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Abstract

Three iteration methods are proposed for the computation of eigenvalues and eigenfunctions in the linear stability of
solitary waves. These methods are based on iterating certain time evolution equations associated with the linear stability
eigenvalue problem. The first method uses the fourth-order Runge–Kutta method to iterate the pre-conditioned linear sta-
bility operator, and it usually converges to the most unstable eigenvalue of the solitary wave. The second method uses the
Euler method to iterate the ‘‘square” of the pre-conditioned linear stability operator. This method is shown to converge to
any discrete eigenvalue in the stability spectrum. The third method is obtained by incorporating the mode elimination tech-
nique into the second method, which speeds up the convergence considerably. These methods are applied to various exam-
ples of physical interest, and are found to be efficient, easy to implement, and low in memory usage.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In the study of non-linear waves, solitary waves and their linear stability properties play important roles. In
integrable systems, solitary waves (i.e. solitons) admit analytical expressions, and they are stable against small
perturbations. In non-integrable systems, however, solitary waves generally do not admit analytical expres-
sions, and they can be either stable or unstable depending on the wave equations as well as solitary wave
parameters. Numerical computations of solitary waves have had a long history, and a number of numerical
methods have been proposed (see [1–9] for instance). On the computation of linear stability of solitary waves,
however, the situation is less satisfactory. A prevalent numerical method for the stability analysis is to simulate
the evolution of a perturbed solitary wave in the non-linear wave equation, or simulate the linearized equation
of the non-linear wave equation around the solitary wave, using standard evolution methods such as the
pseudo-spectral method, the split-step method, or the finite-difference method. This method can determine
if a solitary wave is stable or not, and can even give a rough estimate of the most unstable eigenvalue. But
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this method is quite slow for getting a good approximation for the unstable eigenvalue, especially when the
instability is weak. In addition, it is incapable of obtaining less unstable eigenvalues and stable eigenvalues
in the stability spectrum. Less unstable eigenvalues may become most unstable upon parameter variation,
and stable eigenmodes can induce various types of long-lasting shape oscillations to the solitary wave [10],
thus such eigenvalues are often desirable as well. To obtain good approximations for eigenvalues in the sta-
bility spectrum, two methods are currently available. One is the shooting method [2]. This method is highly
accurate and easy to implement, but it works only for one-dimensional (1D) problems or problems which
can be reduced to 1D problems [2]. The other method is to discretize the linear stability operator (either by
finite-difference, spectral differentiation [11], or spectral collocation [12] methods), and turn it into a matrix
eigenvalue problem. The resulting matrix is non-Hermitian in general, and is often dense as well if spectral
discretization is employed. There is a rich literature on eigenvalue computations of a general square matrix.
If all eigenvalues of the matrix are desired, the most successful numerical algorithm is probably the implicitly
shifted QR algorithm (see [13] and references therein for the related theory and implementations). If the matrix
is very large and only a small set of eigenvalues are needed, the most successful numerical algorithm is prob-
ably the implicitly restarted Arnoldi algorithm [14,15]. Both algorithms are very efficient and have been built
in softwares such as MATLAB and ARPACK [16]. This matrix eigenvalue method is attractive as it can give
all (or many) eigenvalues in the linear stability spectrum at once. The main restriction of this method is often
the computer memory. For instance, we have found that for the 2D and 3D linear stability problems consid-
ered in this paper (see Examples 2 and 3 in Section 4), in order to get high accuracy in eigenvalues, the result-
ing matrix with spectral discretization was dense and very large, which often caused MATLAB to run out of
memory on our PC with 4 GB RAM. This motivates us to develop alternative numerical methods for linear
stability eigenvalues which make the memory usage minimal but the computing speed maximal.

In this paper, we propose three new iteration methods for the computation of eigenvalues and eigenfunc-
tions in the linear stability of general solitary waves. These methods are based on iterating certain pre-condi-
tioned time evolution equations associated with the linear stability eigenvalue problem. The first method uses
the fourth-order Runge–Kutta method to evolve the pre-conditioned linear stability operator, and it usually
converges to the most unstable eigenvalue of the solitary wave. The second method uses the Euler method to
evolve the ‘‘square” of the pre-conditioned linear stability operator. This method will be shown to converge to
any discrete eigenvalue in the stability spectrum. The third method is to incorporate the mode elimination
technique [8,17] into the second method, which speeds up the convergence considerably. These three methods
are applied to various examples of physical interest, and are found to be robust, time-efficient, highly accurate,
and simple to implement (for any spatial dimension). When compared to the matrix eigenvalue method, the
memory usage of these new methods is several orders of magnitude smaller, hence they can tackle higher-
dimensional stability problems on any modest PC (while the matrix eigenvalue method may often have diffi-
culties due to memory limitations). These new methods are particularly suitable for tracing eigenvalues and
studying their bifurcations as solitary wave parameters (such as the propagation constant) continuously vary.
In the Appendix, a sample MATLAB code is attached to demonstrate the simple implementation of these
methods.

