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N-dark–dark solitons in the integrable coupled NLS equations are derived by
the KP-hierarchy reduction method. These solitons exist when nonlinearities
are all defocusing, or both focusing and defocusing nonlinearities are mixed.
When these solitons collide with each other, energies in both components of
the solitons completely transmit through. This behavior contrasts collisions
of bright–bright solitons in similar systems, where polarization rotation and
soliton reflection can take place. It is also shown that in the mixed-nonlinearity
case, two dark–dark solitons can form a stationary bound state.

1. Introduction

In studies of nonlinear wave dynamics in physical systems, nonlinear
Schrödinger (NLS)-type equations play a prominent role. It is known that a
weakly nonlinear one-dimensional wave packet in a generic physical system is
governed by the NLS equation [1]. Hence this equation appears frequently in
nonlinear optics and water waves [2–4]. Recently, it has been shown that the
nonlinear interaction of atoms in Bose–Einstein condensates is governed by a
NLS-type equation as well (called Gross–Pitaevskii equation in the literature)
[5]. In these physical systems, the nonlinearity can be focusing or defocusing
(i.e., the nonlinear coefficient can be positive or negative), depending on the
physical situations [4] or the types of atoms in Bose-Einstein condensates
[5]. When two wave packets in a physical system or two types of atoms
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in Bose-Einstein condensates interact with each other, their interaction then
is governed by two coupled NLS equations [2, 3, 6–11]. The single NLS
equation is exactly integrable [12]. It admits bright solitons in the focusing
case, and dark solitons in the defocusing case. Its bright N-soliton solutions
were given in [12], and its dark N-soliton solutions can be found in [13]. The
coupled NLS equations are also integrable when the nonlinear coefficients
have the same magnitudes [14–16]. In these integrable cases, if all nonlinear
terms are of focusing type (i.e., the nonlinear coefficients are all positive),
the coupled NLS equations are the focusing Manakov model which admits
bright–bright solitons [14]. If all nonlinear terms are of defocusing type (i.e.,
the nonlinear coefficients are all negative), the coupled NLS equations are
the defocusing Manakov model which admits bright–dark and dark–dark
solitons [17–19]. If the focusing and defocusing nonlinearities are mixed (i.e.,
the nonlinear coefficients have opposite signs), these coupled NLS equations
admit bright–bright solitons [16, 20] and bright–dark solitons [21]. Existence
of dark–dark solitons in this mixed case has not been investigated yet.

Soliton interaction in these integrable coupled NLS equations is a fascinating
subject. In the focusing Manakov model, an interesting phenomenon is that
bright solitons change their polarizations (i.e., relative energy distributions
among the two components) after collision [14]. In the coupled NLS equations
with mixed nonlinearities, energy can also transfer from one soliton to another
after collision [20]. In addition, solitons can be reflected off by each other as
well [16]. In the defocusing Manakov model, two bright–dark solitons can
form a stationary bound state, a phenomenon which does not occur for scalar
bright or dark solitons [17]. All these interesting interaction behaviors can be
described by multi-soliton solutions in the underlying integrable system. In the
focusing Manakov model, N-bright–bright solitons were derived in [14] by the
inverse scattering transform method. In the mixed-nonlinearity model, two- and
three-bright–bright solitons and two-bright–dark solitons were derived in [20,
21] by the Hirota method, and N-bright–bright solitons were derived in [16] by
the Riemann-Hilbert method. In the defocusing Manakov model, N-bright–dark
solitons were derived in [17], and degenerate two-dark–dark solitons were
derived in [18], both by the Hirota method. In [19], the inverse scattering
transform procedure was developed for the defocusing Manakov model, and
some simple dark–dark and dark-bright soliton solutions were derived from it
(see also [22] for the extension to the case of more than two components).

So far, progress on dark–dark solitons in the integrable coupled NLS
equations is very limited. While dark–dark solitons in the defocusing Manakov
model were derived in [18], we will show that their two- and higher-dark–dark
solitons are actually degenerate and reducible to scalar dark solitons. In [19,
22], the inverse scattering transform method was developed for dark solitons
in the defocusing Manakov model. But, as we will show in this paper, their
analysis can not yield general dark–dark solitons either due to their choices
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of the boundary conditions. To date, general multi-dark–dark solitons in the
coupled NLS equations have never been reported yet (to our knowledge). As
we will see, these general multi-dark–dark solitons are not easy to obtain due
to non-trivial parameter constraints which must be met.

In this paper, we comprehensively analyze dark–dark solitons and their
dynamics in the integrable coupled NLS equations. First, we show that
these coupled NLS equations can be obtained as a reduction of the
Kadomtsev-Petviashvili (KP) hierarchy. Then using τ -function solutions of the
KP hierarchy, we derive the general N-dark–dark solitons in terms of Gram
determinants. These dark–dark solitons exist in both the defocusing Manakov
model and the mixed-nonlinearity model. Recalling that bright–bright solitons
exist in the mixed-nonlinearity model as well [16, 18], we see that the coupled
NLS equations with mixed nonlinearities are the rare integrable systems
which admit both bright–bright and dark–dark solitons. The dark–dark solitons
obtained previously in [18, 19] for the defocusing Manakov model are only
degenerate cases of our general solutions. Next, we analyze properties of these
soliton solutions. For single dark–dark solitons, we show that the degrees
of “darkness” in their two components are different in general. When two
dark–dark solitons collide with each other, we show that energies in the
two components of each soliton completely transmit through. This contrasts
collisions of bright–bright solitons in these same equations, where polarization
rotation, power transfer and soliton reflection can occur [14, 16, 20]. Thus
dark–dark solitons are much more robust than bright–bright solitons with
regard to collision. In the case of mixed focusing and defocusing nonlinearities,
an interesting phenomenon is that two dark–dark solitons can form a stationary
bound state. This is the first report of dark–dark-soliton bound states in
integrable systems. However, three or more dark–dark solitons can not form
bound states, as we will show in this paper.

We should mention that this KP-hierarchy reduction for deriving soliton
solutions in integrable systems was first developed by the Kyoto school in the
1970s [23]. So far, this method has been applied to derive bright solitons
in many equations such as the NLS equation, the modified KdV equation,
and the Davey–Stewartson equation [24–26]. This method has also been
applied to derive N-dark solitons in the defocusing NLS equation [26]. But
this reduction for dark–dark solitons in the coupled NLS equations is more
subtle and has never been done before. In this paper, we will derive general
N-dark–dark solitons by this KP-hierarchy reduction and the grace of deep
use of determinant expressions. Compared to the inverse scattering transform
method [19] and the Hirota method [18], our solution formulae are more
general and elegant, and our treatment is more clean. Thus, the KP-reduction
method has a distinct advantage in derivations of dark-soliton solutions.
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2. The N-dark–dark solitons

The integrable coupled NLS equations we investigate in this paper are

iut = uxx + (δ|u|2 + ε|v|2)u,

ivt = vxx + (δ|u|2 + ε|v|2)v,
(1)

where δ and ε are real coefficients. This system is integrable [14–16]. Through
u and v scalings, the nonlinear coefficients δ and ε can be normalized to be
±1 without loss of generality. When ε = δ = 1, this system is the focusing
Manakov model that supports bright–bright solitons [14]. When ε = δ = −1,
this system is the defocusing Manakov model which supports bright–dark and
dark–dark solitons [17–19]. When ε and δ have opposite signs, the system
exhibits mixed focusing and defocusing nonlinearities. In this case, these
equations support bright–bright solitons [16, 20], bright–dark solitons [21],
and dark–dark solitons (as we will see later).

