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a b s t r a c t

In this paper, the Newton-conjugate-gradient methods are developed for solitary wave
computations. These methods are based on Newton iterations, coupled with conjugate-
gradient iterations to solve the resulting linear Newton-correction equation. When the
linearization operator is self-adjoint, the preconditioned conjugate-gradient method is pro-
posed to solve this linear equation. If the linearization operator is non-self-adjoint, the pre-
conditioned biconjugate-gradient method is proposed to solve the linear equation. The
resulting methods are applied to compute both the ground states and excited states in a
large number of physical systems such as the two-dimensional NLS equations with and
without periodic potentials, the fifth-order KdV equation, and the fifth-order KP equation.
Numerical results show that these proposed methods are faster than the other leading
numerical methods, often by orders of magnitude. In addition, these methods are very
robust and always converge in all the examples being tested. Furthermore, they are very
easy to implement. It is also shown that the nonlinear conjugate gradient methods are
not robust and inferior to the proposed methods.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In studies of nonlinear wave equations in an unbounded domain, solitary waves play an important role in the solution
dynamics. Indeed, an initial localized condition often evolves into a number of solitary waves and energy radiation at large
times, provided that the solitary waves are stable. For integrable equations and some special non-integrable equations, sol-
itary waves can be obtained analytically. But for most non-integrable systems, these waves defy analytical expressions and
have to be computed numerically. So far, a number of numerical methods have been developed. Examples include the New-
ton’s method [1,2], the shooting method [3], the Petviashvili-type methods [4–6], the accelerated imaginary time evolution
methods [7,8], the squared-operator iteration methods [9], etc. The Newton’s method is a classical iteration method. In this
method, the solution is updated by solving a linear inhomogeneous operator equation, where the linear operator and the
inhomogeneous term are the Jacobian (i.e. the linearization operator) and residue of the nonlinear wave equation, respec-
tively. This linear operator equation is solved by turning it into a matrix equation through discretization, and then applying
the LU or QR factorization technique [1,2]. The Newton’s method has been used widely in the nonlinear wave community.
However, the key step of this method, which is to solve the resulting matrix equation, can become very difficult when the
matrix size is very large and not tri-diagonal (such as in two and higher dimensions). In addition, this method can encounter
other difficulties in certain situations as well [10]. The shooting method is another familiar method with a long history. This
method is very efficient and accurate. In addition, it can be used to compute embedded solitons for which other iterative
methods generally fail [11]. But unfortunately this method works only for one-dimensional problems, or higher-dimensional
problems which can be reduced to one-dimensional problems (through symmetry reduction). The Petviashvili method was
. All rights reserved.
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first proposed in the 1970s [4] and later generalized in [5,6]. It is based on the fixed-point iteration idea, but with a key
improvement which is to introduce a stabilizing factor. This method became popular in recent years due to its easy imple-
mentation in arbitrary spatial dimensions as well as fast convergence in many situations. However, it only converges to the
ground states of nonlinear wave equations, and would diverge for excited states [6,12]. The imaginary time evolution meth-
od is also a familiar method, especially in the physics community (see [13] for instance). But its original version is very slow,
and its accelerated versions were developed only recently [7,8]. These methods are based on the idea of turning the station-
ary solitary wave computation problem into a time evolution problem of diffusion type, and normalize the solution by its
power or amplitude at each evolution step. One important component of these methods is to introduce an acceleration oper-
ator to the time evolution equation, which would improve the convergence speed dramatically. These methods are also very
easy to implement in arbitrary spatial dimensions, and their convergence is either faster than or competitive with the Pet-
viashvili-type methods [8]. However, these methods generally can only converge to the ground states just like the Petviash-
vili-type methods [8]. In order to compute excited states, the squared-operator iteration methods were developed in [9].
These methods are based on the idea of time-evolving a ‘‘squared” operator equation (the power or amplitude normalization
is optional). Evolution of this squared equation guarantees that these methods can converge to any solitary wave, including
excited states. The acceleration operator is built inside the squared equation to improve convergence speeds. When another
mode elimination technique is incorporated into these methods [14], the resulting method (called the modified squared-
operator method in [9]) converges even faster. These squared-operator-type methods are also easy to implement for general
nonlinear wave equations in arbitrary spatial dimensions, and they deliver satisfactory performances in many situations [9].
But there are situations where all the above methods can be quite slow, especially when the wave’s propagation constant
gets near the edge of the continuous spectrum so that the wave gets less localized (see Examples 3.4 and 3.5 later in the text).
Thus even faster numerical methods are still called upon.

