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Abstract

The derivative nonlinear Schrodinger (DNLS) equation arises as a physical model
for ultra-short pulse propagation. In this article, linearization operators of solitons in
the DNLS hierarchy are studied. It is shown that these operators commute with the
recursion operator of the hierarchy. In addition, they can be factored into the recursion
operator and the linearization operator of the DNLS equation. Consequently, the com-
plete set of eigenfunctions for the linearization operators of the entire hierarchy are
shown to be the same as those for the DNLS equation. These results lay the founda-
tion for a unified soliton perturbation theory for the DNLS hierarchy. In addition, the
derivation used in this paper is simpler than the one used before for other integrable
hierarchies.

1 Introduction

In the theory of nonlinear waves, integrable equations play an important role because they
can be solved analytically by the inverse scattering method ([1], [2], and references therein).
Integrable equations support solitons which move stationarily and collide elastically. Many
of these integrable equations are also physically significant as they govern various physical
processes to the leading order of approximation. Notable examples include the KdV equa-
tion for shallow water waves, the nonlinear Schrodinger (NLS) equation for dispersive wave
packets, the sine-Gordon equation for long Josephson junctions[3], and the derivative non-
linear Schrodinger (DNLS) equation for nonlinear Alfvén wave in space plasma physics[4]
and ultra-short pulse propagation [5]. However, it is also recognized that in physical sys-
tems, various perturbations to the integrable equations such as damping and higher-order
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dispersion are also inevitable[5]. These perturbations will affect the evolution of solitons in
an unknown way. Thus a soliton perturbation theory to integrable equations is also an im-
portant issue. In a soliton perturbation theory, based on either the inverse scattering method
or a direct method (e.g., [6, 7, 8, 9, 10, 11, 12]), the key is to identify a complete set of the
so-called “squared eigenfunctions”, which are eigenfunctions of the linearization operator
of the integrable equation. The “squared eigenfunctions” depend quadratically on the Jost
functions of the spectral operator in the Lax pair. However, the exact form of this quadratic
dependence differs for different equations. For instance, for the NLS equation, this depen-
dence is a simple square [7, 9]. But for the KdV equation, the dependence is the spatial
derivative of the square [6, 7). For the massive Thirring model in lab coordinates [13], that
dependence is more complicated. Because of this ever-changing quadratic dependence, we
are forced to treat one equation at a time. The known exception is that for the KdV, NLS
and modified KdV hierarchies, the same “squared eigenfunctions” are eigenfunctions of the
linearization operators for the entire hierarchy [14, 15, 16, 17, 18]. It is expected that the
same holds true for any integrable hierarchy, but a general proof is still not available at this
time.

The DNLS equation and its variations (such as the modified NLS equation) are re-
ceiving more attention these days since these equations are relevant for ultra-short pulse
propagation in fibers and other waveguides [5, 19, 20, 21, 22, 23, 24, 25, 26]. The current
technology for generating femto-second pulses has stimulated theoretical studies of such
pulses through the perturbed DNLS-type equations. With this motivation, here we study
the DNLS hierarchy and lay the mathematical framework for a unified perturbation theory
for the entire DNLS hierarchy.

The DNLS equation was first solved by the inverse scattering method in[27]. Its hi-
erarchy and the recursion operator were obtained in [28]. A soliton perturbation theory
for the DNLS equation and the modified NLS equation was developed recently[29, 12]. It
was found that the eigenfunctions of the linearization operator are the derivatives of the
squared Jost solutions, and these eigenfunctions form a complete set[12]. In this paper, we
will show that the linearization operator of solitons for any member in the DNLS hierarchy
can be factored into a function of the recursion operator and the linearization operator of
the DNLS equation. In addition, the recursion operator and the linearization operator of
the DNLS equation are commutable. Consequently, the complete eigenfunctions for the
linearization operators of solitons for the entire DNLS hierarchy are the same as those ob-
tained in[12] for the DNLS equation. Similar results for the adjoint linearization operators
are also given. With these results, a unified soliton perturbation theory for the entire DNLS
hierarchy can be formulated in a straightforward way. Such a perturbation theory should be
useful in theoretical studies of ultra-short pulses.