In this section, we derive the general formulae for N-dark–dark solitons in
the integrable coupled NLS system (1). The basic idea is to treat Eq. (1) as a
reduction of the KP hierarchy. Then dark solitons in Eq. (1) can be obtained
from solutions of the KP hierarchy under this reduction. For this purpose, let us
first review Gram-type solutions for equations in the KP hierarchy [27–29].

LEMMA 1. Consider the following equations in the KP hierarchy [30, 31]

(
1

2
Dx Dr − 1

)
τ (k) · τ (k) = −τ (k + 1)τ (k − 1),

(
D2

x − Dy + 2a Dx

)
τ (k + 1) · τ (k) = 0,

(2)

where D is the Hirota derivative defined by

Dm
x Dn

y f (x, y) · g(x, y)

≡
(

∂

∂x
− ∂

∂x ′

)m (
∂

∂y
− ∂

∂y′

)n

f (x, y)g(x ′, y′)|x=x ′,y=y′,
(3)

a is a complex constant, k is an integer, and τ (k) is a function of three
independent variables (x, y, r). The Gram determinant solution τ (k) of the
above equations is given by

τ (k) = det1≤i, j≤N (mij(k)) = |mij(k)|1≤i, j≤N ,
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where the matrix element mij(k) satisfies

∂x mij(k) = ϕi (k)ψ j (k),

∂ymij(k) = (∂xϕi (k))ψ j (k) − ϕi (k)(∂xψ j (k)),

∂r mij(k) = −ϕi (k − 1)ψ j (k + 1),

mij(k + 1) = mij(k) + ϕi (k)ψ j (k + 1),

(4)

and ϕi(k) and ψ j(k) are arbitrary functions satisfying

∂yϕi (k) = ∂2
x ϕi (k),

ϕi (k + 1) = (∂x − a)ϕi (k),

∂yψ j (k) = −∂2
x ψ j (k),

ψ j (k − 1) = −(∂x + a)ψ j (k).

(5)

Before proving this lemma, several remarks are in order. The first equation
in (2) is the bilinear equation for the two-dimensional Toda lattice (see p.984 of
[30] and p.4130 of [31]), and the second equation in (2) is the lowest-degree
bilinear equation in the 1st modified KP hierarchy (see p.996 of [30]). Because
the two-dimensional Toda lattice hierarchy and modified KP hierarchies are
closely related to the (single-component) KP hierarchy, all these hierarchies
will be called the KP hierarchy in this paper. Regarding the parameter a in the
second equation in (2), it corresponds to the wave-number shift k0 in [30] [see
Eq. (10.3) there]. The bilinear equation with this parameter was not explicitly
written down in [30], but can be found in [31] [see Eq. (N-3) there]. This
parameter can be formally removed by the Galilean transformation for y in (2).
However, for our purpose, it proves to be important to keep this parameter,
as it will pave the way for the introduction of another similar parameter b
in Lemma 2 later. In that case, a and b can not be removed simultaneously
by the Galilean transformation, and they are essential for the construction of
non-degenerate dark–dark solitons in the coupled NLS system (1).

Proof of Lemma 1. By using (4) and (5), we can verify that the derivatives
and shifts of the τ function are expressed by the bordered determinants as
follows

∂xτ (k) =
∣∣∣∣∣

mij(k) ϕi (k)

−ψ j (k) 0

∣∣∣∣∣ ,

∂2
x τ (k) =

∣∣∣∣∣
mij(k) ∂xϕi (k)

−ψ j (k) 0

∣∣∣∣∣ +
∣∣∣∣∣

mij(k) ϕi (k)

−∂xψ j (k) 0

∣∣∣∣∣ ,
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∂yτ (k) =
∣∣∣∣∣

mij(k) ∂xϕi (k)

−ψ j (k) 0

∣∣∣∣∣ −
∣∣∣∣∣

mij(k) ϕi (k)

−∂xψ j (k) 0

∣∣∣∣∣ ,

∂rτ (k) =
∣∣∣∣∣

mij(k) ϕi (k − 1)

ψ j (k + 1) 0

∣∣∣∣∣ ,

(∂x∂r − 1)τ (k) =

∣∣∣∣∣∣∣
mij(k) ϕi (k − 1) ϕi (k)

ψ j (k + 1) 0 −1

−ψ j (k) −1 0

∣∣∣∣∣∣∣ ,

τ (k + 1) =
∣∣∣∣∣

mij(k) ϕi (k)

−ψ j (k + 1) 1

∣∣∣∣∣ ,

τ (k − 1) =
∣∣∣∣∣
mij(k) ϕi (k − 1)

ψ j (k) 1

∣∣∣∣∣ ,

(∂x + a)τ (k + 1) =
∣∣∣∣∣

mij(k) ∂xϕi (k)

−ψ j (k + 1) a

∣∣∣∣∣ ,

(∂x + a)2τ (k + 1) =
∣∣∣∣∣

mij(k) ∂2
x ϕi (k)

−ψ j (k + 1) a2

∣∣∣∣∣ +

∣∣∣∣∣∣∣
mij(k) ∂xϕi (k) ϕi (k)

−ψ j (k + 1) a 1

−ψ j (k) 0 0

∣∣∣∣∣∣∣,

(∂y + a2)τ (k + 1) =
∣∣∣∣∣

mij(k) ∂2
x ϕi (k)

−ψ j (k + 1) a2

∣∣∣∣∣ −

∣∣∣∣∣∣∣
mij(k) ∂xϕi (k)ϕi (k)

−ψ j (k + 1) a 1

−ψ j (k) 0 0

∣∣∣∣∣∣∣ .
Here the bordered determinants are defined as

∣∣∣∣∣
mij ϕi

−ψ j 0

∣∣∣∣∣ ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m11 m12 · · · m1N ϕ1

m21 m22 · · · m2N ϕ2

...
...

...
...