2. The original operator iteration method

Consider a general non-linear wave equation which admits solitary wave solutions. To study the linear sta-
bility of such solitary waves, the non-linear wave equation is linearized around these waves, and a linear eigen-
value problem results:
LW ¼ kW: ð2:1Þ

Here L is the linearization operator (which is usually non-Hermitian), k is the eigenvalue, WðxÞ is the corre-
sponding eigenfunction, x ¼ ðx1; x2; . . . ; xN Þ is the spatial coordinates, and N is the number of spatial dimen-
sions. For solitary waves (which decay to zero at large distances), the continuous spectrum of L is often easy to
determine by examining the asymptotic operator Ljx!1. Thus, we focus on the computation of discrete
eigenvalues of L in this paper. Eigenvalues with positive real parts are unstable eigenvalues. The other eigen-
values are stable. Purely imaginary eigenvalues are called internal modes.
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In this section, we develop an iteration method to compute the eigenmodes in Eq. (2.1). The idea is to
evolve the following time evolution equation
Wt ¼M�1ðL� kÞW; ð2:2Þ

where M is a positive definite and Hermitian operator, and k is updated from W at each step of the compu-
tation. Operator M is introduced to speed up convergence of the computation, and will be called the acceler-
ation operator. Its role is analogous to the pre-conditioning matrix for the iterative solution of large linear
systems. Without M, the evolution operator L� k usually contains very large eigenvalues (which are actually
infinite before discretization). This severely restricts the time stepsize one can use to compute the evolution
equation (2.2). The purpose of introducing M is to bring all eigenvalues of the new evolution operator
M�1ðL� kÞ to Oð1Þ. This way, the time stepsize for computing Eq. (2.2) can be much larger, which then sig-
nificantly speeds up the convergence of iterations (see [9] for details). If the solution of the evolution equation
(2.2) approaches a stationary state W, i.e. M�1ðL� kÞW ¼ 0, then since M is positive definite, we have
LW ¼ kW, thus ðk;WÞ is an eigenmode of Eq. (2.1). The simplest way to evolve Eq. (2.2) is to use the Euler
method [9]. However, we found that the Euler method diverges generically for any eigenvalue of Eq. (2.1).
The reason for it will be explained later in this section. To overcome this difficulty, we propose to use the
fourth-order Runge–Kutta method to evolve Eq. (2.2) instead. The resulting iteration method for the eigen-
value problem (2.1) then is
Wnþ1 ¼ Wn þ
1

6
ðK1 þ 2K2 þ 2K3 þ K4ÞDt; ð2:3Þ
where
K1 ¼ F ðWnÞ; ð2:4Þ

K2 ¼ F ðWn þ
1

2
K1DtÞ; ð2:5Þ

K3 ¼ F ðWn þ
1

2
K2DtÞ; ð2:6Þ

K4 ¼ F ðWn þ K3DtÞ; ð2:7Þ
function F is defined as
F ðWÞ �M�1ðL� kÞW; ð2:8Þ

k is computed from W by
k ¼ hM
�1W;LWi

hM�1W;Wi
; ð2:9Þ
the inner product is the standard one in the square-integrable functional space, i.e.
hG1;G2i ¼
Z 1

�1
Gy1 �G2 dx; ð2:10Þ
ð�Þy denotes the Hermitian of the underlying quantity, and Dt ð> 0Þ is an auxiliary ‘‘stepsize” parameter. Since
the evolution equation (2.2) is based on the original eigenvalue Eq. (2.1), we call this method the original oper-
ator iteration method (or OOM for brevity).

To analyze the convergence properties of this OOM, we write
Wn ¼ Wþ eWn; eWn � 1; ð2:11Þ
where eWn is the error at the nth iteration. Substituting this formula into (2.9), we find that
kðWnÞ ¼
hM�1Wn;LWni
hM�1Wn;Wni

¼ kþ hM
�1W;L1

eWni
hM�1W;Wi

þOð eW2
nÞ; ð2:12Þ
where L1 � L� k. Thus, from (2.4) and (2.8), we see that
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K1 ¼M�1½L� kðWnÞ�Wn ¼ L0
eWn þOð eW2

nÞ; ð2:13Þ

where operator L0 is defined as
L0G ¼M�1 L1G� hM
�1W;L1Gi
hM�1W;Wi

W

� �
: ð2:14Þ
Similar calculations show that
K2 ¼ L0
eWn þ

1

2
DtL0

eWn

� �
þOð eW2

nÞ; ð2:15Þ
and so on. When these formulas are inserted into (2.3) and quadratic as well as higher-order terms in eWn ne-
glected, we find that the error satisfies the following linear iteration equation
eWnþ1 ¼ LOOM

eWn; ð2:16Þ

where the iteration operator LOOM is
LOOM ¼ 1þ L0Dt þ 1

2!
ðL0DtÞ2 þ 1

3!
ðL0DtÞ3 þ 1

4!
ðL0DtÞ4: ð2:17Þ
Notice that L1W ¼ L0W ¼ 0, thus zero is always a discrete eigenvalue of L0. Assuming that the eigenvalue k of
L is simple (which is the generic case), then the kernel of L0 only contains the eigenfunction W, which does not
affect the convergence of OOM iterations.1 Thus, OOM would converge if and only if for all non-zero eigen-
values k0 of L0, k0Dt lies inside the stability region DRK4 of the fourth-order Runge–Kutta method
DRK4 ¼ z : 1þ zþ 1

2!
z2 þ 1

3!
z3 þ 1

4!
z4

���� ���� < 1

� �
; ð2:18Þ
i.e.
k0 2
1

Dt
DRK4 for any non-zero k0 of L0: ð2:19Þ
Below, we demonstrate the convergence of this OOM (2.3)–(2.9) by an example.