It is noted that these results closely resemble those which have been obtained before
for the KdV, NLS and modified KdV hierarchies[17]. However, our derivation in this pa-
per, which is simply based on the commutability between the recursion operator and the
linearization operator of the hierarchy, is simpler than that used in [17]. Thus it is easier to
generalize to other integrable hierarchies. We hope that the results in this paper will shed
light on a general proof that the linearization operators of solitons in any integrable hierar-
chy share the same complete set of eigenfunctions, and can be factored into the recursion
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operator and the linearization operator of the lowest member in the hierarchy.

2 The DNLS Hierarchy

The DNLS hierarchy was derived in Ref. [28]. Under certain restrictions it can be rewritten
as '

iU, + [(=2iA)**U), = 0. (1)

Here,
U=(u @), )

the superscript “T” represents the transpose of a matrix, the bar denotes the complex con-
Jugate, A is the recursion operator|[28],

: d
A= ~(I+il,)os

3 o (3)

I is the unit matrix,

1+=—deyv*cs=—(;)fmdy(ﬁ, ~u), 4)

03 is the third Pauli spin matrix, “i” is the Hermitian, and » is a non-negative integer. When
n =0, Eq.(1) becomes the DNLS equation

ity 4t + i) = 0. (5)

When n > 1, it gives the other members in this hierarchy. It is noted that the power
function in Eq. (1) can be generalized to any odd entire function [17]. But that generaliza-
tion is trivial. For the clarity of presentation, we will not consider that slightly more general
case.

We define an inner product between two arbitrary vectors as

oo
(elf)=| &' fdx. (6)
This definition of the inner product is more convenient than the one used in [12], as we

will see later in this paper. We also define the adjoint operator O for an arbitrary operator
O as,

(gl0f) = (0% glf). (M

Here f and g are arbitrary vectors with f,g — 0, as x| — co. Then the adjoint operator

of A is

+:i i _; 8
Y =503 —(I-il), (8)

L:—csg,Uf_deyU*:—(_”ﬁ)f_rdy(ﬁ, u). 9)

Note that A™ is different from that in [28] because of the different definition of the inner
product.

where
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Theorem 1. The hierarchy equation (1) is equivalent to
iU, +(=2iAT)YHy, =0. (10)
Proof. First we prove by induction that for any integer n > 0 and a localized vector U,
AN =0 (11)

For this purpose, we note that for any vector f = ( f, f )7,

0 NT3f = Af — SU(URLS) = Af+ 5UU1). (12)

In addition, Af is in the form of (g,2)7, hence so is A"U. Consequently, (U,|A"U) is a
real quantity.

To prove Eq. (11) by induction, we can easily check that (11) holds for n =0 and 1.

Now, suppose it also holds for 0,1,..., up to n— 1, then
a; 1 (AT)",U = A"U, (13)
and
(U |A™U) = (U Jo; (AT )", U) = —(U|(AT)"3,U). (14)

However, from the definition of the adjoint operator (7), we have
(Ux|A"U) = {(AT)"U4|U) = (U|(AT)"Ux). (15)

Combining Eqgs. (14) and (15) and recalling that (U,|A"U) is a real quantity, we con-
clude that

(U |A"U) = 0. (16)

This completes the induction proof of Eq. (11). Because of Eq. (11) and relation (12),
we quickly find that

RA" = (AH)'U,. (17)

Thus Eq. (10) is equivalent to Eq. (1).
One-soliton solutions of the hierarchy (1) or (10) are [27, 12]

1+ e ~2ip _ —2if

i _4n(C1e29+§1e—20)2 uo(8)e ™, )
where {; = Ae/? is the discrete eigenvalue,
0=n(x—2%), £=coppit+xo, 19
¢=E(x—%)+9, ¢=—%d2n+1f+(P0, (20)
E=Re(]), n=Im(Z}), 21
Conp1 = (—1)F122mH1 pdn+2 sin(2n+2)y 22)

siny
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and )
s = (—1yr22r2ptnra S0+ 1Y (23)
siny
When n = 0, these solitons become the DNLS soliton which has been obtained before
[27]. Note that

(—2iA§)"Uosx = icmUox + dno3U0, : 24
where
Uo=[uo(8), w(8)]", Ay =A%ly_u, (25)
and the recursion relation for coefficients ¢, and d,, are
Cni1 = —4iEcm — idm,  dmyr = 4i(E2+17)cm, (26)
and
co=—1, dy=0. (27)