...

m N1 m N2 · · · m N N ϕN

−ψ1 −ψ2 · · · −ψN 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,
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and so on. By using the Jacobi formula of determinants [27], we obtain the
bilinear equations (2) from the above expressions. �

Using Lemma 1, we can obtain solutions to a larger class of equations in
the KP hierarchy below.

LEMMA 2. Consider the following equations in the KP hierarchy,

(
1

2
Dx Dr − 1

)
τ (k, l) · τ (k, l) = −τ (k + 1, l)τ (k − 1, l),

(
D2

x − Dy + 2a Dx

)
τ (k + 1, l) · τ (k, l) = 0,(

1

2
Dx Ds − 1

)
τ (k, l) · τ (k, l) = −τ (k, l + 1)τ (k, l − 1),

(
D2

x − Dy + 2bDx

)
τ (k, l + 1) · τ (k, l) = 0,

(6)

where a, b are complex constants, k, l are integers, and τ (k, l) is a function of
four independent variables (x, y, r, s). The solution τ (k, l) to these equations is
given by the Gram determinant

τ (k, l) = det1≤i, j≤N (mij(k, l)) = |mij(k, l)|1≤i, j≤N , (7)

where the matrix element mij(k, l) is defined by

mij(k, l) = cij + 1

pi + q j
ϕi (k, l)ψ j (k, l),

ϕi (k, l) = (pi − a)k(pi − b)l eξi ,

ψ j (k, l) =
(

− 1

q j + a

)k(
− 1

q j + b

)l

eη j ,

(8)

with

ξi = pi x + p2
i y + 1

pi − a
r + 1

pi − b
s + ξi0,

η j = q j x − q2
j y + 1

q j + a
r + 1

q j + b
s + η j0,

(9)

and cij, pi, qj, ξ i0, ηj0 are complex constants.

It is noted that the system (6) is an expansion of the previous system (2) by
adding a new pair of independent variables (s, l) to the previous pair (r, k).
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Proof . It is easy to see that functions mij(k, l), ϕi(k, l) and ψ j(k, l) satisfy
the following differential and difference rules,

∂x mij(k, l) = ϕi (k, l)ψ j (k, l),

∂ymij(k, l) = (∂xϕi (k, l))ψ j (k, l) − ϕi (k, l)(∂xψ j (k, l)),

∂r mij(k, l) = −ϕi (k − 1, l)ψ j (k + 1, l),

mij(k + 1, l) = mij(k, l) + ϕi (k, l)ψ j (k + 1, l),

∂yϕi (k, l) = ∂2
x ϕi (k, l),

ϕi (k + 1, l) = (∂x − a)ϕi (k, l),

∂yψ j (k, l) = −∂2
x ψ j (k, l),

ψ j (k − 1, l) = −(∂x + a)ψ j (k, l).

(10)

Then from Lemma 1, we can verify the first two bilinear equations in (6). The
other two equations in (6) can be obtained directly by replacing a, k, r as b, l, s
in Eq. (2) of Lemma 1. �

Next, we perform a reduction to the bilinear system (6) in the KP hierarchy.
Solutions to the reduced bilinear equations are given below.

THEOREM 1. Assume that f is a real function of real x and t, and g, h are
complex functions of real x and t, then the following bilinear equations

(
D2

x + δ|μ|2 + ε|ν|2) f · f = δ|μ|2gḡ + ε|ν|2hh̄,(
i Dt + D2

x + 2icDx

)
g · f = 0,(

i Dt + D2
x + 2id Dx

)
h · f = 0,

(11)

where δ, ε, c and d are real constants, μ and ν are complex constants, and the
overbar ‘̄’ represents complex conjugate, admit the following solutions,

f =
∣∣∣∣δij + 1

pi + p̄ j
eξi +ξ̄ j

∣∣∣∣ ,
g =

∣∣∣∣δij + 1

pi + p̄ j

(
− pi − ic

p̄ j + ic

)
eξi +ξ̄ j

∣∣∣∣ ,
h =

∣∣∣∣δij + 1

pi + p̄ j

(
− pi − id

p̄ j + id

)
eξi +ξ̄ j

∣∣∣∣ ,
(12)

where

ξ j = p j x + i p2
j t + ξ j0, (13)
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pj are complex constants satisfying the constraint

δ|μ|2
|p j − ic|2 + ε|ν|2

|p j − id|2 = −2, (14)

and ξ j0 are arbitrary complex constants.

Proof . In Lemma 2, if one assumes x, r, s are real, y, a, b are pure
imaginary, k, l are integers, and q j = p̄ j , η j0 = ξ̄ j0, c ji = c̄ij, then we have

η j = ξ̄ j , m ji (k, l) = mij(−k, −l), τ (k, l) = τ (−k, −l). (15)

Therefore, defining

cij = δij, Re(pi ) > 0, f = τ (0, 0), g = τ (1, 0), h = τ (0, 1), (16)

where δij is 1 when i = j and 0 otherwise, then

f = |mij(0, 0)| =
∣∣∣∣δij + 1

pi + p̄ j
eξi +ξ̄ j

∣∣∣∣ , ḡ = τ (−1, 0),

h̄ = τ (0, −1),

(17)

and (
1

2
Dx Dr − 1

)
f · f = −gḡ,

(
1

2
Dx Ds − 1

)
f · f = −hh̄,

(
D2

x − Dy + 2a Dx

)
g · f = 0,(

D2
x − Dy + 2bDx

)
h · f = 0.

(18)

Under the above reduction, the solution (7) for τ can be rewritten as

τ (k, l) =
∣∣∣∣δij + 1

pi + p̄ j

(
− pi − a

p̄ j + a

)k(
− pi − b

p̄ j + b

)l

eξi +ξ̄ j

∣∣∣∣
= eξ1+···+ξN +ξ̄1+···ξ̄N

∣∣∣∣δije
−ξi −ξ̄i + 1

pi + p̄ j

(
− pi − a

p̄ j + a

)k(
− pi − b

p̄ j + b

)l∣∣∣∣,
(19)

with

ξi + ξ̄i = (pi + p̄i )x + (
p2

i − p̄2
i

)
y +

(
1

pi − a
+ 1

p̄i + a

)
r

+
(

1

pi − b
+ 1

p̄i + b

)
s + ξi0 + ξ̄i0.
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Thus if pi satisfies the constraint

δ|μ|2
(

1

pi − a
+ 1

p̄i + a

)
+ ε|ν|2

(
1

pi − b
+ 1

p̄i + b

)
= −2(pi + p̄i ), (20)

i.e.,

δ|μ|2
(pi − a)( p̄i + a)

+ ε|ν|2
(pi − b)( p̄i + b)

= −2, (21)

then from Eqs. (19)–(20), one gets

(δ|μ|2∂r + ε|ν|2∂s)τ (k, l) = −2∂xτ (k, l). (22)