Example 1. Consider the following 1D cubic-quintic non-linear Schrödinger (NLS) equation
iU t þ U xx � jU j2U þ jU j4U ¼ 0: ð2:20Þ

Here the cubic non-linearity is of self-defocusing type, and the quintic non-linearity is of self-focusing type.
This equation admits the following solitary waves [18]
Uðx; tÞ ¼ uðxÞeilt; ð2:21Þ

where
uðxÞ ¼ 4Bl
cosh 2

ffiffiffi
l
p

x� B

� �1
2

; B ¼ 1þ 16

3
l

� ��1
2

; ð2:22Þ
and l > 0 is a propagation constant. To study the linear stability of these solitary waves, we perturb them as
Uðx; tÞ ¼ eiltfuðxÞ þ ½vðxÞ � wðxÞ�ekt þ ½vðxÞ þ wðxÞ�� ek�tg; ð2:23Þ

where the superscript ‘‘*” represents complex conjugation, and v; w� 1. Substituting this perturbation into
Eq. (2.20) and linearizing, the resulting linear stability eigenvalue problem is Eq. (2.1) with
L ¼ �i
0 oxx � l� u2 þ u4

oxx � l� 3u2 þ 5u4 0

� �
; ð2:24Þ
the non-generic case where the eigenvalue k of L is not simple, the generalized eigenfunction of k may exist in the kernels of L0 and
In such a case, the OOM will not converge to the eigenfunction of k. A similar phenomenon occurs for the SOM in Section 3 (see
k 1 there).
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and W is the transpose of ðv;wÞ. Below, we take l ¼ 1 in the solitary wave (2.22). For this wave, the slope of
the power curve P ðlÞ ¼

R
u2 dx is negative, thus L has a real unstable eigenvalue [18,19], which is found to be

ku ¼ 2:1612. Zero and �ku are stable discrete eigenvalues of L. The continuous spectrum of L is
ið�1;�l� [ i½l;1Þ on the imaginary axis. This spectrum structure is shown in Fig. 1a. To compute the unsta-
ble eigenvalue ku by the OOM, we take the acceleration operator M as
Fig. 1.
the un
the un
M ¼ ðc� oxxÞdiagð1; 1Þ; ð2:25Þ

with c ¼ 2:4. Then the spectrum of L0, computed by the matrix eigenvalue method, is shown in Fig. 1b. The
continuous spectrum of L0 consists of the two straight-line segments between points �i and ð�ku � ilÞ=c. The
discrete spectrum of L0 contains zero and a number of eigenvalues on the left half of the complex plane. It is
easy to check that for any 0 < Dt < 2

ffiffiffi
2
p

, all non-zero eigenvalues of L0 lie inside the region DRK4=Dt. To illus-
trate, the region DRK4=Dt with Dt ¼ 2:3 is also displayed in Fig. 1b. Clearly, the non-zero spectrum of L0 lies
entirely inside this region, thus OOM iterations converge to the eigenvalue ku. To numerically compute this
eigenvalue, we take the x interval as ½�10; 10�, discretized by 128 grid points. The spatial derivatives in the
OOM as well as M�1 are computed using the pseudo-spectral method (i.e. discrete Fourier transform). Start-
ing from the initial condition
W0 ¼
v0