On a separate development, the conjugate-gradient method was developed in the early 1950s and has become the most
prominent iterative method for solving large systems of linear equations nowadays [15–18]. Viewing the linear equation as a
minimization problem of a quadratic form, this method uses conjugate directions instead of the local gradient for going
downhill. The conjugate-gradient method has a number of important properties. One property is that for symmetric posi-
tive-definite matrices, this method gives the exact solution within n steps, where n is the size of the matrix [16–18]. Another
property is that for symmetric positive-definite matrices, the matrix-weighted error decreases monotonically with each iter-
ation [16,17]. The third property is that when the matrix size is large, this method often gives the solution to the required
accuracy in much less than n steps, especially when a suitable preconditioning matrix is introduced [16,17]. The conjugate-
gradient method was originally developed for linear equations with symmetric positive-definite matrices, but some practical
applications show that this method can also solve linear equations with symmetric indefinite matrices (unless there is a
breakdown due to division by zero during iterations which rarely occurs) [19]. Generalizations of the conjugate-gradient
method to symmetric indefinite matrices, non-symmetric matrices and nonlinear systems have also been developed [20–
25]. At the moment, no work has appeared in the literature to apply the conjugate-gradient method to solitary wave com-
putations. It is not clear yet whether this method can be applied to solitary waves. If so, what scheme is the most efficient for
this application? In addition, would this method perform better than the other leading numerical methods for solitary waves
as described above?

In this paper, we apply the conjugate-gradient methods to the computation of general solitary waves (both the ground
state and excited states) in nonlinear wave equations. The guiding principles in our algorithm design are fast convergence
and easy implementation, which are equally weighed. We first linearize the solitary wave equation around an iterated solu-
tion and update the solution by solving a linear inhomogeneous operator equation, which resembles the idea of the Newton’s
method. Then, instead of solving this linear equation by direct methods as in the traditional Newton’s method, we use the
conjugate-gradient-type methods to solve it. If the linearization operator is self-adjoint, we use the preconditioned conju-
gate-gradient method to solve this linear equation. This method will be called the Newton-CG method in this paper. If
the linearization operator is non-self-adjoint, we use the preconditioned biconjugate-gradient method to solve this linear
equation. This method will be called the Newton-BCG method in this paper. We show that both methods converge for
the ground state as well as the excited states of a wave system. In addition, they are very robust and converge in all our
numerical testings with various physical wave systems and wide ranges of initial conditions (as long as the initial condition
is reasonably close to the exact solution). No breakdown of these methods is ever observed (even though it is theoretically
possible). The performance of these methods is demonstrated on a number of physical models such as the two-dimensional
nonlinear Schrödinger (NLS) equations with and without periodic potentials, the fifth-order Kortewegde Vries (KdV) equa-
tion, and the fifth-order KadomtsevPetviashvili (KP) equation. They are found to converge much faster than the other leading
numerical methods, often by orders of magnitude. In addition, these methods are very easy to implement regardless of the
number of dimensions (a sample MATLAB code of the Newton-CG method will be displayed in Appendix A). Furthermore, we
show that these Newton-CG/BCG methods, which are based on conjugate gradient iterations on a linear equation, are much
better than the nonlinear conjugate-gradient methods which are sensitive to initial conditions. We expect that these pro-
posed Newton-CG/BCG methods will replace the existing numerical methods and become the premier methods for comput-
ing both the ground-state and excited-state solitary waves in the days to come.