3 Linearization Operators of the DNLS Hierarchy

In a coordinate system (X,7) moving with speed 2,41,

f:x—C2n+]f—XU, f:t': (28)
we have
0; = 0; — C2n+10x, O3 = Ox. (29)
Let
0 = Uei03dmnt (30)

and drop the tildes, the hierarchy (10) becomes
fU;—d2n+103U—I'Czn.g.}Ux-i-(—2fA+)2"+]Ux:0. 31

Its stationary soliton solution is Ug. To linearize this equation around the soliton solu-
tion Uy, we write

U(x,t) = Uo(x) +€q(x,1), (32)
where € < 1, and ¢ is the perturbation. Simple calculations show that
(=20 )" (Vo teg,) = (=i2A8)" Uox + (=208 )" g,

2n+1
+e ): —i2A3 ) (icans1-iA + dony1-iB)g + O(€7)(33)

where .
=d,[Uo [ dyU},0) + P, . (34)

and

B=—id Uy f dyUf) (¥)os. (35)
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Thus the linearized equation of the DNLS hierarchy (10) [or equivalently, (1)] around a
soliton Ug(x) is
(faf —Lopt )q = 0: (36)

where

2n+1 :
Lont1 = iCon19x + O3danys — (—i288 )10, — Y (—i288 ) ™' (ic2ns1-iA + dons1-iB)
l

is the linearization operator. When n = 0, L is the linearization operator for the DNLS
equation. It can be rewritten as [12]

£ = O —i2(Juo|? +28]0x — i2(|uo ) +4A* —iuddy —i(ud)x ) a7
PN 2o, — i(@)s e — i2[[up|? + 2E)0x — i2(Jug |?)x — 44

4 Structure of Linearization Operators in the DNLS Hierarchy

In this section, we determine the structure as well as complete eigenfunctions of the DNLS
hierarchy’s linearization operator £;,;. We present our results in a series of lemmas and a
theorem.

Lemma 1. £, and Ag are commutable, i.e.,
LiNy = ALy
This lemma can be verified directly.

Lemma 2. £,,. and AS are commutable for any non-negative integer n, i.e.,
L'Zn+1A-g = ASLQIHI: nz= 0. (38)

Proof. We will use induction to prove it. When n = 0, Eq. (38) is true in view of Lemma
1. Now suppose it is true forn — 1, i.e.,

Lon1A) = AjLon 1, (39)

we need to prove that (38) is true for n as well. Recalling equation (37) and utilizing
assumption (39), it is easy to find that

(—2iAd) Lans1 — Lans1 (=2iA) =
(~2iA)) {fcm 105 + 2y 4163 — (iConA + dyyB) — (—2iA}) (iC2n-1A + don_y B)}
= {fcz,ﬁ 10x + 2n4103 — (iconA + dynB) — (~2iN)) (icn 1A + dan_ B)} (—2iA})
+(=21A ) (icon-10x + dan—105)(—20A) — (—20A$)3 (ic2n-19x + d2n—103).- (40)

Now relating coefficients ¢z, 1,20, d2ns1 and dpy to ¢, and da,_1 by the recursion
relation (26), collecting all terms proportional to ¢, and d»,_| respectively, and recalling
the expressions for operators A and B, we can easily verify that the right hand side of the
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above equation vanishes identically. Thus L,,,; and A(_) are commutable for any n. This
completes the induction proof.

Lemmas 1 and 2 have important consequences. Previously, we have found the DNLS
linearization operator £,’s complete set of eigenfunctions as [12]

{wna@mafm<C<w wmgLngx@@QL@waﬁ' 1)
Here
4ﬁm=¢(ﬁmm,@m9fl@wm:&(ﬁwg,%&@)i (42)

(5,0 = ¥xOlg, P60 =9 P(x, 0l 3)

are squared eigenfunctions, and y(x, ) and J(x, {) are Jost solutions of the scattering equa-
tions for the hierarchy (1) and (10) which are given as [27, 12]

p 20 x+iy =1

A 3 [ ix

w@@:(aamﬁ : dm)eé, (44)
edpelt

¢-g
a(C) = exp(—i2y) - (45)
W(5) = io29(D). (46)