Using f = τ (0, 0), this equation gives

δ|μ|2 fr + ε|ν|2 fs = −2 fx . (23)

Differentiation of (23) with respect to x gives

δ|μ|2 fxr + ε|ν|2 fxs = −2 fxx . (24)

The first two equations of (18) are just

fxr f − fx fr − f 2 = −gḡ, (25)

fxs f − fx fs − f 2 = −hh̄. (26)

So from Eqs. (23)–(26), we have

2 fxx f − 2 f 2
x + (δ|μ|2 + ε|ν|2) f 2 = δ|μ|2gḡ + ε|ν|2hh̄, (27)

which is just (
D2

x + δ|μ|2 + ε|ν|2) f · f = δ|μ|2gḡ + ε|ν|2hh̄. (28)

Finally, denoting

y = it, a = ic, b = id, (29)

with t, c and d real, the second and third equations in (11) and (12) are obtained
directly from Lemma 2, and the constraint (14) is obtained directly from Eq.
(21). Theorem 1 is then proved. �

Now we transform the bilinear equations (11) in Theorem 1 into a nonlinear
form. To do so, we set

ũ = μ
g

f
, ṽ = ν

h

f
, (30)
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where f , g, h satisfy Eq. (11). From (30), we have

(Dt g · f )/ f 2 = ũt/μ, (Dt h · f )/ f 2 = ṽt/ν,

(Dx g · f )/ f 2 = ũx/μ, (Dx h · f )/ f 2 = ṽx/ν,(
D2

x g · f
)
/ f 2 = ũxx/μ + (ũ/μ)

(
D2

x f · f
)
/ f 2,(

D2
x h · f

)
/ f 2 = ṽxx/ν + (ṽ/ν)

(
D2

x f · f
)
/ f 2.

(31)

The first bilinear equation in (11) is

D2
x f · f = −(δ|μ|2 + ε|ν|2) f 2 + δ|μ|2gḡ + ε|ν|2hh̄

which can be further rewritten as(
D2

x f · f
)
/ f 2 = −(δ|μ|2 + ε|ν|2) + δ|ũ|2 + ε|ṽ|2, (32)

The second bilinear equation in (11) is just(
D2

x + iDt + 2icDx

)
g · f

f 2
= 0. (33)

Substituting (31) into (33), we have

i ũt + ũxx + ũ
(
D2

x f · f
)
/ f 2 + 2icũx = 0. (34)

In the same way, from the third bilinear equation in (11) we have

i ṽt + ṽxx + ṽ
(
D2

x f · f
)
/ f 2 + 2id ṽx = 0. (35)

Substituting (32) into (34) and (35), we get

i ũt + 2icũx + ũxx + ũ[−δ|μ|2 − ε|ν|2 + δ|ũ|2 + ε|ṽ|2] = 0,

i ṽt + 2id ṽx + ṽxx + ṽ[−δ|μ|2 − ε|ν|2 + δ|ũ|2 + ε|ṽ|2] = 0.
(36)

Letting

ũ = uei[(−δ|μ|2−ε|ν|2+c2)t−cx],

ṽ = vei[(−δ|μ|2−ε|ν|2+d2)t−dx],

Eqs. (36) are then transformed into

iut + uxx + (δ|u|2 + ε|v|2)u = 0,

ivt + vxx + (δ|u|2 + ε|v|2)v = 0,
(37)

which has N-dark–dark soliton solutions as

u =μei[cx+(δ|μ|2+ε|ν|2−c2)t] gN

fN
,

v = νei[dx+(δ|μ|2+ε|ν|2−d2)t] hN

fN
,

(38)
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with fN , gN , hN given by (12). Finally, taking t → −t, Eqs. (37) become
the coupled NLS equations (1). Hence we immediately have the following
theorem for solutions of Eq. (1).

THEOREM 2. The N-dark–dark soliton solutions for the coupled NLS
equations (1) are

u =μei[cx−(δ|μ|2+ε|ν|2−c2)t] G N

FN
,

v = νei[dx−(δ|μ|2+ε|ν|2−d2)t] HN

FN
,

(39)

where

FN =
∣∣∣∣δij + 1

pi + p̄ j
eθi +θ̄ j

∣∣∣∣
N×N

,

G N =
∣∣∣∣δij − 1

pi + p̄ j

pi − ic

p̄ j + ic
eθi +θ̄ j

∣∣∣∣
N×N

,

HN =
∣∣∣∣δij − 1

pi + p̄ j

pi − id

p̄ j + id
eθi +θ̄ j

∣∣∣∣
N×N

,

θ j = p j x − i p2
j t + θ j0,

(40)

c, d are real constants, μ, ν, pj, θ j0 are complex constants, and these constants
satisfy the following constraints

δ|μ|2
|p j − ic|2 + ε|ν|2

|p j − id|2 = −2, j = 1, 2, . . . , N . (41)

These solitons are dark–dark solitons, i.e., both u and v components are
dark solitons, because it is easy to verify that

u →μei[cx−(δ|μ|2+ε|ν|2−c2)t+φ±],

v → νei[dx−(δ|μ|2+ε|ν|2−d2)t+χ±],
x → ±∞, (42)

where φ± and χ± are phase constants. Thus the u and v solutions approach
constant amplitudes |μ| and |ν| at large distances. When δ > 0 and ε > 0,
which correspond to self-focusing nonlinearities for both u and v components
in Eqs. (1), the constraints (41) can not be satisfied, thus dark–dark solitons
can not exist as expected. When δ < 0 and ε < 0, which correspond to
self-defocusing nonlinearities for both u and v components, dark–dark solitons
can exist as Ref. [19] shows. A new phenomenon revealed by Theorem 2 is
that, when δ and ε have opposite signs, which correspond to mixed focusing
and defocusing nonlinearities in the u and v equations, the constraints (41) can
still be satisfied, hence dark–dark solitons can still exist. This phenomenon
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will be demonstrated in more detail in the next section. Interestingly, when δ

and ε have opposite signs, Eqs. (1) also admit bright–bright solitons [16].
Thus Eqs. (1) with opposite signs of δ and ε are the rare integrable equations
which simultaneously support both dark–dark and bright–bright solitons.

The parameter constraints (41) can be solved explicitly, so that solutions
(39) can be expressed in terms of free parameters only. Let us write

p j = a j + ib j ,

where aj and bj are the real and imaginary parts of pj. Then Eq. (41) becomes

δ|μ|2
a2

j + (b j − c)2
+ ε|ν|2

a2
j + (b j − d)2

= −2. (43)

Solving this equation, we find that a2
j can be obtained explicitly as

a2
j = 1

2

{
−

[
(b j − c)2 + (b j − d)2 + 1

2
δ|μ|2 + 1

2
ε|ν|2

]

±
√[

(b j − c)2 − (b j − d)2 + 1

2
δ|μ|2 − 1

2
ε|ν|2

]2

+ δε|μ|2|ν|2
}
.