We would like to make a few remarks to put our results in a broader context. The combination of Newton-type methods
(for solving nonlinear equations) and Krylov subspace methods (for solving the resulting linear Newton-correction equa-
tions) is a well known technique. In the literature, these methods are often referred to as the Newton–Krylov methods
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(see [26,27] for instance). The Newton-CG and Newton-BCG methods proposed in this paper are two particular cases of the
Newton–Krylov methods. Our own contributions in this paper are two-fold. One is to demonstrate that, for a wide range of
solitary wave computations, one can use the simplest Krylov subspace methods, namely the conjugate-gradient method and
the biconjugate-gradient method, even though the linear operator in the Newton-correction equation is generally indefinite
and sometimes also non-symmetric. This message was not well recognized before. In the pursuit of algorithmic simplicity,
our Newton-CG/BCG methods are the simplest (and probably also the most effective) Newton–Krylov methods for solitary
wave computations. The other contribution of this paper is to demonstrate that these Newton-CG/BCG methods are more
efficient than practically all the other leading numerical methods for solitary waves, often by a very wide margin. Thus these
proposed methods represent a big step forward in the methodology for computing solitary waves. Given the ongoing interest
for seeking solitary waves in various physical disciplines (such as nonlinear optics, Bose—Einstein condensates and water
waves), these methods should prove very useful for those areas. Another remark we would like to make is that in the com-
putations of the Helmholtz equation with a variable refraction index, the linear operator involved is also indefinite and non-
symmetric, similar to the situation in this paper (see [28] and the references therein). Thus our results may be suggestive to
the computations in that community as well.
2. Basic setup of the methods

We consider solitary waves in a general real-valued nonlinear wave system in arbitrary spatial dimensions, which can be
written in the following form:
L0uðxÞ ¼ 0: ð2:1Þ
Here x is a vector spatial variable, uðxÞ is a real-valued vector solitary wave solution admitted by Eq. (2.1), and u! 0 as
jxj ! 1. For example, in the nonlinear Schödinger equation
iUt þ Uxx þ jUj2U ¼ 0;
if one looks for solitary waves Uðx; tÞ ¼ eiltuðxÞ, where uðxÞ is a real and localized function and l is the propagation constant,
then the equation for uðxÞ is
uxx � luþ u3 ¼ 0;
which is a special case of Eq. (2.1). Note that for complex-valued solitary waves, the equation can be rewritten in the above
form with u containing the real and imaginary parts of the complex solution. In the above formulation, the propagation con-
stant of the solitary wave is lumped into the operator L0.

Our goal is to solve solitary waves in Eq. (2.1) by iteration methods. Suppose we have an approximate solution unðxÞ
which is close to the exact solution u(x). To obtain the next iteration solution unþ1ðxÞ, we proceed as follows. First, we ex-
press the exact solution u(x) as
uðxÞ ¼ unðxÞ þ enðxÞ; ð2:2Þ
where enðxÞ � 1 is the error term. Then we substitute this expression into Eq. (2.1) and expand it around unðxÞ, which gives
L0un þ L1nen ¼ Oðe2
nÞ: ð2:3Þ
Here L1n is the linearization operator L1 of the solitary wave Eq. (2.1) evaluated at the approximate solution unðxÞ. If we ne-
glect the higher order term on the right hand side of Eq. (2.3), the remaining equation becomes a linear inhomogeneous
equation for the error en. This suggests that we update the approximate solution as
unþ1ðxÞ ¼ unðxÞ þ DunðxÞ; ð2:4Þ
where the updated amount Dun is computed from the linear inhomogeneous equation for en, which is rearranged as
L1nDun ¼ �L0un: ð2:5Þ
We must point out that this part of the scheme is identical to that in the Newton’s method [1,2]. As such, if the linear New-
ton-correction Eq. (2.5) is solved exactly (or to accuracy much higher than the size of Dun), then the iterations (2.4) will con-
verge to the exact solution uðxÞ quadratically. These nonlinear Newton iterations (2.4) form the outer iterations of our
methods.

Our methods deviate from the Newton’s method on how to solve the linear operator Eq. (2.5). In the Newton’s method, Eq.
(2.5) is solved by discretizing it into a matrix equation and then solved by direct methods such as LU or QR factorization [1,2].
Here we will use conjugate-gradient iterations to solve it. These linear conjugate-gradient iterations form the inner iterations
of our methods. Thus our methods are loop-within-loop operations, where each Newton’s iteration involves many conju-
gate-gradient iterations. But since both the Newton’s iterations [for the nonlinear Eq. (2.1)] and conjugate-gradient iterations
[for the linear Newton-correction Eq. (2.5)] converge very fast, the total number of conjugate-gradient iterations across all
Newton’s iterations is actually quite small, as our many examples will show later in this paper. An important feature of our
setup above is that, the conjugate-gradient methods are applied to a linear Eq. (2.5). This contrasts the nonlinear conjugate-
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gradient methods which have been developed in the literature for nonlinear optimization problems [17,25]. In the spirit of
those methods, one would apply a generalized conjugate-gradient method directly to the nonlinear Eq. (2.1). We will show
that our scheme above with linear conjugate–gradient methods is much more robust than the nonlinear conjugate-gradient
methods, thus is the preferred way of applying conjugate-gradient ideas to solitary wave computations.

