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Abstract
We present the covering set of the squared eigenfunctions for a degenerate 3×3
eigenvalue problem. The derivation follows the approach recently outlined by
Yang and Kaup on this same equation (J. Math. Phys. 50 023504 (2009)).
This eigenvalue problem is important since it serves as the spectral problem for
the inverse scattering transform (IST) of the vector NLS equation, the Sasa–
Satsuma equation, and a degenerate two-level Maxwell–Bloch system. The use
of this covering set would allow one to treat the linear perturbations of these
equations in a common and systematic manner. Comparison with previous
results on the perturbed continuous spectrum of the Sasa–Satsuma equation is
made.

1. Introduction

Here we will consider the general, degenerate 3 × 3, eigenvalue problem

∂xV + iζJ · V = Q · V, J =
⎡
⎣1 0 0

0 1 0
0 0 −1

⎤
⎦ , Q =

⎡
⎣ 0 0 Q13

0 0 Q23

Q31 Q32 0

⎤
⎦ , (1)

on the interval −∞ < x < +∞. By ‘degenerate’, we mean that two of the components of the
matrix J are equal. Q(x) is a potential matrix which vanishes like Q(x → ±∞) = o(1/x)

for large x. The matrix V (x, t) is a 3×3 solution matrix which contains the ‘Jost’ solutions as
its columns. A ‘Jost’ solution is a standard and suitably normalized solution of an eigenvalue
problem.

This problem has been studied as an inverse scattering transform (IST) since 1973 when
Manakov used it [1] to create an IST for the vector nonlinear Schrödinger equation (VNLS).
In addition, it also occurs in the IST for the Sasa–Satsuma equation [2] as well as for a
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two-level Maxwell–Bloch system with degeneracy [3]. The differences between these cases
is how the components of the potential matrix are identified. They also differ in the form
of the spectral evolution operator, which is the second element of the Lax pair. Here, we
shall not be interested in the evolution, only in the scattering problem. In the Manakov case
and the Maxwell–Bloch case, one pairs the components as Q31 = ±Q∗

13, Q32 = ±Q∗
23

while in the Sasa–Satsuma case, the components are paired as Q32 = −Q13, Q31 = −Q23,
and Q23 = Q∗

13. Such a pairing of potential matrix components is called a ‘reduction’
since the number of independent components in the potential matrix has been reduced. In
each of the above cases, there have been studies of their perturbation theory, their ‘squared
eigenfunctions’ (SE) and the adjoints (ASE) of the SE [4, 5]. Here, we shall assume no
reduction and shall take the four components of Q to be independent and uniquely different.
Our goal will be to obtain the universal covering set for the SE and ASE of this eigenvalue
problem [6].

This work has arisen out of a recent collaboration by these authors on perturbations of
the Sasa–Satsuma equation [4] and long prior, on-going discussions with Professor Vladimir
Gerdjikov. The results presented here are an outgrowth from [4, 6, 7]. In the work [4], a
simplified approach to the treatment of perturbations of the Sata–Satsuma equation [2] was
found. Following that, it then became possible to take a new look at the entire problem of
soliton perturbation theory. In [4, 6] it was shown how reductions could give rise to SE
composed of sums of products of Jost functions instead of simply a single product of Jost
functions. Then in [7], this new approach was applied to the well-known AKNS (Ablowitz,
Kaup, Newell, Segur) eigenvalue problem [8], re-obtaining the results of [9, 10], not only with
a considerable reduction in the effort involved, but also an indication as to how this approach
could be applied to higher order eigenvalue problems. Here a simplified approach to obtaining
the SE and the ASE, their inner products and their closure relation had been detailed in a
form which has not been adequately detailed before. It then became appropriate to return to
the degenerate 3 × 3 eigenvalue problem of the Sasa–Satsuma equation and now include the
bound state spectra, which had been omitted before due to technical difficulties at that time.
For a basic reference to problems of this nature, the reader is referred to the above references
and [11].

There are four steps which are common to all these problems and which we will detail in
the following sections. The first step is to define and analyze what are known as Jost functions
and the associated scattering matrix. This step is known as the ‘direct scattering problem’
and will be discussed in section 2. The second step is the ‘inverse scattering problem’ and
is discussed in section 3, wherein one determines how to reconstruct the Jost functions and
the potential matrix, given the scattering data. What is new here is that we can now include
the bound state spectra. Next we take up the variations which can result from perturbations
in the potential matrix or the scattering data. Here we take the results of the previous two
sections and perturb them, following the approach in [4]. We determine the variations in the
scattering data when the potential is perturbed in section 4 and also detail how to handle the
variations in the bound state scattering data. Then in section 5 we will turn our attention to
perturbing the inverse scattering problem and take up the opposite mapping: the variations in
the potentials which arise when the scattering data, including bound state data, are perturbed.
Here we will detail the SE (the definition of an SE is that it is an eigenstate of the linear
equations for the perturbed potentials. Whence the perturbed potentials can be expanded in
the SE.) From these results, in section 6, we can then construct the inner products of an SE
with an ASE and the closure of the SE and ASE. As we proceed through these sections,
appropriate comments will be made concerning the generalizablility of particular points.
Finally, a summary will be given in section 7.
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2. The direct scattering problem

In the direct scattering problem, one addresses the solutions of the eigenvalue problem, what
their analytical properties are, what are the adjoint solutions and their properties, what is the
scattering matrix and its properties, what are the features of the bound states, if any, what
are the ‘fundamental analytical solutions’ and their adjoints, etc. We shall take up each of
these topics below, sometimes only briefly. For (1), we shall define the Jost solutions by their
asymptotics as x → ±∞. For ζ real, there are two typical sets which are

�(x → −∞) → e−iζJx, �(x → +∞) = e−iζJx . (2)

For each of these solution matrices, we have three linearly independent solutions. Therefore,
each of these two solution matrices must have their columns linearly dependent on the other’s
columns. This can be expressed as

� = � · S, � = � · R (3)

where S(ζ ) is called the scattering matrix and R(ζ ) is its inverse.
With any problem such as (2), one can always construct an adjoint problem, which is

an equivalent problem. To do so, one merely multiplies (1) by an adjoint matrix function,
V A(x, t, ζ ), from the left, and then make use of the product rule of Calculus. Thus

V A · (∂xV + iζJ · V − Q · V ) = 0, (4)

which is the same as

∂x(V
A · V ) + (−∂xV

A + iζV A · J − V A · Q) · V = 0. (5)

The adjoint problem is therefore

∂xV
A − iζV A · J = −V A · Q, (6)

in which case (5) also gives

∂x(V
A · V ) = 0. (7)

The solutions of the adjoint problem are called adjoint Jost functions, which are the rows of
VA. As Jost functions, they need to have a standard normalization which we take to be

�A(x → −∞) → eiζJx, �A(x → +∞) = eiζJx . (8)

Then from (4), (7) and (8), we have

�A · � = I3 = �A · �, ∀ x and for ζ = real, (9)

where I3 is the 3 × 3 identity matrix. In other words, the solution matrix for the adjoint Jost
functions can be taken to be the inverse of the regular solution matrix. As a consequence of
this and (5), we have

�A = R · �A, �A = S · �A. (10)

As a consequence of (5), (7) and (10), we have that, given the Jost functions and their adjoints,
one can obtain

�A · � = S and ∂xS = 0. (11)

Key to the solution of the inverse scattering problem will be the analytical properties of the
Jost functions and their adjoints. How to determine these properties are now well documented
and even detailed in textbooks [12]. The degenerate 3×3 case of (1) straightforwardly follows
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from the same techniques used in the 2 × 2 case [8, 13] and was first detailed by Manakov [1].
The Jost functions defined by (3) and (8) have the following analytical properties:

� = [
�+

1,�
+
2,�

−
3

]
, � = [

�−
1 , �−

2 , �+
3

]
, �A =

⎡
⎣�A−

1

�A−
2

�A+
3

⎤
⎦ , �A =

⎡
⎣�A+

1

�A+
2

�A−
3

⎤
⎦ , (12)

where the ± superscripts on the Jost functions and their adjoints refer to which half-plane the
function is analytic in (up to a phase factor of e± iζx). The subscripts on the Jost functions
refer to the column number of the appropriate solution vector while on the adjoints, it refers
to the row number.