(44)

Here δ, ε, μ, ν, c, d and bj are all free parameters as long as the quantity
under the square root of (44) as well as the whole right-hand side of (44) are
non-negative. If aj ≤ 0, we will see that the soliton solution (39) would be
singular. Thus in this paper, we will always take aj > 0 to avoid this singularity.

We would like to make four remarks here. The first remark is on the above
derivation of dark solitons through KP-hierarchy reduction. This derivation is
non-trivial. To better understand it, we can split it into two parts. One part is
the reduction of the bilinear equations (11) of the coupled NLS equations
(1) from the KP-hierarchy equations (6). The other part is the reduction of
the soliton solutions to the bilinear equations (11) from the τ -solutions (7)
of the KP-hierarchy equations (6). In the first part, when we impose on the
τ -functions the conjugation constraint [see (15)]

τ (k, l) = τ (−k, −l), (45)

and the linear constraint [see (22)]

(δ|μ|2∂r + ε|ν|2∂s)τ (k, l) = −2∂xτ (k, l), (46)

and set

f = τ (0, 0), g = τ (1, 0), h = τ (0, 1), y = i t, a = ic, b = id,

with t, c, d being real, then one can readily verify that the KP-hierarchy
equations (6) reduce to the bilinear equations (11) of the coupled NLS
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equations (1). In the second part, in order for the τ -functions (7) to satisfy the
conjugation constraint (45), it is sufficient to require [see (15)]

m ji (k, l) = mij(−k, −l). (47)

A sufficient condition for (47) to hold is that

cij = δij, q j = p̄ j , η j = ξ̄ j , η j0 = ξ̄ j0, (48)

x, r, s are real, and y, a, b are pure imaginary. These conditions are the same
ones we imposed at the beginning of the proof of Theorem 1. Under these
conditions, the τ -solutions (7) of the KP-hierarchy equations (6) then reduce
to the solutions (12) for the bilinear equations (11) of the coupled NLS
equations (1). In order for the τ -functions (7) to satisfy the linear constraint
(46), by rewriting these τ -functions as (19) and inserting them into this linear
constraint, we then get the parameter constraint (21), which is equivalent to the
parameter constraint (41) in Theorem 1. This splitting of the earlier derivation
of dark solitons into these two parts helps to clarify this derivation and make it
more understandable.

The second remark is on the solution form (39) of dark solitons in the
coupled NLS equations (1). It is known that the NLS equation of focusing type
is a reduction of the two-component KP hierarchy (see [30], page 966 and 999),
and the NLS equation of defocusing type is a reduction of the single-component
KP hierarchy [26]. It is also known that solutions to the single-component KP
hierarchy can be expressed as single Wronskians [27, 32, 33], and solutions to
the two-component KP hierarchy can be expressed as double Wronskians [34].
Thus N-bright solitons in the focusing NLS equation can be expressed as double
Wronskians [35, 36], and N-dark solitons in the defocusing NLS equation can
be expressed as single Wronskians [26]. These Wronskian solutions can also
be expressed as Gram-type determinants [27, 28, 32, 37, 38]. For the vector
generalization (1) of the NLS equation, to obtain its N-bright–bright solitons,
one should increase the number of components, and take (1) as a reduction of
the three-component KP hierarchy. Thus N-bright–bright solitons in (1) can be
expressed as three-component Wronskians (or the corresponding Gram-type
determinants [27]). However, to obtain N-dark–dark solitons in Eqs. (1), one
should increase copies of independent variables to (r, k) and (s, l) in the
single-component KP hierarchy [see Eqs. (6)], thus N-dark–dark solitons in
Eqs. (1) can still be expressed as single Wronskian (or the corresponding
Gram determinant) as we have done above.

The third remark we make is on comparison of the KP-hierarchy reduction
method and the inverse scattering method for deriving dark-soliton solutions.
As is well known, the inverse scattering method is another way to derive soliton
solutions. For bright solitons, the inverse scattering method (or its modern
Riemann-Hilbert treatment) is a powerful way to derive such solutions (see [39,
40] for instance). Recently, bright–bright N-solitons in a very general class of
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integrable coupled NLS equations were easily derived by this method [16],
and Eqs. (1) are special cases of such general equations. However, for dark
solitons, the inverse scattering method is more difficult due to non-vanishing
boundary conditions, which create branch cuts and other related intricacies in
the scattering process [13]. In [19], the inverse scattering transform analysis
was developed for the defocusing Manakov equations [δ = ε = −1 in (1)] with
non-vanishing boundary conditions. However, in their analysis, the boundary
conditions (42) were taken such that c = d [see their equation (2.3)] (actually
c = d = 0 was taken there, but the case of c = d �= 0 can be reduced to the case
of c = d = 0 through Galilean transformation). When c = d, one can see from
our general formula (39) that u and v are simply proportional to each other,
which is a degenerate case. To derive the more general dark–dark solitons (39)
with c �= d, the inverse scattering method would be even more complicated
than that in [19]. Comparatively, the KP-hierarchy reduction method we used
above is free of these difficulties, and is thus a simpler method for deriving
dark-soliton solutions.

Our last remark is on dark solitons in the more general coupled NLS equations

iut = uxx + (
δ|u|2 + ε|v|2 + γ uv̄ + γ̄ ūv

)
u,

ivt = vxx + (
δ|u|2 + ε|v|2 + γ uv̄ + γ̄ ūv

)
v,

(49)

where δ, ε are real constants as in (1), and γ is a complex constant. If γ = 0,
(49) reduces to (1)). This general coupled NLS system (49) is also integrable.
Its Lax pair as well as N-bright–bright solitons were given in [16]. To explore
dark–dark solitons in this system, we look for solutions with the following
large-x asymptotics [as in (39)]

{
u → μei[cx−ωt],

v → νei[dx−κt],
x → −∞, (50)

where μ, ν are non-zero complex constants, and c, d, ω, κ are real constants.
Inserting this asymptotic solution into (49), we see that due to the γ -terms,
Eqs. (49) can hold only if c = d, and ω = κ . Based on the previous solutions
(39), this would imply that the u and v components of dark–dark solitons in
the general system (49) are proportional to each other, thus are equivalent to
scalar dark solitons in the defocusing NLS equation. Except these degenerate
dark–dark solitons, Eqs. (49) do not admit other dark–dark solitons of the form
(50) when γ �= 0. This is a significant difference between the cases of γ = 0
and γ �= 0 in Eqs. (49). Whether the general system (49) admits dark–dark
solitons with background asymptotics different from (50) is still unclear.
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3. Dynamics of dark–dark solitons

In what follows, we investigate the dynamics of single dark–dark solitons and
two-dark–dark solitons in the coupled NLS equations (1). In the analysis
of these solutions, δ and ε will be treated as arbitrary parameters. In the
illustrations of solutions in the figures, we will pick

δ = 1, ε = −1, (51)

which correspond to mixed focusing and defocusing nonlinearities. The reason
for this choice is that dark–dark solitons under such mixed nonlinearities have
never been studied before. We will show that under these mixed nonlinearities,
some novel phenomena (such as the existence of two-dark–dark-soliton bound
states) would arise. Soliton dynamics under other δ and ε values, such as in
the defocusing Manakov equations where δ = ε = −1, would also be briefly
discussed when appropriate.