Detailed applications of the conjugate-gradient ideas for solving the linear Eq. (2.5) depend on whether the linearization
operator L1 is self-adjoint or not. These two cases will be treated separately in the following sections.

3. The preconditioned conjugate-gradient method for self-adjoint linearization operators L1

In conservative wave systems, the linearization operator L1 in Eq. (2.5) is often self-adjoint. We consider this case in this
section. The counterpart of this case in matrix equations is that the matrix is symmetric. For matrix equations, if the matrix is
symmetric and positive-definite, the most efficient method is the preconditioned conjugate-gradient method, which has
been described in numerous prior publications (see [16,17] for example). However, in solitary wave computations, the linear
operator L1 is always indefinite, which corresponds to indefinite matrices in matrix equations. For symmetric indefinite
matrices, the preconditioned conjugate-gradient method has a theoretical obstacle, which is that this method may break
down due to division by zero during iterations. This ‘‘dark cloud” has prompted researchers to develop extended (more
expensive) conjugate-gradient methods such as MINRES and SYMMLQ [20] in order to overcome this difficulty. Undeterred
by this ‘‘dark cloud”, we went ahead and applied the preconditioned conjugate-gradient method to Eq. (2.5) for a large num-
ber of nonlinear wave equations and various initial conditions. We found that, alas, this method always converged, and
breakdown never occurred. In addition, its convergence was often so fast that it surprised us. Our later literature search
found that, in Ref. [29], the author raised the question of how serious this potential breakdown of the conjugate-gradient
method was for practical applications. In Ref. [19], the authors mentioned that the preconditioned conjugate-gradient meth-
od was often applied to indefinite symmetric matrices in driven microwave problems, and the breakdown rarely occurred.
Our experience echoes that in [19], and shows that the breakdown of the preconditioned conjugate-gradient method does
not constitute a serious concern in solitary wave computations. This is the basis on which we propose to use the precondi-
tioned conjugate gradient method to solve Eq. (2.5).

Now we describe the preconditioned conjugate-gradient method as applied to the linear operator Eq. (2.5). To simplify
notations, we drop the subscripts ‘n’ in Eq. (2.5). In addition, we always take the initial guess Duð0Þ to be zero for simplicity.
Then the preconditioned conjugate-gradient method for the linear Newton-correction Eq. (2.5) is
Duð0Þ ¼ 0;

Rð0Þ ¼ �L0u;

Dð0Þ ¼M�1Rð0Þ;

aðiÞ ¼ hR
ðiÞ;M�1RðiÞi
hDðiÞ; L1DðiÞi

;

Duðiþ1Þ ¼ DuðiÞ þ aðiÞDðiÞ;

Rðiþ1Þ ¼ RðiÞ � aðiÞL1DðiÞ;

bðiþ1Þ ¼ hR
ðiþ1Þ;M�1Rðiþ1Þi
hRðiÞ;M�1RðiÞi

;

Dðiþ1Þ ¼M�1Rðiþ1Þ þ bðiþ1ÞDðiÞ:
Here i ¼ 0;1;2; . . . is the index of conjugate-gradient (CG) iterations, the inner product is the standard one in the square-inte-
grable functional space:
hF1;F2i ¼
Z 1

�1
Fy1 � F2 dx;
the superscript ‘y’ represents the Hermitian of a vector, and the operator M is the pre-conditioning operator which is required
to be self-adjoint and positive-definite. This pre-conditioning operator is analogous to the acceleration operator in [9], and its
role is to accelerate the convergence of the above conjugate gradient iterations. The operator M should be chosen so that it is
easily invertible. In practise, it is often chosen to be the linear differential part of the operator L0 [9] (similar choice has also
been taken in other situations, see [1,30]). These CG iterations are embedded inside the Newton iterations (2.4), and the
resulting method will be called the Newton-CG method in this paper.

