the set of symbols in 𝑅′ ∖ 𝑅. 

 Copy the symbols in 𝑆 into the empty cells in 𝑅 in such a way that 

properties 1 and 2 are satisfied. 

 



Copy the symbols in 𝑆 into the empty cells in R in such a way that 

properties 1 and 2 are satisfied. 

 

 

 

 

 



• Copy the symbols in 𝑆 into the empty cells in R in such a way that 

properties 1 and 2 are satisfied. 

 

This is easy in practice, but much more complicated to prove in general.  We 

need to ensure that we never place a symbol 𝑦 from a red cell into a row that 

already contains the symbol    𝑥 =  𝑛 + 1 − 𝑦. 

    We use the following easy to read lemma: 



The algorithm: 

Step 1:  Fill in the first basic rectangle, having size 1 ×  𝑛 from left to 

right with 1, 2, … , 𝑛 

 

Step 2 through b:  (b= the number of basic rectangles) 

 For each 𝑘, 2 ≤ 𝑘 ≤ 𝑏 do the following: 

 Let the kth  basic rectangle be denoted 𝑅 and the previous one be 𝑅’ 

 Let 𝑆 denote the set of symbols in 𝑅′ ∖ 𝑅. 

 Copy the symbols in 𝑆 into the empty cells in 𝑅 in such a way that 

Properties 1 and 2 are satisfied. 

 Perform a sequence of symbol exchanges within the rows of 𝑅 so 

that Property 3 is satisfied.    

  That this is always possible can be proven using a certain 

  ―alternating path‖ graph-theoretic argument. (Details in the 

  paper) 



The algorithm: 

Step 1:  Fill in the first basic rectangle, having size 1 ×  𝑛 from left to 

right with 1, 2, … , 𝑛 

 

Step 2 through b:  (b= the number of basic rectangles) 

 For each 𝑘, 2 ≤ 𝑘 ≤ 𝑏 do the following: 

 Let the kth  basic rectangle be denoted 𝑅 and the previous one be 𝑅’ 

 Let 𝑆 denote the set of symbols in 𝑅′ ∖ 𝑅. 

 Copy the symbols in 𝑆 into the empty cells in R in such a way that 

Properties 1 and 2 are satisfied. 

 Perform a sequence of symbol exchanges within each row of R so 

that Property 3 is satisfied.   

Reflection step:  For each nonempty cell (𝑖, 𝑗) in rows 2,… , 𝑛 of 𝐴 

define    𝑎𝑛+1−𝑗 = 𝑛 + 1 − 𝑎𝑖,𝑗 

Final Step:   Fill in nonempty cells in every row to form a permutation 



Suppose 𝑛 =  10. The basic rectangles have dimensions 

1 × 10,  2 ×  5,  3 ×  4,  4 ×  3, 5 × 2  and  10 ×  1. 

We begin by filling in the 1 × 10 basic rectangle: 

 

 
 

1 2 3 4 5 6 7 8 9 10 



6 7 8 9 10 

Suppose 𝑛 =  10. The basic rectangles have dimensions 

1 × 10,  2 ×  5,  3 ×  4,  4 ×  3, 5 × 2  and  10 ×  1. 

We begin by filling in the 1 × 10 basic rectangle: 

 

 
 

Next, we consider the 2 ×  5 basic rectangle. We place the 

symbols  6, 7, 8, 9, 10 in the first five cells of the second 

row of this rectangle: 

1 2 3 4 5 6 7 8 9 10 

1 2 3 4 5 6 7 8 9 10 



Suppose 𝑛 =  10. The basic rectangles have dimensions 

1 × 10,  2 ×  5,  3 ×  4,  4 ×  3, 5 × 2  and  10 ×  1. 

We begin by filling in the 1 × 10 basic rectangle: 

 

 
 

Next, we consider the 2 ×  5 basic rectangle. We place the 

symbols  6, 7, 8, 9, 10 in the first five cells of the second 

row of this rectangle: 

1 2 3 4 5 6 7 8 9 10 

1 2 3 4 5 6 7 8 9 10 

6 7 8 9 10 



Next we deal with the 3 x 4 basic rectangle: 

 

 

 

 

We need the symbols 5 and 10 in that rectangle 

1 2 3 4 5 6 7 8 9 10 

6 7 8 9 10 



1 2 3 4 5 6 7 8 9 10 

6 7 8 9 10 

5 10 

Next we deal with the 3 x 4 basic rectangle: 

We move the symbols 5 and 10 to the first two cells 

in the third row.  

 (So far this is all the same as before) 
 



Next is the  4 x 3 basic rectangle: 

             

 

 

 

 

 

We move the symbols 4 and 9 to the first two cells in the 

fourth row.   

Note that the filled cells in this basic rectangle satisfy 

Property 1. 

1 2 3 4 5 6 7 8 9 10 

6 7 8 9 10 

5 10 4 

9 



Next is the  5 x 2 basic rectangle: 

             

 

 

 

 

 

 

We now need to move the symbols 3,8 and 4 to the empty 

cells in the 5 x 2 rectangle.  But 3 + 8 = 11 so this violates 

Property 3.   