The analytical properties of S and R follow from that of the Jost functions and their
adjoints;

S = �A · � =
⎡
⎣S+

11 S+
12 S13

S+
21 S+

22 S23

S31 S32 S−
33

⎤
⎦ , R = S−1 = �A · � =

⎡
⎣R−

11 R−
12 R13

R−
21 R−

22 R23

R31 R32 R+
33

⎤
⎦ , (13)

where those components without a superscript in general only exist on the real ζ -axis.
By collecting together those Jost functions which are analytic in the same half-plane, we

can construct other matrix solutions of (1). We define χ+, χ−, χA+ and χA− by

χ+ = [
�+

1,�
+
2, �

+
3

]
, χ− = [

�−
1 , �−

2 ,�−
3

]
, χA+ =

⎡
⎣�A+

1

�A+
2

�A+
3

⎤
⎦ , χA− =

⎡
⎣�A−

1

�A−
2

�A−
3

⎤
⎦ . (14)

Note that χA± is not the inverse of χ±, although �A = �−1 and �A = �−1 are defined to be
so.

These χ ’s are related to the fundamental analytical solutions (FAS), �± and , �A± by a
phase factor

�± = χ± · eiζJx, �A± = e−iζJx · χA±. (15)

Note that the χ ’s are essentially the FAS, except for the phase factor. (The advantage
of using the χ ’s is that one can avoid having to carry along those phase factors in any
algebraic manipulation.) Adding the appropriate phase factor to the χ ’s then gives the FAS
corresponding to any Jost function. �+ provides us with a set of three linearly independent
and analytic functions in the upper-half-plane (UHP) and on the real ζ -axis while �− provides
us with another similar set on the real ζ -axis and in the lower-half-plane (LHP). Similarly for
their adjoints, �A±.

On the real ζ axis, each χ± and χA± can be related to the � and �A Jost solutions by
semi-triangular matrices:

χ± = � · A±, A+ =
⎡
⎣1 0 R13

0 1 R23

0 0 R+
33

⎤
⎦ , A− =

⎡
⎣R−

11 R−
12 0

R−
21 R−

22 0
R31 R32 1

⎤
⎦ , (16)

χA± = AA
± · �A, AA

+ =
⎡
⎣S+

11 S+
12 S13

S+
21 S+

22 S23

0 0 1

⎤
⎦ , AA

− =
⎡
⎣ 1 0 0

0 1 0
S31 S32 S−

33

⎤
⎦ . (17)

Important matrix relations or products can be obtained from the above, which we shall need
later. They are

χ+ = χ− · T , χ− = χ+ · T −1, (18)
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where

T = 1

S−
33

⎡
⎣ R−

22 −R−
12 −S13

−R−
21 R−

11 −S23

S31 S32 1

⎤
⎦ , T −1 = 1

R+
33

⎡
⎣ S+

22 −S+
12 −R13

−S+
21 S+

11 −R23

R31 R32 1

⎤
⎦ . (19)

One observes that T and T −1 decomposes into two parts, one part of which is analytic in a
half-plane:

T = 1

S−
33

P − + �, P − =
⎡
⎣ R−

22 −R−
12 0

−R−
21 R−

11 0
0 0 1

⎤
⎦ , � =

⎡
⎣ 0 0 −σ13

0 0 −σ23

σ31 σ32 0

⎤
⎦ , (20)

T −1 = 1

R+
33

P + + �, P + =
⎡
⎣ S+

22 −S+
12 0

−S+
21 S+

11 0
0 0 1

⎤
⎦ , � =

⎡
⎣ 0 0 −ρ13

0 0 −ρ23

ρ31 ρ32 0

⎤
⎦ , (21)

where for j = 1, 2,

σ3j = S3j

S−
33

, σj3 = Sj3

S−
33

, ρ3j = R3j

R+
33

, ρj3 = Rj3

R+
33

. (22)

A similar relation also exists between the χA’s.

χA+ = AA
+ · (

AA
−
)−1 · χA− =

(
1

S−
33

P − − �

)
· χA−,

(23)

χA− = AA
− · (

AA
+

)−1 · χA+ =
(

1

R+
33

P + − �

)
· χA+.

Important products concerning the χ ’s are

χA+ · χ+ = AA+ · A+ = 1

R+
33

(P +)−1, χA− · χ− = AA− · A− = 1

S−
33

(P −)−1, (24)

χA+ · χ− =
⎡
⎣ 1 0 S13

0 1 S23

R31 R32 1

⎤
⎦ , χA− · χ+ =

⎡
⎣ 1 0 R13

0 1 R23

S31 S32 1

⎤
⎦ . (25)

Equations (24) allow us to construct the inverses of the χ ’s in terms of other fundamental
matrices while those in (25) will be useful in a later section.

The remaining part of the direct scattering problem is to detail the asymptotics of the
Jost functions as one approaches any essential singularity on the boundary of the region of
analyticity. There is only one essential singularity at |ζ | = ∞ in this problem. Taking ζ to be
real, then � and � have a common asymptotic expansion which is

�,� =
(

I3 +
i

2ζ
B(1) +

1

4ζ 2
B(2) + · · ·

)
· e−iζJx as |ζ | → ∞, (26)

one finds that B(1) can be given by

[B(1), J ] = 2Q and ∂xB(1) − Q · B(1) = 1
2 [B(2), J ]. (27)

The first equation will determine those parts of B(1) which do not commute with J (and are
linear in the components of Q) while the second equation will determine those parts of B(1)

that do commute with J. These latter parts will be the spatial integrals of quadratic products
of the components of Q. Solving the first equation gives

B(1) =
⎡
⎣ X X −Q13

X X −Q23

Q31 Q32 X

⎤
⎦ , (28)
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where the X’s represent the part of the solution which would be obtained from the second
equation in (27), which we shall not need and which, as noted above, are integrals over the
quadratic products of the components of the potential matrix, Q.

In the above, we have discussed the direct scattering problem for the 3 × 3 degenerate
eigenvalue problem, (1). This eigenvalue problem is perhaps the simplest extension beyond the
AKNS eigenvalue problem. As in the AKNS case, every Jost function is analytic in a sector,
there are only two sectors, and the scattering matrix decomposes into a block-like structure.
The construction of the χ ’s and FAS are straightforward as well as the T matrix. The main
additional difference is the existence of the ‘polarization matrices’, P ±. Consequently in this
and higher order systems, one could expect these matrices to occur anytime two or more of
the eigenvalues of J were equal. As one would expect, these polarization matrices will appear
over and over again when we look at the perturbations.