w0

� �
¼ �0:3ð1� 2x2Þe�x2

i e�x2

" #
ð2:26Þ
and with Dt ¼ 2:3, we find that OOM iterations quickly converge to the eigenmode of ku. The numerically
obtained eigenfunction is displayed in Fig. 1c. Here vðxÞ is purely real, and wðxÞ purely imaginary. The error
of the eigenvalue versus the number of iterations is shown in Fig. 1d. Here the error is defined as jkn � kn�1j,
which is the difference between successive eigenvalues during iterations. We see that this error drops below
10�10 in only 40 iterations, which is very fast.
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(a) Spectrum of the linearization operator L for the solitary wave (2.22) in Eq. (2.20) with l ¼ 1; (b) spectrum of operator L0 for
stable eigenvalue ku marked by an arrow in (a) (with c ¼ 2:4); the dashed line is the boundary of region DRK4=Dt with Dt ¼ 2:3; (c)
stable eigenfunction ðv;wÞ of ku; (d) error of the eigenvalue versus the number of OOM iterations for this ku.
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To test the sensitivity of the OOM to scheme parameters c and Dt, we have tried a wide range of these
values in the above example. We find that the OOM converges to this unstable eigenvalue for any c > 0 when
Dt is below a certain c-dependent threshold. In other words, the OOM is insensitive to the choices of c and Dt
values. We also find that the c and Dt values used above (i.e. c ¼ 2:4; Dt ¼ 2:3) give near-optimal convergence
rate. If other non-optimal ðc;DtÞ values are used, as long as they are not far from the optimal values, then the
OOM will converge at a rate comparable to the optimal one. For instance, if we take c ¼ 2 and Dt ¼ 2:2, then
the error would drop below 10�10 in 41 iterations; and if we take c ¼ 2 and Dt ¼ 2, then the error would drop
below 10�10 in 66 iterations. This behavior can be theoretically explained, see Fig. 1 in [8] or Fig. 3 in [9] for
details. We have also tested the sensitivity of the OOM to the initial condition W0. We find that if W0 is
reasonably close to the exact eigenfunction W, then the OOM will converge to W. In the Appendix, a sample
MATLAB code for this example is included. This code shows that the OOM algorithm is quite simple to
implement. The reader can run this code and change its parameters ðc;DtÞ or initial conditions to verify the
fast speed and robustness of this algorithm.

In addition to the robustness and simple implementation, an important advantage of the OOM is its easy
extension from lower to higher spatial dimensions, and this extension does not prolong the length of the
MATLAB code. For instance, to extend the MATLAB code in the Appendix from one dimension to higher
dimensions, the main change is just to replace the discrete Fourier transform commands ‘‘fft” and ‘‘ifft” in the
code by their higher-dimensional counterparts ‘‘fftn” and ‘‘ifftn”. This contrasts the matrix eigenvalue method
where one discretizes the stability operator L and turns Eq. (2.1) into a matrix eigenvalue problem. In this
matrix method, the buildup of the matrix differs significantly from a lower dimension to a higher one
(especially with spectral discretizations [11,12]). In addition, this matrix-buildup can be a time-consuming
process by itself in higher dimensions (one may take the spectral collocation method as an example [12]). Thus,
the easy implementation of the OOM in high spatial dimensions is a valuable property for applications.
Another advantage of the OOM is its high accuracy. Since this method is compatible with the pseudo-spectral
method for the computation of spatial derivatives (see Example 1), the accuracy of the OOM is spectral.

The most important advantage of the OOM over the matrix eigenvalue method is probably its low use of
computer memory. The OOM only iterates the eigenfunction on the spatial grid. Thus, if N grid points are
used, the memory usage of the OOM would be only OðNÞ. In the matrix eigenvalue method, however, one
needs to build up a N 	 N matrix. If spectral discretization [11,12] is used to get the same spectral accuracy of
the OOM, the resulting matrix would be dense, hence the memory usage would be OðN2Þ.2 For one-
dimensional problems such as Example 1, this memory issue is often insignificant since the memory usage is
generally quite small. For instance, for N ¼ 128 as used in this example, the memory usage of the matrix
eigenvalue method with spectral discretization would be only OðN2Þ 
 Oð104Þ. However, this memory issue
would become critical in higher spatial dimensions. For instance, in Example 2 of Section 4 where the problem
is three-dimensional, the number of grid points we take is N ¼ 48	 48	 48 
 105. In this case, the matrix
eigenvalue method with spectral discretization would result in a dense 105 	 105 matrix, which cannot be
handled by most PCs currently available. For such problems, the OOM has a distinctive advantage. We will
comment on this issue again in Example 3 of Section 4.

The spectrum of operator L0 in Fig. 1b also explains why when the Euler method is used to evolve Eq. (2.2),
iterations always diverge. With the Euler method, the convergence condition is that all non-zero eigenvalues k0

of L0 lie inside the region DEuler=Dt, where DEuler ¼ fz : j1þ zj < 1g is the stability region of the Euler method.
Obviously, for the spectrum of L0 in Fig. 1b, this condition is violated. Indeed, the continuous eigenvalues �i
in the spectrum of L0 can never lie inside DEuler=Dt for any Dt. Thus, Euler iterations always diverge. The
advantage of the fourth-order Runge–Kutta method is that it has a larger stability region DRK4, and this
region contains a good portion of the imaginary axis. This makes it possible for the convergence condition
(2.19) to be met for the spectrum of L0 in Fig. 1b.

In Example 1, when OOM is used to compute the stable eigenvalue �ku of L, it is found to diverge. This
phenomenon is quite general. Our extensive testing of the OOM on various equations shows that the OOM
2 If the finite-difference discretization is used, even though the resulting matrix is often sparse, but to reach the same accuracy, the
number of grid points must be much larger, which often demands more memory to store the matrix, not less.
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often converges to the most unstable eigenvalue of L (see additional examples in Section 4), but often diverges
for L’s less unstable eigenvalues and stable eigenvalues. This can be heuristically understood as follows. For
the most unstable eigenvalue k of L, all eigenvalues of L1 lie on the left half of the complex plane. This tends to
make the eigenvalues of L0 to lie on the left half of the complex plane as well when M is positive definite and
Hermitian. Hence with Dt below a certain threshold value, condition (2.19) can be met, resulting in conver-
gence of the OOM. For less unstable and stable eigenvalues k, however, L1 has eigenvalues lying on the right
half of the complex plane. This often makes L0 to have eigenvalues on the right half of the complex plane as
well. In such a case, condition (2.19) is often violated, leading to divergence of the OOM.