1 2 3 4 5 6 7 8 9 10 

6 7 8 9 10 

5 10 4 

9 



Next is the  5 x 2 basic rectangle: 

             

 

 

 

 

 

 

We now need to move the symbols 3,8 and 4 to the empty 

cells in the 5 x 2 rectangle.  But 3 + 8 = 11 so this violates 

Property 3.  We do an exchange within row 1 to solve this 

problem. 

3 2 1 4 5 6 7 8 9 10 

6 7 8 9 10 

5 10 4 

9 



Next is the  5 x 2 basic rectangle: 

             

 

 

 

 

 

 

Since the exchange was in row 1 we also need to swap 

the 8 and the 10 to keep the reflection property. 

3 2 1 4 5 6 7 10 9 8 

6 7 8 9 10 

5 10 4 

9 



Next is the  5 x 2 basic rectangle: 

             

 

 

 

 

 

 

We move the symbols 1, 8, and 4 into this basic rectangle 

3 2 1 4 5 6 7 10 9 8 

6 7 8 9 10 

5 10 4 

9 1 

8 4 



The rest is straightforward:  

 

             

 

 

 

 

 

 

 

 

  first we complete the 1 x 10 basic rectangle 

 

3 2 1 4 5 6 7 10 9 8 

6 7 8 9 10 

5 10 4 

9 1 

8 4 

2 

3 

10 

1 

4 



Then we ―reflect‖ 

             

 

 

 

 

 

 

 

 

   

Note that Property 2 ensures that this is a type-2 RPA 

3 2 1 4 5 6 7 10 9 8 

6 7 8 9 10 1 2 3 4 5 

5 10 4 7 1 6 

9 1 10 2 

8 4 7 3 

2 9 

3 8 

10 1 

1 10 

4 7 



Finally we fill in the empty cells in each row 

             

 

 

 

 

 

 

 

 

   

3 2 1 4 5 6 7 10 9 8 

6 7 8 9 10 1 2 3 4 5 

5 10 4 2 3 8 9 7 1 6 

9 1 3 4 5 6 7 8 10 2 

8 4 1 2 5 6 9 10 7 3 

2 1 3 4 5 6 7 8 10 9 

3 1 2 4 5 6 7 9 10 8 

10 2 3 4 5 6 7 8 9 1 

1 2 3 4 5 6 7 8 9 10 

4 1 2 3 5 6 8 9 10 7 



The technique described above can be modified to handle 

the case where 𝑛 is odd.    

 

We get our second theorem. 

 

 

Theorem:   

For all integers 𝑛 ≥ 1, there exists a type-1,2 RPA(𝑛) 



 Finding general constructions for LRPAs seems to be quite 

difficult (at least for us).  

 We only have a few small examples at the present time (no 

infinite classes are known – even for type-1 LRPA(𝑛) 

 



 Finding general constructions for LRPAs seems to be quite 

difficult (at least for us).  

 We only have a few small examples at the present time (no 

infinite classes are known – even for type-1 LRPA(𝑛) 

 We describe the method we used to construct type-1,2,3,4 

LRPA(16) and type-1,2,3,4 LRPA(36), illustrating the 

technique by constructing a type-1,2,3,4 LRPA(16). 

 

 



 Finding general constructions for LRPAs seems to be quite 

difficult (at least for us).  

 We only have a few small examples at the present time (no 

infinite classes are known – even for type-1 LRPA(𝑛) 

 We describe the method we used to construct type-1,2,3,4 

LRPA(16) and type-1,2,3,4 LRPA(36), illustrating the 

technique by constructing a type-1,2,3,4 LRPA(16). 

 

Lemma 

Let 𝑛 ≥  2 be even, and suppose there exists an 𝑛
2
 × 𝑛

2
 latin 

square 𝑆 with the property that for all 𝑖 with 2 ≤  𝑖 ≤  𝑛
2
, the        

𝑖 × 𝑛

𝑖
 rectangle in the upper left hand corner of 𝑆 contains 

each of the symbols from 1 to 𝑛
2
 at least twice. Then there exists     

                      a type-1,2,3,4 LRPA(𝑛). 

 



Step 1 

 Each of the 𝑖 × 𝑛

𝑖
 rectangles in the upper left hand corner of 

𝑆 contains each symbol 𝑥 with 1 ≤ 𝑥 ≤  𝑛
2
 twice.  

 By considering each such rectangle in turn and replacing 

appropriately chosen copies of 𝑥 by 𝑛 + 1 − 𝑥 we construct a 

new array 𝑆’ for which each of the 𝑖 × 𝑛

𝑖
 rectangles in the 

upper left corner contain each of the symbols from 1 to 𝑛. 

 

 

 



Step 1 

 Each of the 𝑖 × 𝑛

𝑖
 rectangles in the upper left hand corner of 

𝑆 contains each symbol 𝑥 with 1 ≤ 𝑥 ≤  𝑛
2
 twice.  