Further details concerning localization conditions which Q should satisfy in order for the
assumed solutions of S and R to exist can be found elsewhere (see e.g. [12, 14]). Next we
shall take up the inverse scattering problem, wherein we detail what the scattering data is and
how it is related to the scattering matrix.

3. The inverse scattering problem

Let us now consider the inverse scattering problem. Equation (18) can be viewed as a Riemann–
Hilbert problem upon using (20) and (21). Consider Cauchy’s integral theorem applied to �+

in the UHP where �+ is analytic. Its asymptotics are given by (26) upon deleting the phase
factor at the end. It is obvious that for ζ in the UHP,

�+(ζ ) = 1

2
I3 +

1

2π i

∫
R

dζ ′

ζ ′ − ζ
�+(ζ ′), (29)

where R indicates that the path of the integral is along the real axis. Now, along the real axis,
from (20), we have

�+ = 1

S−
33

�− · P − + �− · e−iζJx · � · eiζJx, (30)

where we have used the fact that

[J, P ±] = 0. (31)

Since S−
33 is analytic in the LHP (see (13)), the first term in (30) can be extended into the LHP.

That term will have a pole wherever S−
33(ζ ) has a zero in the LHP. Whence∫

R

dζ ′

(ζ ′ − ζ )S−
33(ζ

′)
�−(ζ ′) · P −(ζ ′) = −2π i

N−∑
k=1

1

(ζ−
k − ζ )

(
S−

33

)′
k

�−(ζ−
k ) · P −

k + π iI3,

(32)

where N− is the number of zeros of S−
33(ζ ) in the LHP (assumed finite), ζ−

k is the kth zero of
S−

33(ζ ),
(
S−

33

)′
k

is dS−
33/dζ evaluated at ζ = ζ−

k , P −
k is P − evaluated at the zero, and the last

term comes from the integral along an infinite semi-circle in the LHP. Putting (29), (30) and
(32) together gives

�+(ζ ) = I3 +
1

2π i

∫
R

dζ ′

ζ ′ − ζ
�−(ζ ′) · e−iζ ′Jx · �(ζ ′) eiζ ′Jx

−
N−∑
k=1

1

(ζ−
k − ζ )

(
S−

33

)′
k

�−(ζ−
k ) · P −

k . (33)
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Thus we have �+ given in terms of �− on the real axis and at each zero of S−
33 in the LHP.

Similarly, starting from the second part of (18), we obtain, for ζ in the LHP,

�−(ζ ) = I3 − 1

2π i

∫
R

dζ ′

ζ ′ − ζ
�+(ζ ′) · e−iζ ′Jx · �(ζ ′) · eiζ ′Jx

+
N+∑
k=1

1

(ζ +
k − ζ )

(
R+

33

)′
k

�+
(
ζ +
k

) · P +
k , (34)

where N+ is the number of zeros of R+
33(ζ ) in the UHP, ζ +

k is such a zero and
(
R+

33

)′
k

= dR+
33/dζ

evaluated at this zero. As one can see from the above and as remarked earlier, the separation
of T and T −1 into the � and P matrices is a natural separation of T and its inverse into their
contributions to the continuous spectra (�’s) and the discrete spectra.

In the absence of bound states, the six columns in (33) and (34) naturally decouple into two
sets of equations: three equations for inversion about +∞ and another set of three equations for
inversion about −∞. Either set could be used to reconstruct the Jost functions and thereby the
potential matrix. Thus among these six coupled equations, there can only be three equations
which are actually independent. In hindsight, this interdependence of the six columns is not
surprising, since the two equations in (18), which were used to obtain (33) and (34), were not
independent in the first place.

When there are bound states present, in general all six columns in (33) and (34) will be
coupled due to the diagonal nature of the P’s. The solution of the inverse scattering problem
now reduces to one of recovering from these six columns, when bound states are present, three
independent equations from these six columns, which may be used to reconstruct the �’s.

There is a general way to go about obtaining this separation which was illustrated in [7].
Basically what one does is to replace the Pk’s by off-diagonal components from the �’s. To
see how this can be done, let us assume compact support, which will give us the same result.
When there is compact support, χ+ and χ− are both analytic in the entire complex plane.
Then by (19) and (20), we see that the residues of χ− · T at the zeros of S−

33 in the LHP must
exactly vanish. The same can be said for χ+ · T at the zeros of R+

33 in the UHP. Consequently
we have

χ−
k · P −

k = −χ−
k · (

S−
33�

)
k
, χ+

k · P +
k = −χ+

k · (
R+

33�
)
k
. (35)

These identities represent the fact that at one of these zeros, the three solutions contained in
the appropriate χ are no longer linearly independent. Let us now define the two matrices

Ck = 1(
S−

33

)′
k

(
S−

33�
)
k

= 1(
S−

33

)′
k

⎡
⎣ 0 0 −S13,k

0 0 −S23,k

S31,k S32,k 0

⎤
⎦ , (36)

Ck = 1(
R+

33

)′
k

(
R+

33�
)
k

= 1(
R+

33

)′
k

⎡
⎣ 0 0 −R13,k

0 0 −R23,k

R31,k R32,k 0

⎤
⎦ , (37)

where the subscripts k on Sij and Rij indicate that these quantities are to be evaluated at the
appropriate zeros in the appropriate half-plane. Equations (33) and (34) then become

�+(ζ ) = I3 +
1

2π i

∫
R

dζ ′

ζ ′ − ζ
�−(ζ ′) · e−iζ ′Jx · �(ζ ′) eiζ ′Jx

+
N−∑
k=1

1(
ζ−
k − ζ

)�−(
ζ−
k

) · e−iζ−
k J x · Ck · eiζ−

k J x, (38)

7
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�−(ζ ) = I3 − 1

2π i

∫
R

dζ ′

ζ ′ − ζ
�+(ζ ′) · e−iζ ′Jx · �(ζ ′) · eiζ ′Jx

−
N+∑
k=1

1(
ζ +
k − ζ

)�+
(
ζ +
k

) · e−iζ +
k J x · Ck · eiζ +

k J x, (39)

where ζ is in the UHP for (38) and in the LHP for (39). Due to the non-diagonal nature of Ck’s,
one now will find that the columns of these equations will directly separate into two separate
sets of equations: one set for inversion about +∞, involving only the �’s, and one other set for
inversion about −∞, involving only the �’s. As given, these equations are simply identities
between the �’s, and are referred to as the ‘linear dispersion relations’ (LDR), in analogy with
similar equations found in optics. Evaluation of (38) for ζ on the real axis and at the zeros of
R+

33 in the UHP, and evaluation of (39) for ζ on the real axis and at the zeros of S−
33 in the LHP,

will give a set of coupled algebro-singular integral equations for the FAS.
From the first two columns of (38) and the last column of (39), one obtains three column

vector equations involving only the �s, and therefore are the equations for inversion about
−∞. The quantities in these equations are (for j = 1, 2)

• the reflection coefficients σ3j and ρj3 on the real axis,
• the zeros of S−

33(ζ ) in the LHP
(
ζ−
k ; k = 1, 2, . . . , N−)

and the values of (Ck)3j at each
such zero,

• the zeros of R+
33(ζ ) in the UHP

(
ζ +
k ; k = 1, 2, . . . , N+

)
and the values of (Ck)j3 at each

such zero.