Since the OOM usually diverges for less unstable and stable eigenvalues of L, and may diverge for the most
unstable eigenvalue of L as well in less common occasions, this motivates us to propose additional iteration
methods which can converge to any discrete eigenvalue in the stability spectrum of L. This will be done in the
next section.

3. The squared-operator and modified squared-operator iteration methods

In this section, we propose two additional iteration methods for the eigenvalue problem (2.1) which can
converge to any discrete eigenvalue in the stability spectrum. The ideas behind these methods are based on
iterating a ‘‘squared-operator” equation rather than (2.2), similar to those developed in Ref. [8] for solitary
wave computations. However, important differences exist between the proposed schemes here and those in
Ref. [8] due to the linear nature of the eigenvalue problem (2.1), as we will see below.

To develop these iteration methods, we consider the new evolution equation
Wt ¼ �M�1L
y
1M�1L1W; ð3:1Þ
where L1 is defined below Eq. (2.12), k is updated from W by formula (2.9), and M is an acceleration operator.
The above evolution operator is the ‘‘square” of the original evolution operator in Eq. (2.2). Unlike the ori-
ginal operator, all eigenvalues of this squared-operator are real and non-positive (see below), hence the Euler
method can be used to iterate Eq. (3.1) without causing divergence. The resulting method, called the squared-
operator iteration method (SOM), for the eigenvalue problem (2.1) is
Wnþ1 ¼ Wn �M�1Ly1M�1L1WjW¼Wn; k¼kn
Dt: ð3:2Þ
Here kn is given by formula (2.9) with W replaced by Wn. This method resembles a similar one in Ref. [8] for
solitary wave computations, except that k here is unknown and needs to be updated by formula (2.9), while it
was known and fixed in Ref. [8].

Unlike the OOM in the previous section, the above SOM can converge to any discrete eigenvalue of oper-
ator L under mild conditions. This result is summarized in the following theorem.

Theorem 1. Let k be any non-embedded discrete eigenvalue of operator L. If k is simple, or is multi-fold but with

equal geometric and algebraic multiplicities, then the SOM (3.2) converges to this eigenvalue if Dt < Dtmax, and

the initial condition W0ðxÞ is sufficiently close to the exact eigenfunction WðxÞ. Here Dtmax ¼ �2=Kmin, where

Kmin is the minimum eigenvalue of operator LSOM defined in Eq. (3.4). If Dt > Dtmax, this SOM diverges.

Proof. We use the linearization technique to prove this theorem. Substituting (2.11) into (3.2), utilizing (2.12),
and neglecting quadratic and higher-order terms in eWn, we find that the error eWn satisfies the following linear
iteration equation
eWnþ1 ¼ ð1þ LSOMDtÞ eWn; ð3:3Þ

where the iteration operator LSOM is
LSOMG ¼ �M�1Ly1M�1 L1G� hM
�1W;L1Gi
hM�1W;Wi

W

� �
: ð3:4Þ
Since M is Hermitian and positive definite, we can rewrite LSOM as
LSOM ¼M�1=2LhM1=2; ð3:5Þ
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where
LhG ¼ �bLyh bLhG� h
bW; bLhGi
h bW; bWi bW !

; ð3:6Þ

bLh ¼M�1=2L1M�1=2; bW ¼M�1=2W: ð3:7Þ
It is easy to check that Lh is Hermitian and semi-negative definite. Since the iteration operator LSOM is similar
to Lh [see (3.5)], we find that the eigenvalues K of LSOM are all real and non-positive, and its eigenfunctions
form a complete set in the square-integrable functional space. Then when the error eWn is expanded into this
complete set of eigenfunctions, we see from Eq. (3.3) that each K-eigenmode component in the error eWn is
proportional to ð1þ KDtÞn. If Dt > Dtmax, where Dtmax is given in the theorem, 1þ KminDt < �1, thus itera-
tions diverge. If Dt < Dtmax, all eigenmode components of LSOM with non-zero eigenvalues K will decay.
Regarding eigenfunctions G of LSOM with zero eigenvalues, they satisfy the equation
LhM1=2G ¼ 0: ð3:8Þ

Taking the inner product of this equation with M1=2G and using the Cauchy–Schwartz inequality, we get
L1G ¼ bW; ð3:9Þ

where b is a constant. But due to our assumption, k is either simple, or multi-fold with equal geometric and
algebraic multiplicities, thus L has no generalized eigenfunctions at eigenvalue k. Consequently, Eq. (3.9) can
only hold when b ¼ 0. In other words, G ¼ W. This eigenfunction of LSOM does not affect the convergence of
iterations. Thus Theorem 1 is proved. h

Remark 1. If eigenvalue k in Eq. (2.1) is multi-fold with unequal geometric and algebraic multiplicities, the
SOM (3.2) will not converge. The reason is that in this case, there exist generalized eigenfunctions G of oper-
ator L at eigenvalue k, which satisfy Eq. (3.9) with b 6¼ 0. These generalized eigenfunctions are also in the ker-
nel of the iteration operator LSOM, thus their components in the error eWn will not decay with iterations. As a
result, iterations will not converge to the eigenfunction W.