3.1. Single dark–dark solitons

To get single dark–dark solitons in Eqs. (1), we set N = 1 in the formula (39).
After simple algebra, these single solitons can be written as

u = 1

2
μei[cx−(δ|μ|2+ε|ν|2−c2)t]

[
1 + y1 + (y1 − 1) tanh

(
θ1 + θ̄1 + ρ1

2

)]
, (52)

v = 1

2
νei[dx−(δ|μ|2+ε|ν|2−d2)t]

[
1 + z1 + (z1 − 1) tanh

(
θ1 + θ̄1 + ρ1

2

)]
, (53)

where

θ1 = p1x − i p2
1t + θ10, eρ1 = 1/(p1 + p̄1),

y1 = (ic − p1)/(ic + p̄1), z1 = (id − p1)/(id + p̄1),

and μ, ν, p1, θ10 are complex constants satisfying

δ|μ|2
|p1 − ic|2 + ε|ν|2

|p1 − id|2 = −2, (54)

or equivalently, a1 is given by formula (44), where p1 = a1 + ib1. This soliton
would be singular if p1 + p̄1 ≤ 0, i.e., a1 ≤ 0. Thus, we will require a1 > 0
below to avoid singular solutions. It is easy to see that the intensity functions
|u| and |v| of these solitons move at velocity −2 b1. In addition, they approach
constant amplitudes |μ| and |ν| respectively as x → ±∞. As x varies from
−∞ to +∞, the phases of the u and v components acquire shifts in the
amount of 2φ1 and 2χ1, where

y1 = e2iφ1, z1 = e2iχ1, (55)
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Figure 1. Single dark–dark solitons in Eqs. (1) with δ = 1, ε = −1: (a) a degenerate soliton
with parameters (57); (b) a non-degenerate soliton with parameters (58).

i.e., 2φ1 and 2χ1 are the phases of constants y1 and z1 respectively. Without
loss of generality, we restrict −π < 2φ1, 2χ1 ≤ π , i.e., −π /2 < φ1, χ1 ≤ π /2.
At the center of the soliton where θ1 + θ̄1 + ρ1 = 0, intensities of the two
components are

|u|center = |μ| cos φ1, |v|center = |ν| cos χ1. (56)

These center intensities are lower than the background intensities |μ| and |ν|,
thus these solitons are dark–dark solitons. Notice that the intensity dips at
the centers of the u and v components are controlled by their respective
phase shifts 2φ1 and 2χ1, thus these phase shifts dictate how “dark” the
center is. This general single dark–dark soliton (52)-(53) has been derived
for the defocusing Manakov model before by the Hirota method in [17, 18].
In particular, a parameter constraint similar to (54) was given in [18]. If
c = d, then y1 = z1, hence φ1 = χ1. In this case, the u and v components
are proportional to each other, and have the same degrees of darkness at the
center. This soliton is equivalent to a scalar dark soliton in the defocusing
NLS equation, thus is degenerate. It is noted that the single-dark–dark soliton
derived in [19] [see Eq. (5.8) there] corresponds to this degenerate type of
dark–dark solitons. To illustrate these degenerate solitons, we take

μ = 1, ν = 2, c = d = 0, p1 =
√

1.5, θ10 = 0, (57)

which satisfy the constraint (54). Intensities of the solution (52)-(53) are
displayed in Fig. 1(a). This soliton is stationary, and both its u and v

components are black (with zero intensity) at the soliton center.
Non-degenerate single dark–dark solitons in Eqs. (1), however, are such that

c �= d. The u and v components in these solitons are not proportional to each
other, thus are not reducible to scalar single dark solitons in the defocusing
NLS equation. Because c �= d, y1 �= z1, thus φ1 �= χ1. This means that the u and
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v components have different degrees of darkness at the center. To illustrate
these non-degenerate solitons, we take

μ = 1, ν = 2, c = 0, d = 0.5, p1 = 1.0679, (58)

which also satisfies the constraint (54). Here the p1 value is obtained from
the formula (44) with the plus sign and b1 = 0. Intensities of this soliton
are displayed in Fig. 1(b). This soliton is also stationary. At its center, the
u component is black, but the v component is only gray. This type of
non-degenerate single dark–dark solitons in the coupled NLS system (1) has
not been obtained before (to our knowledge).

In the defocusing Manakov equations where δ = ε = −1, their degenerate
and non-degenerate single dark solitons qualitatively resemble those shown in
Fig. 1, and are thus not shown.

3.2. Collision of two dark–dark solitons

Two dark–dark solitons in system (1) correspond to N = 2 in the general
formula (39). In this case, we have

u = μei[cx−(δ|μ|2+ε|ν|2−c2)t] G2(x, t)

F2(x, t)
, (59)

v = νei[dx−(δ|μ|2+ε|ν|2−d2)t] H2(x, t)

F2(x, t)
, (60)

where

F2(x, t) = 1 + eθ1+θ̄1+ρ1 + eθ2+θ̄2+ρ2 + reθ1+θ̄1+θ2+θ̄2+ρ1+ρ2, (61)

G2(x, t) = 1 + y1eθ1+θ̄1+ρ1 + y2eθ2+θ̄2+ρ2 + r y1 y2eθ1+θ̄1+θ2+θ̄2+ρ1+ρ2, (62)

H2(x, t) = 1 + z1eθ1+θ̄1+ρ1 + z2eθ2+θ̄2+ρ2 + r z1z2eθ1+θ̄1+θ2+θ̄2+ρ1+ρ2, (63)

θ j = p j x − i p2
j t + θ j0, eρ j = 1/(p j + p̄ j ), (64)

y j = (ic − p j )/(ic + p̄ j ), z j = (id − p j )/(id + p̄ j ), (65)

r = 1 − (p1 + p̄1)(p2 + p̄2)/|p1 + p̄2|2, (66)

and μ, ν, p1, p2, θ10, θ20 are complex constants satisfying the constraint (41)
with j = 1, 2, or equivalently, aj is given by the formula (44), where pj = aj + ibj.
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Figure 2. Collision of two dark–dark solitons in Eqs. (1) with δ = 1, ε = −1 and parameters
(67). The upper row shows the (x, t) evolution, and the lower row shows the intensity profiles
before and after collision: t = −10 (solid); t = 10 (dashed).