This is the miminal set of information, scattering data, required for inversion about −∞.
From the remaining columns, we obtain the LDRs for the �’s, which provide inversion

about +∞. In those equations, we find that we must specify the following quantities:

• the reflection coefficients σj3 and ρ3j on the real axis,
• the zeros of S−

33(ζ ) in the LHP
(
ζ−
k ; k = 1, 2, . . . , N−)

and the values of (Ck)j3 at each
such zero,

• the zeros of R+
33(ζ ) in the UHP

(
ζ +
k ; k = 1, 2, . . . , N+

)
and the values of (Ck)3j at each

zero.

This is the miminal set of information, scattering data, required for inversion about +∞.
From either one of these two sets of equations, one can then reconstruct the potentials. This

will be accomplished by solving the appropriate columns in (38) and (39) for the appropriate
columns of �±. Once these solutions are found, then using the asymptotic relations (26) and
(28), one can obtain the potentials, which then completes the solution of the inverse scattering
problem. For further details and proofs of the existence of solutions, see [1, 15].

Now for some closing comments on the inverse scattering problem. First, the key to the
inverse scattering equations, (38) and (39), is the FAS and the relationship shown in (18). Also
important is the manner in which the matrix T and its inverse decompose into different analytic
parts in (20) and (21). Such a decomposition is essential if one is to close the contour in the
opposite half-plane. Second, if one decomposes (38) and (39) into its various columns, one
finds that these equations contain both inversion procedures and therefore one-half of these
equations are redundant. The form of these equations in (36) and (37) have all six columns
coupled when bound states are present and thus cannot be used to reconstruct the �’s, since
the independent specification of the scattering data for both sets would lead to inconsistencies
and nonexistence of solutions. However once the form of these equations in (38) and (39) is
achieved, one is then able to select out a minimal set of equations which require a minimal set

8
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of independent information (the scattering data), from which one could obtain solutions for
the �’s.

In hindsight, the method for solving this 3 × 3 inverse scattering problem has really
not varied significantly from that used in the AKNS case [8, 13]. The only complexity
which has occurred has been a doubling of the potential components, reflection coefficients
and normalization coefficients. Since J has degenerate diagonal elements, we have had the
appearance of the ‘polarization’ matrices, P ±. Of course there are technical details such
as signs, numerical coefficients and an increased complexity of the expressions. But once
relationship (18) has been established, then the remainder of the problem becomes essentially
technical details. Let us now turn to a consideration of perturbations and the SE.

4. Variations in scattering data

In the previous sections, we have described the solution of the direct scattering problem and
then the inverse scattering problem. In the direct scattering problem, given potentials which
are suitably restricted, then in general the scattering coefficients exist and are unique. In
the inverse scattering problem, given a set of scattering data (which was itemized following
equation (39)), then there is a potential which can be recovered from these scattering data.
We shall now assume that such is true in both cases, and that for the given potential and its
associated scattering data, there will be finite neighborhoods surrounding such sets where the
same will be found to occur. Whence for any linear perturbation of the potential, there will
exist a unique linear variation in the scattering data and vice versa. So the first task here will
be to determine these relationships between the variations and the perturbations, such that the
variation may be given in terms of the perturbation. It is from these two relationships that one
can obtain what is known as the SE and their adjoints, ASE, along with their inner products
and their closure relation.

The approach presented here will differ from that in the original approach [9, 10] which
we will briefly outline now. In that approach, one first found the variations in the scattering
data in terms of perturbations of the potentials. The coefficients of these were squares of the
Jost functions and were the adjoints of the SE. It was then shown that these adjoints were
eigenfunctions of an integro-differential operator. Then one found the adjoint of that operator,
which would be the eigenvalue operator for the SE. Now by guess and trial, one found that
its eigenfunctions were also products of Jost functions and their adjoints. These products
were what are called the SE. Then inner products between the SE and ASE were defined
and explicitly evaluated from the various asymptotics of the Jost solutions. Once these inner
products were known, then one could construct what should be the closure relation, by simply
expanding an arbitrary function in these SE. But to prove closure, a rather long process was
used, which required the use of the Marchenko equations, which are obtained from the LDR.
A much neater proof of closure was given later by Gerdjikov and Khristov [16].

Here we shall take a different approach for finding the inner products and closure relation
[4, 17]. As a prelude to this, let us make the following remarks. Determining the scattering
data is accomplished by solving the eigenvalue problem. Thus applying perturbations to the
potentials in the eigenvalue problem will allow one to compute the resulting variations in the
scattering data. Similarly, one solves the inverse scattering problem by starting from (18).
From that, one obtains the LDR, (38) and (39), by which one takes the scattering data and
reconstructs the potential. Whence in going from perturbations of the scattering data to the
resulting variations of the potential, we should likewise expect to start from (18), perturb it by
applying arbitrary perturbations to the scattering data and then obtain the resulting variations
in the potentials. This is the basis for the approach which we shall now use.

9
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In this section, we will calculate the variations in the scattering data due to the perturbations
of the potential. For an eigenvalue problem like (2), this is well known. One perturbs (2), and
then uses the method of variation of parameters to solve the resulting differential equation.
One obtains

∂x(V
A · δV ) = V A · δQ · V (40)

where V is any solution and δV is the perturbed V resulting from perturbations in δQ. VA

is any adjoint solution. Integrating this and letting V = � and V A = �A, then since
δV (x → −∞) = 0 and δV (x → +∞) = eiζJx · δS, we have

δS =
∫ ∞

−∞
�A · δQ · � dx. (41)

Similarly if we take V = � and V A = �A, we obtain

δR = −
∫ ∞

−∞
�A · δQ · � dx (42)

from which one may proceed to calculate all perturbations in the scattering data. Observe that
the integrand contains a product of an adjoint Jost solution and a regular Jost solution. This
product is the ASE.

Continuing, for the reflection coefficients, we obtain (for j = 1, 2)

δσj3 = 1(
S−

33

)2

∫ ∞

−∞
dx[P −(ζ ) · χA−(x, ζ ) · δQ(x) · χ−(x, ζ )]j3, (43)

δσ3j = 1(
S−

33

)2

∫ ∞

−∞
dx[χA−(x, ζ ) · δQ(x) · χ−(x, ζ ) · P −(ζ )]3j , (44)

δρj3 = −1(
R+

33

)2

∫ ∞

−∞
dx[P +(ζ ) · χA+(x, ζ ) · δQ(x) · χ+(x, ζ )]j3, (45)

δρ3j = −1(
R+

33

)2

∫ ∞

−∞
dx[χA+(x, ζ ) · δQ(x) · χ+(x, ζ ) · P +(ζ )]3j . (46)

As mentioned earlier, (43) and (46) apply to inversion about +∞ while (44) and (45) apply to
inversion about −∞.