The SOM (3.2), even though always convergent, can be slow sometimes (see examples in Section 4). To
improve its convergence speed, we apply a mode elimination technique to it [8,17]. The idea of this technique is
to construct a modified iteration method so that the slowest-decaying eigenmode in the original method is
eliminated, hence convergence is improved. Applying that technique to the SOM (3.2), we obtain the following
modified squared-operator method (MSOM) for Eq. (2.1):
Wnþ1 ¼ Wn � M�1L
y
1M�1L1W� anhGn;L

y
1M�1L1WiGn


 �
W¼Wn; k¼kn

Dt; ð3:10Þ
where kn is given by formula (2.9) with W replaced by Wn,
Gn ¼ Wn �Wn�1 ð3:11Þ

is the difference between successive iterations, and
an ¼
1

hMGn;Gni
� 1

hL1Gn;M
�1L1GniDt

: ð3:12Þ
This MSOM resembles a similar method in Ref. [8] for solitary wave computations, except that k here needs to
be updated by formula (2.9) during each iteration. This MSOM delivers faster convergence than the SOM
(3.2), as we will show in Section 4 below.

Regarding the implementation of this MSOM, we note that in the first iteration, since G0 is not yet
available, we take a0 ¼ 0.

The SOM and MSOM presented above share most of the advantages of the OOM. For instance, they are
also highly accurate, simple to implement in any spatial dimension, and their memory usage is very low. In the
next section, we will apply these three proposed methods to two examples of physical interest, and compare
their performances.
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4. Numerical examples

In this section, we use the above iteration methods to compute stability eigenmodes of solitary waves in two
physical examples. These examples are in two or three spatial dimensions, hence their eigenmodes are difficult to
compute by the old methods. However, we will show that these new methods can handle them easily and
efficiently.

Example 2. Consider the 3D NLS equation with a harmonic potential,
Fig. 2.
spectru
the SO
iU t þ DU þ jU j2U � V ðx; y; zÞU ¼ 0; ð4:1Þ

where D ¼ oxx þ oyy þ ozz, and V ðx; y; zÞ ¼ x2 þ y2 þ 0:1z2 is a potential term. This equation governs the mean-
field wave function of Bose–Einstein condensates in a magnetic potential and is called the Gross–Pitaevskii
equation [20]. The harmonic potential here has a cigar-shape: it stretches longer along the z direction than
along the transverse ðx; yÞ directions. This type of potential is common in experiments on Bose–Einstein con-
densates. Eq. (4.1) admits a family of fundamental solitons
Uðx; y; z; tÞ ¼ uðx; y; zÞeilt; ð4:2Þ

where uðx; y; zÞ > 0. The soliton at l ¼ �0:5 is displayed in Fig. 2a (it was obtained by the squared-operator
methods developed in [8]). Plotted here is the half-amplitude surface of the soliton, i.e. the surface of
ðx; y; zÞ : uðx; y; zÞ ¼ 1

2
uð0; 0; 0Þ


 �
, where uð0; 0; 0Þ is the amplitude of the soliton, which is 3.2712 here. This sol-

iton has an almost circular shape inside the cigar-shape potential.
Now we consider the stability spectrum of this soliton. Perturbing this soliton in a form analogous to Eq.

(2.23), we find that the eigenvalue problem for this soliton is Eq. (2.1) with
L ¼ �i
0 D� lþ u2 � V

D� lþ 3u2 � V 0

� �
: ð4:3Þ
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(a) A 3D solitary wave in Eq. (4.1) with l ¼ �0:5; displayed is its half-amplitude surface; (b) some eigenvalues in the stability
m of (a); (c) error diagrams of the OOM and MSOM for the unstable eigenvalue ku ¼ 1:5670 marked in (b); (d) error diagrams of
M and MSOM for the internal mode ks ¼ 2:0000i marked in (b).
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For this soliton, P 0ðlÞ < 0, thus it has one real unstable eigenvalue [18,19], which is found to be ku ¼ 1:5670. It
also has a zero eigenvalue, a stable eigenvalue �ku, and an infinite number of internal modes such as
ks ¼ 2:0000i. These eigenvalues are displayed in Fig. 2b.