 By considering each such rectangle in turn and replacing 

appropriately chosen copies of 𝑥 by 𝑛 + 1 − 𝑥 we construct a 

new array 𝑆’ for which each of the 𝑖 × 𝑛

𝑖
 rectangles in the 

upper left corner contain each of the symbols from 1 to 𝑛. 

 

 

 For each symbol 𝑥, we need to decide which occurrences of 𝑥 

to replace by 𝑛 + 1 − 𝑥. 

 We do this by constructing a certain bipartite graph whose 

vertices are the cells containing 𝑥, then 2-coloring the vertices 

of this graph. 

 



Step 2 

 

 

Now we let 𝑆′ form the top left corner of 𝐴, and ―reflect‖ it by 

applying the symmetry condition 𝑎𝑖,𝑗  + 𝑎𝑖,𝑛+𝑖−𝑗 =  𝑛 + 1, to fill in 

the top right corner of 𝐴. Finally, we carry out a similar reflection 

vertically to fill in the rest of 𝐴. The result is an latin RPA that is 

symmetric under rotation through 180 degrees. 

 

 

 

 

 

 

 



Step 2 

 

 

Now we let 𝑆′ form the top left corner of 𝐴, and ―reflect‖ it by 

applying the symmetry condition 𝑎𝑖,𝑗  + 𝑎𝑖,𝑛+𝑖−𝑗 =  𝑛 + 1, to fill in 

the top right corner of 𝐴. Finally, we carry out a similar reflection 

vertically to fill in the rest of 𝐴. The result is an latin RPA that is 

symmetric under rotation through 180 degrees. 

 

 

 

We need an example. 

 

 

 

 



The square below is an 8 × 8 latin square S with the required 

properties. Note that the shaded cells are cells that are 

contained in basic rectangles in the upper left corner of the 

resulting 16 × 16 latin RPA. 

 

 

 

 

 

1 2 3 4 7 8 6 5 

2 5 6 7 4 1 3 8 

3 6 5 8 1 2 4 7 

4 7 8 1 2 3 5 6 

7 4 1 2 5 6 8 3 

8 1 2 3 6 5 7 4 

6 3 4 5 8 7 1 2 

5 8 7 6 3 4 2 1 



We now adjust the entries in the top left rectangles so that each 

basic rectangle contains all the numbers from 1 to 16: 

 

 

 

 1 2 3 4 10 9 11 12 

15 5 6 7 13 16 14 8 

14 11 12 8 16 2 4 7 

13 10 9 16 2 3 5 6 

7 4 16 2 5 6 8 3 

8 1 2 3 6 5 7 4 

6 3 4 5 8 7 1 2 

12 9 7 6 3 4 2 1 



Finally, we ―reflect‖ the result to obtain a type-1,2,3,4 latin RPA(16) 

 

 

 

 

1 2 3 4 10 9 11 12 

15 5 6 7 13 16 14 8 

14 11 12 8 16 2 4 7 

13 10 9 16 2 3 5 6 

7 4 16 2 5 6 8 3 

8 1 2 3 6 5 7 4 

6 3 4 5 8 7 1 2 

12 9 7 6 3 4 2 1 

5 6 8 7 13 14 15 16 

9 3 1 4 10 11 12 2 

10 13 15 1 9 5 6 3 

11 12 14 15 1 8 7 4 

14 9 11 12 15 1 13 10 

13 10 12 11 14 15 1 9 

15 16 10 9 12 13 14 11 

16 15 13 14 11 10 8 5 

1 2 4 3 5 7 9 12 

2 1 7 8 5 4 3 6 

4 7 5 6 3 2 16 8 

3 8 6 5 2 16 4 7 

6 5 3 2 16 9 10 13 

7 4 2 16 8 12 11 14 

8 14 16 13 7 6 5 15 

12 11 9 10 4 3 2 1 

5 8 10 11 14 13 15 16 

11 14 13 12 9 10 16 15 

9 1 15 14 11 12 10 13 

10 13 1 15 12 11 9 14 

4 7 8 1 15 14 12 11 

3 6 5 9 1 15 13 10 

2 12 11 10 4 1 3 9 

16 15 14 13 7 8 6 5 



 

1.  Does there exist a type- 1,2,3,4 RPA(n) for all odd positive 

integers n? 

 

 

2. Find an infinite class of type-1 latin RPA’s.   Better yet, prove 

that for all positive integers 𝑛, there exists a type-1,2 latin 

RPA(𝑛).    

 

 We conjecture that there exists a type-1,2,3,4 latin 

 RPA(𝑛) for all positive integers 𝑛.  



 

1.  Does there exist a type- 1,2,3,4 RPA(n) for all odd positive 

integers n? 

 

 

2. Find an infinite class of type-1 latin RPA’s.   Better yet, prove 

that for all positive integers 𝑛, there exists a type- 1,2 latin 

RPA(𝑛). 

 

3. What can be proven about the existence of gerechte 

designs? 