For the bound state eigenvalues and normalization coefficients, one works with Taylor
expansions about a zero of R+

33 or S−
33. Consider a general function of ζ , g(ζ ). Expanding it

in a Taylor series about a zero, ζk , we have

g(ζ ) = gk + g′
k(ζ − ζk) + 1

2g′′
k (ζ − ζk)

2 + · · · , (47)

where the primes indicate differentiation with respect to ζ and the subscript k’s indicate
evaluation at ζ = ζk . Varying the quantities in the above expression give us

δg(ζ ) = δ(gk) − g′
kδζk + [δ(g′

k) − g′′
k δζk](ζ − ζk) + · · · , (48)

from which we have

δ(gk) = [δg(ζ )]k + g′
kδζk, δ(g′

k) = {∂ζ [δg(ζ )]}k + g′′
k δζk, . . . . (49)

In other words, since there is also a shift in the eigenvalues, one has to also shift where the
quantity is evaluated at. To get the shift in the eigenvalues, one applies the above to S−

33(ζ )

and R+
33(ζ ), which gives

10
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δζ +
k = −

(
δR+

33

)
k(

R+′
33

)
k

= 1(
R+′

33

)
k

∫ ∞

−∞
dx[χA+(x, ζ ) · δQ(x) · χ+(x, ζ )]33,k, (50)

δζ−
k = −

(
δS−

33

)
k(

S−′
33

)
k

= −1(
S−′

33

)
k

∫ ∞

−∞
dx[χA−(x, ζ ) · δQ(x) · χ−(x, ζ )]33,k, (51)

where the subscripts on the far right indicate the component numbers of the resulting matrix
inside the brackets.

The variations in the normalization coefficients are a bit more difficult to obtain since we
have to move off the real ζ -axis. A general procedure for determining the variations in these
coefficients has been outlined in [7]. The basic idea is that if the normalization coefficient
is associated with a zero in the UHP, then one expresses the variations in terms of Jost
solutions which are analytically extendible into that half-plane. Let us consider normalization
coefficients in the scattering data for inversion about +∞. To start with, assuming compact
support initially, we need the variations of Sj3 in the LHP and the variations of R3j in the UHP
(for j = 1, 2). Now by (41), we have

δSj3 =
∫ ∞

−∞
�A

j · δQ · �3 dx. (52)

By (14), �A
j is analytic in the UHP while �3 is analytic in the LHP. Thus we want to express

�A
j in terms of Jost functions analytic in the LHP. Using (23), one finds that this combination

is

�A+
j = Sj3

S33
�A−

3 +
2∑


=1

P −
j
�

A−

 . (53)

Using this in (52), from the definition of P − in (20) and then replacing the Jost functions by
the appropriate χ ’s, one obtains

δSj3 = 1

S−
33

∫ ∞

−∞
[Sj3(χ

A− · δQ · χ−)33 + (P − · χA− · δQ · χ−)j3] dx. (54)

Due to (23), the integrand vanishes identically at any zero of S−
33, whence evaluation of this at

a zero of S−
33 requires the use of l’Hopital’s rule. From (48) for g = S−

33, upon replacing the
Jost functions with the appropriate χ ’s, we have

δ
(
S−′

33,k

) = S−′′
33,kδζ

−
k +

(
∂ζ

∫ ∞

−∞
χA− · δQ · χ− dx

)
33,k

. (55)

From (54) and (55), upon using (49) and (51) as needed, we then have

δ(Ck)j3 = δ

(
−Sj3,k

S−′
33,k

)

= −1

S−′
33,k

{∫ ∞

−∞
dx∂ζ

[
1

S−′
33 (ζ )

P −(ζ ) · χA−(x, ζ ) · δQ(x) · χ−(x, ζ )

]
j3

}
k

. (56)

Similarly for the other two normalization constants, for inversion about +∞, we have

δR3j = −
∫ ∞

−∞
�A+

3 · δQ · �−
j . (57)

We now need �−
j in terms of functions analytic in the UHP. This follows from (3):

�−
j = �+

3
R3j

R+
33

+
2∑


=1

�+

P

+

j . (58)
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With this, (57) becomes

δR3j = −1

R+
33

∫ ∞

−∞
[(χA+ · δQ · χ+)33R3j + (χA+ · δQ · χ+ · P +)3j ] dx. (59)

And after more calculations, one finally obtains

δ(Ck)3j = δ

(
R3j,k

R+′
33,k

)

= −1

R+′
33,k

{∫ ∞

−∞
dx∂ζ

[
1

R+′
33(ζ )

χA+(x, ζ ) · δQ(x) · χ+(x, ζ ) · P +(ζ )

]
3j

}
k

. (60)

With this, we have completed the project to determine the variations in the scattering data
(for inversion about +∞). Let us now turn to determining the variations in the potentials when
one perturbs the scattering data.

5. Variations of potentials

To obtain the inverse of the above relationships, we will follow the approach used in
[4, 17], which is based on equation (18). Actually, to obtain these variations, it becomes
more productive if one modifies this equation so as to more directly obtain the needed answer.
One starts this modification with either of the matrix products χA+ · χ− or χA− · χ+. (Note
that the rows of χA± are a linear combination of the rows in (χA±)−1. Whence this form will
contain all the conditions already in χ+ = χ− · T .) As noted earlier, the full inverse scattering
equations, (38) and (39), actually separate into two independent sets of equations and one only
requires one-half of these equations to have a full solution. Thus to find the variations in Q
due to any perturbations of the scattering data, one only needs to use one of these two sets of
scattering data. As we did in the previous section, we shall choose to use the set for inversion
about +∞, which is listed at the end of section 3.

First from (25), observe that the products of χA+ · χ− and χA− · χ+ consist only of the
off-diagonal components of S and R. In χA+ · χ−, the components of S and R which appear
are exactly those needed to construct the reflection coefficients for inversion about +∞. So
once we divide these components by S−

33 or R+
33, as appropriate, we will have the appropriate

reflection coefficients in terms of the Jost functions. Thus to this end, we construct the matrix
G(ζ),

G(ζ) = M+ · χA+ · χ− · M− =

⎡
⎢⎢⎣

1 0 σ13

0 1 σ23

ρ31 ρ32
1

R+
33S

−
33

⎤
⎥⎥⎦ , (61)

where we have taken

M+ =
⎡
⎣1 0 0

0 1 0
0 0 1/R+

33

⎤
⎦ , M− =

⎡
⎣1 0 0

0 1 0
0 0 1/S−

33

⎤
⎦ . (62)

It is interesting to note that, in contrast to (19), the determinant of G in (61) is unity.
Let us now define

F + = M+ · �A+, F− = �− · M−, (63)

each of which is analytic in the appropriate half-plane, except for poles at the zeros of R+
33 or

S−
33, according to their superscripts. With this, from (61), we obtain

F + · F− = e−iζJx · G · eiζJx . (64)
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If we now vary the quantities in (64), we can obtain, for ζ real,

(F +)−1 · δF + + (δF−) · (F−)−1 = � (65)

where

� = (F +)−1 · e−iζJx · δG · eiζJx · (F−)−1. (66)

Now (65) can be viewed as a Riemann–Hilbert problem. Whence with the use of Cauchy’s
theorem, we can extend (F +)−1 · δF + into the UHP. Note that the F’s are basically Jost
functions or their adjoints. G basically consists of reflection coefficients. Once we have
extended (F +)−1 · δF + into the UHP, we may address its asymptotics. From the asymptotics
of δF for large |ζ |, we can then obtain δQ, which will then be related to the perturbations of
the reflection coefficients contained in δG.

Consider the equation f +(ζ ) + f −(ζ ) = �(ζ) where f + = (F +)−1 · δF + and
f − = (δF−) · (F−)−1 are analytic in the appropriate half-plane, except for a possible finite
number of simple poles, with each vanishing like O(1/ζ ) as |ζ | → ∞. Also assume that the
integral of |�(ζ)|, along the real ζ -axis, is finite. Then we have that for ζ in the UHP,

f +(ζ ) = (F +)−1 · δF + = 1

2π i

∫
R

�(ζ ′) dζ ′

ζ ′ − ζ
−

N+∑
k=1

f +
k

ζ +
k − ζ

+
N−∑
k=1

f −
k

ζ−
k − ζ

, (67)

where f +
k are the residues of f +(ζ ) at the kth zero of R+

33 in the UHP while f −
k are the residues

of f −(ζ ) at the kth zero of S−
33 in the LHP.