Next we demonstrate the computation of this unstable eigenvalue ku and internal mode ks using the newly
proposed methods. We take the computational domain as �4 6 x; y 6 4, and �5 6 z 6 5, discretized by 48
grid points along each direction. The acceleration operator M is taken as
M ¼ ðc� DÞdiagð1; 1Þ; c > 0: ð4:4Þ

The spatial derivatives as well as M�1 are computed by the discrete Fourier transform. For ku, the initial con-
dition is taken as
W0 ¼
�0:6ð1� 2z2Þe�2ðx2þy2þz2Þ

i e�2ðx2þy2þz2Þ

" #
: ð4:5Þ
For this unstable eigenvalue, all the three proposed methods can converge, and performances of the OOM and
MSOM are shown below (SOM is slower than these two methods). In the OOM, we take ðc;DtÞ ¼ ð12; 1:35Þ,
while in the MSOM, we take ðc;DtÞ ¼ ð10; 0:66Þ. These parameter choices are near-optimal for the underlying
method. At these scheme parameters, the error diagrams of iterations are plotted in Fig. 2c. We see that the
error jkn � kn�1j drops below 10�10 in about 350 and 1900 iterations for the OOM and MSOM, respectively
(the computing times are 14 and 50 minutes in MATLAB on our PC). Thus, the OOM converges faster than
the MSOM for this computation. For the internal mode ks ¼ 2:0000i, the OOM does not converge, while the
SOM and MSOM do. For this eigenvalue, we take the initial condition as
W0 ¼
x e�2ðx2þy2þz2Þ

0:5x e�2ðx2þy2þz2Þ

" #
: ð4:6Þ
With ðc;DtÞ ¼ ð10; 0:5Þ for MSOM and ð12; 0:4Þ for SOM, the error diagrams of iterations for both methods are
plotted in Fig. 2d. It is seen that the errors of the MSOM and SOM drop below 10�10 in about 360 and 1750 iter-
ations, or 9 and 31 minutes in MATLAB on our PC. Thus, the MSOM converges faster than the SOM.

It should be pointed out that for the above example, the matrix eigenvalue method would have severe
difficulties, see discussions in Section 2. Comparatively, the OOM, SOM and MSOM can compute the
eigenvalues in this example quite easily and efficiently.

Example 3. The next example is the 2D NLS equation with a periodic potential
iU t þ DU þ jU j2U � V ðx; yÞU ¼ 0; ð4:7Þ

where D ¼ oxx þ oyy , and V ðx; yÞ ¼ 1:5ðcos2 xþ cos2 yÞ. This equation arises in Bose–Einstein condensates
trapped in optical lattices and light propagation in periodic non-linear media [21–23]. This equation admits vor-
tex solitons of the form Uðx; y; tÞ ¼ uðx; yÞe�ilt, where uðx; yÞ is a complex function with a unit topological
charge [21]. The intensity distribution of the vortex solution at l ¼ 0 is shown in Fig. 3a. Perturbing this soliton
in a form analogous to Eq. (2.23), the stability eigenvalue problem for this soliton is found to be Eq. (2.1) with
L ¼ �i
1
2
ðu�2 � u2Þ Dþ l� V þ 2juj2 � 1

2
ðu2 þ u�2Þ

Dþ l� V þ 2juj2 þ 1
2
ðu2 þ u�2Þ 1

2
ðu2 � u�2Þ

 !
: ð4:8Þ
The spectrum of this operator is displayed in Fig. 3b. This spectrum was obtained by the matrix eigenvalue
method with spectral collocation discretization [12]. Specifically, we expanded the eigenfunction W into Fourier
series and turned Eq. (2.1) into a matrix eigenvalue problem for the Fourier coefficients of the eigenfunction.
The eigenvalues of the resulting matrix were then computed in MATLAB by the implicitly restarted Arnoldi
algorithm. However, to get high accuracy eigenvalues by this matrix method is very difficult due to the large
size of the resulting matrix. For example, when we expanded the eigenfunction W into 64 Fourier modes along
each dimension, the resulting matrix was dense with over 8000	 8000 complex elements, which caused MAT-
LAB to run out of memory on our PC with 4 GB RAM. Thus what we did was to first get a low-accuracy spec-
trum by this matrix method. Specifically, we took the computational domain as�3p 6 x; y 6 3p, and expanded
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the eigenfunction W into 41 Fourier modes along each dimension. The resulting matrix was about 3400	 3400
and dense. Eigenvalues of this matrix were then computed in MATLAB by the Arnoldi algorithm, which took
about 3.5 minutes on our PC (including the matrix-buildup time). The error of computed eigenvalues was about
10�2. The discrete spectrum thus obtained contains two quadruples of complex eigenvalues, a pair of internal
modes, and the zero eigenvalue. Next we refined each non-zero discrete eigenvalue to high accuracy by the SOM
or MSOM. The results are displayed in Fig. 3b. The most unstable eigenvalues are found to be
ku ¼ 0:4961þ 1:1161i and its complex conjugate k�u, and the internal modes are ks ¼ 0:5854i and �ks.