The eigenrelations are

Li¥(x,) = —4(E - (- TH¥(x.0), 47
L1P(x,0) = 4(C2 - L1 (E - T)¥P(x, ), (48)
LI‘P(x,Cl) :Ll‘i‘(x,é]) =0, (49)
Li¥(x,) = —16mG ¥ (x,8y), (50)
L;‘i’(x,il)= —lﬁingl‘-i’(x,@l). (51)

Because AS and L; as well as £,,,; are commutable, the above eigenfunctions of £,
are also eigenfunctions of Ay and L;,4. In addition, using the commutability relations as

well as asymptotics of these operators and eigenfunctions at large |x| values, we can easily
obtain the eigenrelations of operators Ay and L;,+; as follows:

AP¥(x,0) = P¥(x,0), (52)
AYF(x,0) = CF(x, (53)
A¥(x,01) = C%‘P(x, cl), (54)
Ao¥(x,81) = D¥(x.0)), (55)

P(x, 1) = G (x,8) +26,P(x, G1), (56)
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AP(x,81) = B¥(x,8) +20%(x,8), (57)

Loni1¥P(x,0) = Gong1 (—2iC)¥(x, ©), (58)

Lon1P(x,8) = —Gopp1 (—2iC)P(x, §), (39)

LZIH—]lP(xs t_.l) = LZH-I—l@(xa gl) = O‘.l (60)

L2ﬂ+1lP(xa gl) = _41'C1 G’2n+l (—zﬁ)‘}'(x: C] )s (61)

L2n+]‘i'(x: él) i 4Itl GEPH-I{_Zig%){‘P(xﬂ gl ), (62)

where

Gant1(2) = 2" —icons12— dons1- (63)

Egs. (58)-(62) show that the complete eigenfunctions (41) of the DNLS linearization
operator L; are also the complete eigenfunctions of the linearization operator Lj,41 of
the entire DNLS hierarchy. Below we further determine the structure of the linearization
operators Ly, in the hierarchy.

Lemma 3. For any non-negative integer n, the function defined by

Gont1(2)
(24 2i33) (z+2iC3)

P (z) = (64)

is a polynomial function of z. In particular, F\(z) = 1.

Proof. First of all, we find from the recursion relations (26) and (27) that ¢; = —4&,
di = 4(E2 +n?). Also recall that {3 = &+ in. Thus it is easy to verify F(z) = 1. In order
to prove that F>,41(z) is a polynomial function for any n > 1, we just need to show that
Gons1(—2iC3) and ng+1(—2£éf) vanish. We will use induction to do that.

When n = 0, G,(—2i(?) is obviously zero since F;(z) = 1. Now suppose

Gan—1(=2i3) = (20" — 2c201 83 — dan-1 = 0. (65)
Utilizing the recursion relations (26), we have

GZn+| (_ZICIZ) = (zic%)2n+2 - 2@% {(4112 = 12?:;2)62?1—-1 = 4&‘}231—1}
— {16E(E2 +12)cn-1 +4(E2 +12)dan-1 } - (66)

Then using the assumption (65), it is simple to verify that the right hand side of Eq. (66)
is identically zero. Thus G4 (—2i?) is zero for all non-negative integers n. Similarly,
Gons1(—2iC2) is zero as well. Hence Lemma 3 is proved.

Next, we present the main result of this paper.

Theorem 2. The linearization operator Lynyy of the DNLS hierarchy has the following
Jfactorization:

Lons1 = Foni1 (—2iA) L, (67)

where F>,.1(z) is the polynomial function defined in equation (64), Ly is the linearization
operator of the DNLS equation, and n is any non-negative integer.
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Proof. Define the operator

Hony1 = Long1 — Fang (—25/\;)4&1- (68)

To prove that #,+; = 0, we need to show that #4,,;g(x) = 0 for any function g(x)
in the L, space. Since the set of eigenfunctions (41) are complete in the L, space, thus
we just need to show that #4,4 acting on each function in this complete set is zero. This
can be done by utilizing the eigenrelations of operators £;,+1,L; and Ag presented above.
With those relations, we can easily verify that £, acting on each of the functions in that
complete set is zero. Thus #,.; = 0, and the theorem is proved.