Now consider this expression for |ζ | → ∞. From (15), (26), (27) and (63), we have

F + = I3 + O(1/ζ ), δF + = i

2ζ
δB(1) + · · · as |ζ | → ∞. (68)

where B(1) is given by (28), from which we have

δB(1) =
⎡
⎣ X X −δQ13

X X −δQ23

δQ31 δQ32 X

⎤
⎦ . (69)

In the limit of |ζ | → ∞ in the UHP, (67) becomes

δB(1) =
∫
R

dζ

π
�(ζ ) − 2i

N+∑
k=1

f +
k + 2i

N−∑
k=1

f −
k , (70)

which relates the variations in Q to the variations in G, f +
k and f −

k , the latter three of which
we can relate to perturbations in the scattering data.

First we calculate �. From (24) and (63), we have

(F +)−1 = 1

R+
33

�+ · P + · (M+)−1, (F−)−1 = 1

S−
33

(M−)−1 · P − · �A−. (71)

There are two formulas which are key to the following result. These are, for ζ real:

χ+ · P + = [
R33χ

−
1 − R31χ

+
3 , R33χ

−
2 − R32χ

+
3 , χ+

3

]
, P − · χA− =

⎡
⎣S33χ

A+
1 − S13χ

A−
3

S33χ
A+
2 − S23χ

A−
3

χA−
3

⎤
⎦ ,

(72)

by which, (61) and (66) give

� =
2∑


=1

χ−

 χA−

3 δσ
3 +
2∑


=1

χ+
3 χA+


 δρ3
. (73)
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Now we need to address the bound states and evaluate the residues, f ±
k . From (62), (63)

and (71), we obtain

f +
k = 1

R+′
33,k

χ+
k · P +

k · (δχA+)k +
R+′′

33,k(
R+′

33,k

)3

(
δR+

33

)
k

(
χ+

3 χA+
3

)
k
− 1(

R+′
33,k

)2

[
∂ζ

(
χ+

3 χA+
3 δR+

33

)]
k
.

(74)

We apply (49) as needed to evaluate the variations and derivatives at ζ = ζ +
k , obtaining

f +
k = 1

R+′
33,k

χ+
k · P +

k · [
δ
(
χA+

k

) − χA+′
k δζ +

k

]
+

(
χ+

3 χA+
3

)
k
δ

(
1

R+′
33,k

)
+

1

R+′
33,k

[
∂ζ

(
χ+

3 χA+
3

)]
k
δζ +

k .

(75)

At a zero of R+
33, (18) and (23) become doubly degenerate, each giving only one condition,

which are

χ+
3,k = χ+

1,kR
+
13,k + χ+

2,kR
+
23,k, χA+

3,k = R+
31,kχ

A+
1,k + R+

32,kχ
A+
2,k . (76)

Using the first equation in (72) to eliminate P +
k and also applying both equations in (76) to

(75), all variations of the Jost functions magically cancel, and we are left with

f +
k =

2∑

=1

(Ck)3


[
∂ζ

(
χ+

3 χA+



)]
k
δζ +

k +
2∑


=1

(
χ+

3 χA+



)
k
(δCk)3
 . (77)

Carrying out the same steps for f −
k , we first have

f −
k = 1

S−′
33,k

(δχ−)k · P −
k · χA−

k +
S−′′

33,k(
S−′

33,k

)3

(
δS−

33

)
k

(
χ−

3 χA−
3

)
k

− 1(
S−′

33,k

)2

[
∂ζ

(
χ−

3 χA−
3 δS−

33

)]
k
, (78)

and then upon expanding the derivatives and variations at ζ = ζ−
k ,

f −
k = 1

S−′
33,k

[
δ
(
χ−

k

) − χ−′
k δζ−

k

] · P −
k · χA−

k +
(
χ−

3 χA−
3

)
δ

(
1

S−′
33,k

)

+
1

S−′
33,k

[
∂ζ

(
χ−

3 χA−
3

)]
k
δζk. (79)

The analogy of (76), at a zero of S−
33, is

χ−
3,k = χ−

1,kS
−
13,k + χ−

2,kS
−
23,k, χA−

3,k = S−
31,kχ

A−
1,k + S−

32,kχ
A−
2,k

′, (80)

which then with the second equation in (72) gives us

f −
k = −

2∑

=1

(Ck)
3
[
∂ζ

(
χ−


 χA−
3

)]
k
δζ−

k −
2∑


=1

(
χ−


 χA−
3

)
k
(δCk)
3. (81)

With this, we have completed the calculations necessary to obtain the variations in the
potentials due to perturbations in the scattering data for inversion about +∞. In the next
section, we shall combine the results in this and the previous section to obtain the inner
products of the SE and ASE as well as the closure relation.
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6. The SE, ASE, their inner products and closure

The SE are the coefficients of δσ
3, δρ3
, δζ +
k , δCk and δCk in the above expressions. Looking

at the various components of the SE in the above expressions, it becomes clear that a simple
labeling according to the components of the Jost functions is quite impractical. The origin of
this ‘irregular’ indexing is due to the occurrence of zeros in the potential matrix Q. So before
proceeding further, let us devise a more simple labeling system for this set which is associated
with inversion about +∞. First, as per (69) and (70), we only have four nontrivial potentials.
And as can be seen from (69), we require only four of the nine components in the 3 × 3 matrix
(70), which are the 13, 23, 31, 32 components. These we could just stack into a column vector,
in an increasing order as per their components, as

δQ(x) =

⎡
⎢⎢⎣

δQ13(x)

δQ23(x)

δQ31(x)

δQ32(x)

⎤
⎥⎥⎦ . (82)

Once we have this order determined, then we can set up each SE as a column matrix, as in
(82). From (69), (70) and (73), we can now identify the individual SE which belong to the
continuous spectrum and from (77) and (81), we can identify those which belong to the bound
state spectra.

For 
 = 1, 2 we can construct

Z−

 (x, ζ ) =

⎡
⎢⎢⎢⎢⎣

χ−
1
χ

A−
33

χ−
2
χ

A−
33

χ−
3
χ

A−
31

χ−
3
χ

A−
32

⎤
⎥⎥⎥⎥⎦ , Z−


,k(x) = Z−



(
x, ζ−

k

)
, Z−

d,k(x) =
2∑


=1

(Ck)
3
[
∂ζZ

−

 (x, ζ )

]
k
,

(83)

Z+

 (x, ζ ) =

⎡
⎢⎢⎢⎣

χ+
13χ

A+

3

χ+
23χ

A+

3

χ+
33χ

A+

1

χ+
33χ

A+

2

⎤
⎥⎥⎥⎦ , Z+


,k(x) = Z+



(
x, ζ +

k

)
, Z+

d,k(x) =
2∑


=1

(Ck)3


[
∂ζZ

+

 (x, ζ )

]
k
.