In generic cases where Im(p1) �= Im(p2), these solutions describe the collision
of two dark–dark solitons. To demonstrate these collisions, we take parameters

μ = 1, ν = 2, c = 0, d = 0.5, p1 = 0.8426 − 0.2i,

p2 = 1.1801 + 0.2i, θ10 = θ20 = 0.
(67)

Here the real parts of p1 and p2 are obtained from the formula (44) with
the plus sign. The corresponding two dark–dark soliton (59)-(60) is shown in
Fig. 2. We can see that after collision, the two solitons pass through each
other without any change of shape, darkness or velocity in its two components,
hence there is no energy transfer between the two solitons or between the u
and v components after collision. This complete transmission of dark–dark
solitons’ energy in both components after collision occurs not only for δ = 1
and ε = −1 as in Fig. 2, but also for all other δ and ε values. Thus it is a
common phenomenon of the coupled NLS system (1). For instance, it also
happens in the defocusing Manakov equations where δ = ε = −1.

This complete transmission of dark–dark solitons’ energy in both components
is a remarkable phenomenon, because it is in stark contrast with collisions
of bright–bright solitons in the same coupled NLS system (1). Indeed, for
bright–bright solitons in the focusing Manakov system (with δ = ε = 1),
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polarization rotations take place after collision, hence energy has transferred
from one component to the other inside each soliton [14]. For bright–bright
solitons in the general coupled NLS system (49) (such as δ = 1 and ε = −1
above), energy can also transfer from one soliton to another after collision
[16]. Thus collisions between bright–bright solitons and between dark–dark
solitons in the coupled NLS system (1) are distinctly different.

The reason for this complete energy transmission in all components in
dark–dark soliton collisions is that the intensity profile of each dark–dark
soliton is completely characterized by the background parameters μ, ν, c, d and
the soliton parameter pj [see Eqs. (52)-(53)]. These background parameters are
the same for both colliding solitons, and clearly do not change before and
after collision. The soliton parameter pj corresponds to the spectral discrete
eigenvalue in the inverse scattering transform method, and is a constant
of motion throughout collision. Consequently, the intensity profile of each
dark–dark soliton (in both u and v components) can not change before and
after collision. This property indicates that dark–dark solitons are more robust
than bright–bright solitons with regard to collision. The positions of dark–dark
solitons do shift after collision though, as can be seen clearly in Fig. 2. This
position shift is always toward the soliton’s moving direction, which is the
same as collisions of bright solitons in the NLS equation [12].

4. Dark–dark-soliton bound states

In studies of dark solitons, multi-dark-soliton bound states is an interesting
subject. In the defocusing NLS equation, two dark solitons repel each
other, thus can not form a bound state [41]. In the defocusing Manakov
model, multi-bright–dark-soliton bound states were reported in [17]. Some
of those bound states are stationary, while the others are not. So far,
multi-dark–dark-soliton bound states have never been reported in integrable
systems. In a non-integrable system, namely, the second-harmonic-generation
(SHG) system, two-dark–dark-soliton bound states do exist, as was reported
in [42]. In this system, single dark–dark solitons with non-monotonic tails
exist. When two such dark–dark solitons weakly overlap with each other
and interact, their non-monotonic tails create local minima in the effective
interaction potential, hence the two dark–dark solitons can form stationary
bound states. In addition, some of these bound states are stable [42].

In this section, we show that in the coupled NLS system (1), when both
δ and ε are negative, i.e., all nonlinearities are defocusing (the defocusing
Manakov model), multi-dark–dark-soliton bound states cannot exist. However,
for mixed focusing and defocusing nonlinearities, where δ and ε have opposite
signs, two-dark–dark-soliton bound states do exist and are stationary. To our
knowledge, this is the first report of multi-dark–dark-soliton bound states in
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integrable systems. Properties and physical origins of these stationary bound
states in the mixed-nonlinearity model (1) are quite different from the stationary
bright–dark-soliton bound states in the defocusing Manakov model [42] and
stationary dark–dark-soliton bound states in the non-integrable SHG model
[42], as we will explain later in this section.

To obtain dark–dark-soliton bound states, the two dark–dark solitons in the
solution (59)–(60) should have the same velocity, i.e., Im(p1) = Im(p2) (or b1

= b2), so that the two constituent dark solitons can stay together for all times.
In order for this to happen, two different (positive) values a1 and a2 from
Eq. (43) must exist for the same values of b1 = b2. When δ and ε are both
negative, where the nonlinearities are all defocusing, this is not possible. The
reason is that when δ < 0 and ε < 0, the function on the left-hand side of Eq.
(43) is an increasing function of a2

j . Thus for this function to reach the value
level of −2 on the right-hand side of Eq. (43), there is at most one a2

j solution,
hence at most one positive aj value. This means that when nonlinearities are
all defocusing (i.e., the defocusing Manakov model with δ = ε = −1),
there are no multi-dark–dark-soliton bound states. However, when δ and ε

have opposite signs, where focusing and defocusing nonlinearities are mixed,
the function on the left-hand side of Eq. (43) may become non-monotone in a2

j ,
hence it becomes possible for Eq. (43) to admit two different positive values a1

and a2 for the same values of b1 = b2 (see below). In the formula (44), these
different a1 and a2 values correspond to the plus and minus signs respectively.
In this case, two-dark–dark-soliton bound states would exist, and this is a
new phenomenon in the coupled NLS equations (1) under mixed focusing
and defocusing nonlinearities. Physically, these results on bound states in
Eqs. (1) can be heuristically understood as follows. We know that in the scalar
defocusing NLS equation, two dark solitons repel each other. In the coupled
NLS system (1), if δ and ε are both negative, all nonlinearities are defocusing,
hence two dark–dark solitons still repel each other, and no bound states can be
formed. However, if δ and ε have opposite signs, parts of the nonlinear terms
are focusing, and the other parts defocusing. While the defocusing terms repel
two dark solitons, the focusing terms do just the opposite, which is to attract
two dark solitons. Thus, when these repulsive and attractive forces balance
each other, two dark–dark solitons then can form a stationary bound state.
This physical mechanism for the existence of dark–dark-soliton bound states
is quite different from that in the SHG model [42] (see earlier text).