We note that the technique we used to prove the above factorization theorem is based
almost entirely on the commutability relation between the recursion operator and the lin-
earization operator of the DNLS hierarchy. This method is much simpler that the one used
in [17] for the proof of similar factorization results for the KdV, NLS and modified NLS
hierarchies. Thus, it will be the method of choice if one wants to determine the linearization-
operator structure for a general integrable hierarchy.

The structure and complete eigenfunctions of the adjoint linearization operator L3, . |
can be obtained easily from the above results and Ref.[12]. In fact, because Ag and Ly,
are commutable, their adjoint operator Ag and L5, 1 are commutable as well. The complete
eigenfunctions of the adjoint DNLS linearization operator

+ [ —0u—i2[|uo|* +28]0, +4A% —iu2o,
s ( e, den — 2t + 2E]0s — 444 ) e2)
are _ ) B
{0(,0), 8(x,0), ~o <G <o ®(x0), Dxr), Bx ), BT}, (T0)
where

o(x,0) = (%0, ¥xL)", dx=(FxL, BxLH), an

B(x,0) = AD(x,L)lag,  Blx,8) = 3D(x,0)l, g, 72

are squared eigenfunctions, ¢(x,{) and §(x, ) are Jost solutions given by [27, 12]

-4%;11_%"}%2’ —i%x
om0 =| L (73)

‘1ﬂx+gnfc ][l _a

0(§) = —ic29(Q). (74)

Then using the ]arge x asymptotics of the above eigenfunctions and the commutability
between Ay and (L L3, +]) we can readily find that the set of functions (70) is also the
complete set of elgenf unctions for the adjoint linearization operator L3, . ,. The eigenrela-
tions are the same as Eqs (58) to (62) except that L, is replaced by its adjoint L5, g

The factorization formula for the adjoint operator L, . , is

L3 1= Fon1(280) LT (75)
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Inner products between eigenfunctions (41) and adjoint eigenfunctions (70) are

BOIE) =280 OBC - L), 6)
@EOIQ) =-25L2 QHE ~L2), @
B = BENG) = - 2(E), 9)
BTG = @) = 2 ) 19
@) = —58(G) - %ala(cl )G, (30)
@EIPE) = 58 (C) + 530Gk @

The above results are sufficient to construct a direct soliton perturbation theory for the
DNLS hierarchy.

S Summary and Discussion

In summary, we have proved that the DNLS hierarchy is a new member in the club of hi-
erarchies whose linearization operators around solitons can be factored into the recursion
operator and the linearization operator of the first equation in the hierarchy, and the entire
hierarchy share the same “squared eigenfunctions”. With these results, it is straightfor-
ward to develop a direct soliton perturbation theory for any member in the DNLS hierarchy.
Given the physical importance of the DNLS equation and the related modified NLS equa-
tion for modelling the propagation of ultra-short optical pulses [5], we expect that these
results will be helpful for those physical applications. Furthermore, the technique we used
to establish these results is simpler than the one used in [17] for other hierarchies. Thus the
present technique is easier to be generalized when new hierarchies are encountered.

From a mathematical point of view, the results of this paper shed light on the structure
of linearization operators in a general integrable hierarchy. It is known that similar results
as those presented above have also been obtained for three other hierarchies: the KdV hi-
erarchy, the NLS hierarchy, and the modified KdV hierarchy [17]. However, whether all
Integrable hierarchies share these properties is still unclear. Evidence suggests that this
statement is true, but a general proof is still lacking. The derivation we used in this paper
indicates that once the linearization operator of a hierarchy commutes with its recursion
operator, then it naturally follows that the linearization operators of the entire hierarchy
share the same set of eigenfunctions. It also follows that the linearization operators of the
hierarchy linearized around solitons can be factored into the recursion operator and the
linearization operator of the first equation in this hierarchy. Right now, several different
methods (including the one used in this paper) exist for proving the commutability between
the recursion operator and the linearization operator of a hierarchy [14, 16, 17, 18]. Even
though this commutability for a general integrable hierarchy has not been established so far,
we conjecture that it does hold. To prove this commutability, one needs to have a good un-
derstanding on how the recursion operator of an integrable hierarchy is constructed (see [30]
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and references therein for a discussion on this issue). Once this commutability is proved,
then the structure of the linearization operators around solitons in a general hierarchy will
immediately follow. At the same time, all linearization operators in the hierarchy will share
the same complete set of eigenfunctions.
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