(84)

Then we have

� · δQ(x) = −
2∑


=1

∫ ∞

−∞

dζ

π

[
Z−


 (x, ζ )δσ
3(ζ ) + Z+

 (x, ζ )δρ3
(ζ )

]

+ 2i
N−∑
k=1

[
Z−

d,k(x)δζ−
k +

2∑

=1

Z−

,k(x)(δCk)
3

]

+ 2i
N+∑
k=1

[
Z+

d,k(x)δζ +
k +

2∑

=1

Z+

,k(x)(δCk)3


]
, (85)

where the matrix � is

� =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎦ . (86)
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Looking at the above, except for the existence of the polarization and the dimension of the
system, these results are not unexpected or surprising, since they agree and correlate with what
we know from the AKNS case [9, 10]. The continuous part also agrees with what was found
earlier in [4] once the proper reductions are applied. This is detailed in the appendix.

Similarly we can define the ASE as row vectors (j = 1, 2)

ZA−
j (x, ζ ) =

2∑
n=1

P −
jn

[
χA−

n1 χ−
33, χ

A−
n2 χ−

33, χ
A−
n3 χ−

13, χ
A−
n3 χ−

23

]
(x, ζ ),

ZA−
d,j,k(x) =

{
∂ζ

[
1

S−′
33,k

ZA−
j (x, ζ )

]}
k

, (87)

ZA−
k (x) = [

χA−
31 χ−

33, χ
A−
32 χ−

33, χ
A−
33 χ−

13, χ
A−
33 χ−

23

] (
x, ζ−

k

)
,

ZA+
j (x, ζ ) =

2∑
n=1

[
χA+

31 χ+
3n, χ

A+
32 χ+

3n, χ
A+
33 χ+

1n, χ
A+
33 χ+

2n

]
P +

nj ,

ZA+
d,j,k(x) =

{
∂ζ

[
1

R+′
33,k

ZA+
j (x, ζ )

]}
k

(88)

ZA+
k (x) = [

χA+
31 χ+

33, χ
A+
32 χ+

33, χ
A+
33 χ+

13, χ
A+
33 χ+

23

] (
x, ζ +

k

)
.

Using (72), one may also show that (for j = 1, 2)

ZA−
j (x, ζ−

k ) = (Ck)j3
(
S−′

33

)
k
ZA−

k (x), ZA+
j

(
x, ζ +

k

) = −(Ck)3j

(
R+′

33

)
k
ZA+

k (x). (89)

Now, using the above-defined adjoint states, (43), (46), (50), (51), (56) and (60) become (for
j = 1, 2)

δσj3(ζ ) = 1(
S−

33

)2

∫ ∞

−∞
ZA−

j (x, ζ ) · δQ(x) dx, (90)

δρ3j (ζ ) = −1(
R+

33

)2

∫ ∞

−∞
ZA+

j (x, ζ ) · δQ(x) dx, (91)

δζ +
k (ζ ) = 1

R+′
33,k

∫ ∞

−∞
ZA+

k (x) · δQ(x) dx, (92)

δζ−
k (ζ ) = −1

S−′
33,k

∫ ∞

−∞
ZA−

k (x) · δQ(x) dx, (93)

δ (Ck)3j (ζ ) = −1

R+′
33,k

∫ ∞

−∞
ZA+

d,j,k(x) · δQ(x) dx, (94)

δ(Ck)j3(ζ ) = −1

S−′
33,k

∫ ∞

−∞
ZA−

d,j,k(x) · δQ(x) dx. (95)

Given the above results, we can obtain the inner products between the SE and the ASE.
Note that by (85), given any linear perturbations in the scattering data, one can obtain
the variations in the potential. Furthermore, all perturbations of the components of the
scattering data are linearly independent. On the opposite side, per (90)–(95), given any linear
perturbations in the potentials, one can obtain the resulting variations in the scattering data.
Again, these four potential components are each taken to be linearly independent. So if we
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take (85) and insert it into (90)–(95), then we must come back to identically the same thing.
Requiring the result of this substitution to be of this form, this gives us, for j, 
 = 1 or 2, that∫ ∞

−∞
dx ZA−

j (x, ζ ) · � · Z−

 (x, ζ ′) = −π

(
S−

33

)2
δ

j


 δ(ζ − ζ ′), (96)

∫ ∞

−∞
dx ZA+

j (x, ζ ) · � · Z+

 (x, ζ ′) = π

(
R+

33

)2
δ

j


 δ(ζ − ζ ′), (97)

∫ ∞

−∞
dx ZA+

k (x) · � · Z+
d,k′(x) = −i

2
R+′

33,kδ
k
k′ , (k, k′ = 1, 2, . . . , N+), (98)

∫ ∞

−∞
dx ZA−

k (x) · � · Z−
d,k′(x) = i

2
S−′

33,kδ
k
k′ , (k, k′ = 1, 2, . . . , N−), (99)

∫ ∞

−∞
dx ZA+

d,
,k(x) · � · Z+

,k′(x) = i

2
R+′

33,kδ
k
k′δ

j


 , (k, k′ = 1, 2, . . . , N+), (100)

∫ ∞

−∞
dx ZA−

d,
,k(x) · � · Z−
j,k′(x) = i

2
S−′

33,kδ
k
k′δ

j


 , (k, k′ = 1, 2, . . . , N−), (101)

where δk′
k is the Kronecker delta and δ(x) is the Dirac delta function. All other possible inner

products vanish.
Now, let us do the opposite, take (90)–(95) and insert these equations into (85). Then

since all the δQ’s are linearly independent and arbitrary for all x, it follows that (
, j = 1, 2)
2∑


=1

∫ ∞

−∞

dζ

π

{
1[

R+
33(ζ )

]2 Z+

 (x, ζ ) · ZA+


 (y, ζ ) − 1[
S−

33(ζ )
]2 Z−


 (x, ζ ) · ZA−

 (y, ζ )

}

− 2i

N−∑
k=1

1

S−′
33,k

[
Z−

d,k(x) · ZA−
k (y) +

2∑

=1

Z−

,k(x) · ZA−

d,
,k(y)

]

+ 2i
N+∑
k=1

1

R+′
33,k

[
Z+

d,k(x) · ZA+
k (y) −

2∑

=1

Z+

,k(x) · ZA+

d,
,k(y)

]
= �δ(x − y),

(102)

which is the closure relation.
Using (89) and the above definitions, one may readily show that for compact support, this

closure relation also has the following representation:
2∑


=1

∫
C

dζ

π

1[
R+

33(ζ )
]2 Z+


 (x, ζ ) · ZA+

 (y, ζ ) −

2∑

=1

∫
C

dζ

π

1[
S−

33(ζ )
]2 Z−


 (x, ζ ) · ZA−

 (y, ζ )

= �δ(x − y), (103)

where C is the standard AKNS contour [8] in the LHP, going from ζ = −∞ on the real ζ -axis
to ζ = +∞ on the real ζ -axis, while going under all zeros of S−

33(ζ ). The contour C is the
standard AKNS contour in the UHP, going from ζ = −∞ on the real ζ -axis to ζ = +∞ on
the real ζ -axis, while going above all zeros of R+

33(ζ ).