To numerically compute ku and ks by the newly proposed methods, we take the computational domain as
�3p 6 x; y 6 3p, discretized by 64 grid points along each direction. The acceleration operator M is taken as
(4.4). The spatial derivatives as well as M�1 are computed by the discrete Fourier transform. For ku, the initial
condition W0 is taken as the transpose of ðv0;w0Þ, where
Fig. 3.
(a); (c)
of the
v0 ¼ e�ðxþp=2Þ2�ðyþp=2Þ2 þ e�ðx�p=2Þ2�ðy�p=2Þ2 � ð1þ iÞ½e�ðx�p=2Þ2�ðyþp=2Þ2 þ e�ðxþp=2Þ2�ðy�p=2Þ2 �; ð4:9Þ

and
w0 ¼ e�ðx�p=2Þ2�ðyþp=2Þ2 þ e�ðxþp=2Þ2�ðy�p=2Þ2 � ð1þ iÞ½e�ðxþp=2Þ2�ðyþp=2Þ2 þ e�ðx�p=2Þ2�ðy�p=2Þ2 �: ð4:10Þ

For this unstable eigenvalue, all the three methods can converge as in the previous example. With ðc;DtÞ

taken as (2, 2) in the OOM, and as ð2; 0:4Þ in the MSOM, the error diagrams of these iterations are plotted
in Fig. 3c. We see that the error jkn � kn�1j drops below 10�10 in about 780 and 610 iterations for the
OOM and MSOM, respectively (the computing times are 36 and 16 seconds in MATLAB). Thus, unlike
Example 2, the OOM converges slower than the MSOM for this unstable eigenvalue. When these results
are compared to those from the matrix eigenvalue method above, we see that these new methods are much
faster, and the eigenvalues they give are much more accurate.
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For the internal mode ks, the OOM does not converge, while the SOM and MSOM do. For this eigenvalue,
we take the initial condition as
v0 ¼ e�ðx�p=2Þ2�ðyþp=2Þ2 þ e�ðxþp=2Þ2�ðy�p=2Þ2 ; ð4:11Þ

and
w0 ¼ �e�ðxþp=2Þ2�ðyþp=2Þ2 � e�ðx�p=2Þ2�ðy�p=2Þ2 : ð4:12Þ

With ðc;DtÞ ¼ ð2; 1Þ for MSOM and ð2; 1:1Þ for SOM, the error diagrams of iterations for both methods are
plotted in Fig. 3d. It is seen that the errors of MSOM and SOM drop below 10�10 in about 950 and 2600 iter-
ations (the computing times are 23 and 40 seconds in MATLAB). Thus, the MSOM converges faster than the
SOM just like in the previous example.

From these examples as well as others we have experimented, we find that the OOM often converges to the
most unstable eigenvalue, while the SOM and MSOM can converge to any eigenvalue, with the MSOM con-
verging faster than the SOM.

5. Summary

In this paper, we proposed three iteration methods for the computation of eigenvalues and eigenfunctions
in the linear stability of general solitary waves. These methods are based on iterating certain pre-conditioned
time evolution equations associated with the linear stability eigenvalue problem. The first method is the ori-
ginal operator iteration method (2.3)–(2.9). It uses the fourth-order Runge–Kutta method to evolve the pre-
conditioned linear stability operator, and it usually converges to the most unstable eigenvalue of the solitary
wave. The second method is the squared-operator iteration method (3.2). It uses the Euler method to evolve
the ‘‘square” of the pre-conditioned linear stability operator. This method is shown to converge to any discrete
eigenvalue in the stability spectrum under mild conditions. The third method is the modified squared-operator
iteration method (3.10). It is obtained by incorporating the mode elimination technique into the second
method, which speeds up the convergence considerably. These methods are applied to various examples of
physical interest, and are found to be efficient and easy to implement in any spatial dimension. A distinctive
advantage of these methods over the traditional matrix eigenvalue method is their low use of computer mem-
ory, thus they are particularly valuable for higher spatial dimensions where the matrix eigenvalue method
faces memory constraints. Another advantage of these methods is their fast speed. If a single eigenvalue is
desired or needs to be traced upon parameter continuation, these methods can obtain this eigenvalue much
more quickly than the matrix eigenvalue method. The disadvantages of these proposed methods are that
(a) they need a reasonably good initial guess for the eigenfunction, which may not be available to the user;
(b) if many eigenvalues are desired simultaneously, these methods can be awkward to use as they have to com-
pute each eigenvalue individually. Given the above advantages and disadvantages of these proposed methods,
the user can intelligently choose from them and other methods (such as the matrix eigenvalue method) accord-
ing to the particular problem at hand. It should be pointed out that these proposed methods can be applied
not only for the computation of stability spectra of solitary waves, but also for the computation of any eigen-
value problem of differential operators. Thus, these methods may find applications in various mathematical
and physical disciplines where operator eigenvalue problems arise.
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Appendix. MATLAB code of the OOM for Example 1

In the appendix, we attach a sample MATLAB code of the OOM (2.3)–(2.9) for Example 1, which produces
the unstable eigenmode and the error diagram in Fig. 1c and d. MATLAB codes of the OOM, SOM and
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MSOM for Examples 2 and 3 can be similarly written, and they will be posted at the author’s website when
this article is published.
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