Next we examine these two-dark–dark-soliton bound states in more detail.
Through Galilean transformation (i.e., in the moving coordinate system with
this common velocity), this common velocity can be reduced to zero. Hence
p1 and p2 become real parameters. In this case, it is easy to see that this bound
state becomes
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u = μei[cx−(δ|μ|2+ε|ν|2−c2)t] G2(x)

F2(x)
,

v = νei[dx−(δ|μ|2+ε|ν|2−d2)t] H2(x)

F2(x)
,

(68)

where

F2(x) = 1 + e2p1x+2α1+ρ1 + e2p2x+2α2+ρ2 + re2p1x+2p2x+2α1+2α2+ρ1+ρ2,

(69)

G2(x) = 1 + y1e2p1x+2α1+ρ1 + y2e2p2x+2α2+ρ2 + r y1 y2e2p1x+2p2x+2α1+2α2+ρ1+ρ2,

(70)

H2(x) = 1 + z1e2p1x+2α1+ρ1 + z2e2p2x+2α2+ρ2 + r z1z2e2p1x+2p2x+2α1+2α2+ρ1+ρ2,

(71)

αj = Re(θ j0), and ρ j, yj, zj, r are as given in Eqs. (64)–(66). Notice that
functions F2, G2 and H2 are time-independent, thus this bound state is actually
stationary. This is analogous to certain bright–dark-soliton bound states in the
defocusing Manakov model [17] and dark–dark-soliton bound states in the
SHG model [42]. An important feature of these present bound states is that, as
x moves from −∞ to +∞, these states acquire non-zero phase shifts. Indeed,
it is easy to see from the above solution formula that the phase shifts of the u
and v components are

u-phase shift = 2φ1 + 2φ2, v-phase shift = 2χ1 + 2χ2, (72)

where 2φj and 2χ j are the phases of yj and zj respectively. In other words, the
total phase shifts of the bound state are equal to the sum of the individual
phase shifts of the two constituent dark solitons, and are non-zero in general.
This contrasts stationary bright–dark-soliton bound states in the defocusing
Manakov model [17] and dark–dark-soliton bound states in the SHG model
[42], where phase shifts of the dark components across the soliton are all zero.

To demonstrate these stationary two-dark–dark-soliton bound states, we take
parameters

μ = 1, ν = 2, c = 0, d = 0.5, p1 = 1.0679, p2 = 0.3311, α1 = α2 = 0.
(73)

Here p1 and p2 are obtained from the formula (44) with b1 = b2 = 0. The
corresponding bound state is displayed in Fig. 3 (upper row). In this bound
state, the u-component is double-dipped (i.e., has a double hole), signifying
this is a two-soliton bound state, while the v-component is single-dipped. By
adjusting α1 and α2 values, we can obtain bound states where both u and v

components are double-dipped. For instance, when we take α1 = −α2 = 2
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Figure 3. Two examples of two-dark-soliton bound states in Eqs. (1) with δ = 1, ε =
−1. Upper row: bound state with parameters (73); lower row: bound state with parameters
(73) except that α1 = −α2 = 2. The left two panels show (x, t) evolution of |u| and |v|
components, and the right panel shows the stationary intensity profiles.

instead of zero in (73), we get such a bound state which is shown in the lower
row of Fig. 3. For both bound states, the total phase shift of the u-component
is zero, and the total phase shift of the v-component is 3.4355, as can be
calculated from formula (72).

From the above analytical formulae and Fig. 3, we can see that these
stationary two-dark-soliton bound states have six free parameters, μ, ν, c, d,
α1 and α2 [the positive p1 and p2 values are determined from formula (44) by
setting b1 = b2 = 0]. The first four parameters characterize the background
intensities and phase gradients, while the parameters α1 and α2 control the
positions of the two dark solitons.

Properties of the above dark–dark-soliton bound states in the integrable
coupled NLS system (1) are very different from those of dark–dark-soliton
bound states in the non-integrable SHG model [42]. First, the bound states in
the SHG model are formed by identical dark solitons (see Fig. 4 in [42]), but
the bound states in the coupled NLS system are formed by different dark
solitons because p1 �= p2 (see lower row of Fig. 3 in this paper). Second, the
bound states in the SHG model have zero phase shifts from one end to the
other, but the phase shifts of bound states in the coupled NLS system (1) are
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non-zero in general [see Eqs. (72)]. Thirdly, the bound states in the SHG
model have non-zero binding energy, hence can be stable against perturbations
[42]. However, the bound states in the present coupled NLS system have zero
binding energy. Thus under perturbations, the two constituent dark solitons in
these bound states generically will split apart, analogously to bright-soliton
bound states in the focusing NLS equation.

Atthispoint,onemaywonderwhetherornotthree-andhigher-dark–dark-soliton
bound states could exist in the coupled NLS system (1). It turns out that such
bound states can not exist. The reason is that, in a bound state, velocities of
all constituent solitons must be the same, i.e., all bj [i.e., Im(pj)] must be
the same. In order for three- and higher-dark-soliton bound states to exist,
formula (44) must give at least three distinct positive solutions aj for the same
bj value. This is clearly impossible because formula (44) can give at most
two distinct positive aj values when the plus and minus signs are taken.
Consequently, three- and higher-dark–dark-soliton bound states can not exist in
Eqs. (1). Note that in the defocusing Manakov model, non-stationary three and
higher bright–dark-soliton bound states exist, but stationary three and higher
bright–dark-soliton bound states do not [17]; while in the non-integrable SHG
system, stationary three and higher dark–dark-soliton bound states do exist
[42].

5. Summary and discussion

In this paper, we have investigated dark–dark solitons in the integrable coupled
NLS system (1). By reducing the Gram-type solution of the KP hierarchy, we
derived the general N-dark–dark solitons in this system. We showed that the
dark–dark solitons derived previously in the literature are only degenerate cases
of these general soliton solutions. We have also shown that when these solitons
collide with each other, energies in both components of the solitons completely
transmit through. This behavior contrasts bright–bright solitons in this system,
where polarization rotation and soliton reflection can occur after collision. In
addition, we have shown that when focusing and defocusing nonlinearities are
mixed, two dark–dark solitons can form a stationary bound state. These results
will be useful for many physical subjects such as nonlinear optics, water waves
and Bose-Einstein condensates, where the coupled NLS equations often arise.

The dark–dark solitons obtained in this paper for the coupled NLS system (1)
are useful for other purposes as well. For instance, it is known that from dark
solitons of the defocusing NLS equation, one can obtain homoclinic solutions of
the focusing NLS equation through simple variable transformations [43]. Thus,
from these dark–dark solitons in this paper, one can obtain homoclinic solutions
to these coupled NLS equations (the simplest homoclinic solutions to the
focusing Manakov equations were derived in [44] by Darboux transformation).
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Because solutions near homoclinic orbits often exhibit chaotic dynamics [43],
the homoclinic solutions for the coupled NLS equations (1) then can serve as
the starting point to investigate chaotic behaviors in these systems [44].

Lastly, we would like to mention that N-bright–bright and N-bright–dark
solitons in the coupled NLS equations (1) can also be obtained by the
KP-hierarchy reduction method. However, those reductions are different from
the ones for dark–dark solitons in this paper, and will be left for future studies.
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