7. Summary

What we have done here is to take the procedure outline in [4, 6, 7] and obtained the covering
set of SE and ASE for the degenerate 3 × 3 eigenvalue problem given in (1). We see that this
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covering set is a set of products of the Jost solutions and the adjoint Jost solutions. From this
covering set, upon applying the proper reductions to the potential matrix, Q, and the resulting
symmetries of the scattering matrix, S, and its inverse, R, one can then obtain the SE and ASE
for the Sasa–Satsuma equation [4]. Let us note that this covering set, as it is, is also the SE
and ASE for the VNLS, the continuous spectra part of which has already been detailed in the
appendix of [4]. Note that because the potential elements in the VNLS have been already
treated as being distinct, since q∗ is treated as being different from q, these SE and ASE are
not sums of products. However, there is still a reduction here, wherein symmetries become
imposed on the scattering matrix, S, and its inverse, R. These symmetries then lead to the
proper complex conjugation relations between the potential components.

On the other hand, for the Sasa–Satsuma equation, since the required reductions actually
identify certain potential components as being the negative of others (i.e. Q13 = −Q32 and
Q23 = −Q31), one has the option of using the covering set of SE and ASE given here to
calculate the variations in, say Q13, and also to calculate the variations in Q32. However upon
taking into account the symmetries in scattering data and the Jost functions, one would then
find that the variations in Q32 would be exactly the negative of the previous variation. Thus
even in cases where there are reductions in the potential matrix and corresponding symmetries
in the scattering data, one has the option of also using the covering set of SE and ASE. This is
illustrated in the appendix, where it is shown that upon using the symmetries of the scattering
data corresponding to the reductions for the Sasa–Satsuma equation, from the ones given in
this paper, one may obtain the expressions for SE and ASE given in [4].
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Appendix. Squared eigenfunctions of the Sasa–Satsuma equation through symmetry
reduction

In this appendix, we show how to obtain the SE and ASE of the Sasa–Satsuma equation from
the results in the main text through symmetry reduction. In the Sasa–Satsuma equation, the
potential matrix Q is

Q =
⎛
⎝ 0 0 u

0 0 u∗

−u∗ −u 0

⎞
⎠ , (A.1)

i.e.

Q13 = −Q32 = Q∗
23 = −Q∗

31. (A.2)

This matrix has two symmetries:

Q† = −Q, (A.3)

and

σQσ = Q∗, σ =
⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠ . (A.4)
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Here the superscript ‘†’ represents the Hermitian of a matrix. Due to these two symmetries, it
is easy to show that the Jost functions and the scattering matrix have the following symmetries
[4]:

�†(ζ ∗) = �−1(ζ ), �†(ζ ∗) = �−1(ζ ), (A.5)

�±(ζ ) = σ�∗
±(−ζ ∗)σ, �±(ζ ) = σ�∗

±(−ζ ∗)σ, (A.6)

S†(ζ ∗) = S−1(ζ ), (A.7)

and

S(ζ ) = σS∗(−ζ ∗)σ. (A.8)

Consequently,

ρ31(ζ ) = σ ∗
13(ζ ), ρ32(ζ ) = σ ∗

23(ζ ), ζ ∈ R, (A.9)

ρ31(ζ ) = σ23(−ζ ), ρ32(ζ ) = σ13(−ζ ), ζ ∈ R, (A.10)

σ�−
1 (ζ ) = �A+

2 (−ζ ), σ�−
2 (ζ ) = �A+

1 (−ζ ), σ�+
3 (ζ ) = �A−

3 (−ζ ), ζ ∈ R. (A.11)

Now we use these symmetries to simplify expansions (85) and (90)–(95). For simplicity, we
consider this reduction in the absence of bound states (the case with bound states proceeds
similarly). In the absence of bound states, expansion (85) becomes

� · δQ(x) = −
2∑


=1

∫ ∞

−∞

dζ

π

[
Z−


 (x, ζ )δσ
3(ζ ) + Z+

 (x, ζ )δρ3
(ζ )

]
. (A.12)

Using the symmetries of reflection coefficients (A.9) and (A.10), this expansion reduces to

� · δQ(x) = −
∫ ∞

−∞

dζ

π

{ [
Z−

1 (x, ζ ) + Z+
2 (x,−ζ )

]
δσ13(ζ )

+
[
Z+

1 (x, ζ ) + Z−
2 (x,−ζ )

]
δρ31(ζ )

}
. (A.13)

Using the symmetries of Jost functions (A.11) as well as definitions (83)–(84), we get

Z−
1 (x, ζ ) + Z+

2 (x,−ζ ) =

⎡
⎢⎢⎢⎢⎣

χ−
11χ

A−
33 + χ−

31χ
A−
32

χ−
21χ

A−
33 + χ−

31χ
A−
31

χ−
31χ

A−
31 + χ−

21χ
A−
33

χ−
31χ

A−
32 + χ−

11χ
A−
33

⎤
⎥⎥⎥⎥⎦ (x, ζ ), (A.14)

and

Z+
1 (x, ζ ) + Z−

2 (x,−ζ ) =

⎡
⎢⎢⎢⎢⎣

χ+
13χ

A+
13 + χ+

33χ
A+
12

χ+
23χ

A+
13 + χ+

33χ
A+
11

χ+
33χ

A+
11 + χ+

23χ
A+
13

χ+
33χ

A+
12 + χ+

13χ
A+
13

⎤
⎥⎥⎥⎥⎦ (x, ζ ). (A.15)

Due to the above-mentioned symmetries, the last two equations in expansion (A.13) are
redundant and can be dropped. Thus that expansion becomes[

δQ13(x)

δQ23(x)

]
= −

∫ ∞

−∞

dζ

π
[Z−(x, ζ )δσ13(ζ ) + Z+(x, ζ )δρ31(ζ )], (A.16)
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where

Z−(x, ζ ) =
[
χ−

11χ
A−
33 + χ−

31χ
A−
32

χ−
21χ

A−
33 + χ−

31χ
A−
31

]
(x, ζ ), Z+(x, ζ ) =

[
χ+

13χ
A+
13 + χ+

33χ
A+
12

χ+
23χ

A+
13 + χ+

33χ
A+
11

]
(x, ζ ). (A.17)

These functions Z±(x, ζ ) are the SE of the Sasa–Satsuma equation. These SE are different
from the ones derived in [4] because expansion (A.16) above is in terms of (δσ13, δρ31), while
the potential expansion in [4] was in terms of (δσ31, δρ13). This difference corresponds to the
fact that the variation calculations in this paper are for inversion about x = +∞, while those
in [4] were for inversion about x = −∞.

Expansions (90)–(95) can be similarly reduced by symmetry. Using relations (A.2), we
see that equations (90)–(91) become

δσ13(ζ ) = 1(
S−

33

)2

∫ ∞

−∞
ZA−(x, ζ ) ·

[
δQ13(x)

δQ23(x)

]
dx, (A.18)

δρ31(ζ ) = −1(
R+

33

)2

∫ ∞

−∞
ZA+(x, ζ ) ·

[
δQ13(x)

δQ23(x)

]
dx, (A.19)

where

ZA− =
2∑

n=1

P −
1n

[
χA−

n1 χ−
33 − χA−

n3 χ−
23, χ

A−
n2 χ−

33 − χA−
n3 χ−

13

]
, (A.20)

and

ZA+ =
2∑

n=1

[
χA+

31 χ+
3n − χA+

33 χ+
2n, χ

A+
32 χ+

3n − χA+
33 χ+

1n

]
P +

n1. (A.21)

These functions ZA±(x, ζ ) are the ASE of the Sasa–Satsuma equation. They are the
counterparts of the ASE derived in [4], except that the ASE above are for the formulas
(δσ13, δρ31), while the ASE in [4] were for the formulas (δσ31, δρ13).
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