For solitary waves, the linearization operator L1 generally has both positive and negative eigenvalues, as well as the zero
eigenvalue. For the ground state, L1 generally has one eigenvalue whose sign is opposite of all the others; for an excited state,
L1 generally has two or more eigenvalues whose signs are opposite of all the others. Because of this, the CG iterations in the
above Newton-CG method may break down since the denominator in the above aðiÞ formula may vanish. But as we have said
above, our extensive testings of this method on various solitary wave equations have never encountered this breakdown
(some selective examples will be shown later in this section). Even if this breakdown does occur, it can be fixed by changing
the initial guess function u0ðxÞ.



J. Yang / Journal of Computational Physics 228 (2009) 7007–7024 7011
Regarding the zero eigenvalue of the linearization operator L1 (which exists in most solitary wave problems), it makes the
solution to the linear Eq. (2.5) not unique, since its eigenfunctions can be added to a solution of (2.5) which remains a solu-
tion. If these eigenfunctions are induced by the invariances of the solitary waves (such as uxj

when the solution u(x) is invari-
ant with respect to a position shift in xj), this non-uniqueness obviously is not a concern as it only leads to another solitary
wave with a shifted free parameter. This is analogous to other iteration methods [8,9,12]. If the reader wishes to eliminate
this non-uniqueness, there are simple techniques to do so. For instance, if the reader wants iterations to converge to a sym-
metric soliton with a peak at x ¼ 0, he can simply take the initial guess u0ðxÞ to be symmetric in x. This way, the initial error
function e0ðxÞ does not contain the position-shifting eigenmode ux, hence the peak will remain at x ¼ 0, and no shifting will
occur. What is surprising is that even if the kernel of L1 contains eigenfunctions which are not induced by invariances of the
solitary waves, the Newton-CG method would still converge. This contrasts the other iteration methods (such as the Petvi-
ashvili method, the accelerated imaginary time evolution method, and the modified squared-operator method) which would
not converge in such situations [8,9,12]. An example will be shown at the end of this section (Example 3.6). This surprising
behavior of the Newton-CG method can be understood by making an analogy to the Newton’s method for solving the alge-
braic equation
f ðxÞ ¼ ðx� aÞ2 ¼ 0; ð3:1Þ
whose root x ¼ a is multi-fold. The Newton-correction equation for it is
f 0ðxnÞDxn ¼ �f ðxnÞ: ð3:2Þ
At the root x ¼ a; f 0ðaÞ ¼ 0, hence the kernel of f 0ðaÞ is non-empty, which resembles the non-empty kernel of L1 above.
However, the Newton’s method for this algebraic Eq. (3.1) clearly still converges (even though the convergence speed
drops from quadratic to linear). The reason is that when xn gets close to the root a, even though f 0ðxnÞ becomes small,
the right hand side f ðxnÞ in the correction Eq. (3.2) becomes even smaller. Thus this correction equation is actually not
singular, hence Newton’s iterations still converge. In the same spirit, when the kernel of L1 is non-empty, the Newton-
CG method also converges. This convergence under non-empty kernels of L1 is one of the many advantages of the New-
ton-CG method over its peers. The CG iterations above are terminated when the approximate solution DuðiÞn to Eq. (2.5) has
reached certain accuracy. The error of this solution can be measured by the function RðiÞ in the CG iterations, which is the
residue of the linear Eq. (2.5), i.e.
RðiÞ ¼ �L0un � L1nDuðiÞn :
This error can be measured more conveniently by the M�1 weighted 2-norm of RðiÞ,
kRðiÞkM � hR
ðiÞ;M�1RðiÞi1=2

;

which appears in the CG iterations. The accuracy with which the linear Newton-correction Eq. (2.5) is solved is an important
parameter in the Newton-CG method. Remember from Eq. (2.4) that the approximate soliton solution unþ1 is updated by the
formula un þ Dun. If the accuracy of un (compared to the exact soliton solution u) is poor, then requiring too much accuracy
for solving Dun from the linear Eq. (2.5) is a waste of effort, because it does not lead to higher accuracy in the approximate
solution unþ1 (this phenomenon is called oversolving). However, when the approximate solution un gets very close to the
exact soliton solution u, higher accuracy would be necessary for solving Dun from Eq. (2.5) so that the rapid convergence
of the Newton’s method can be sustained. Thus an effective strategy for minimizing oversolving is to use the accuracy of
the approximate solution un to determine adaptively the accuracy with which the linear Newton-correction Eq. (2.5) is solved
[26]. The accuracy of un can be measured by
kL0unkM ¼ hL0un;M
�1L0uni1=2

;

which is the M�1 weighted 2-norm of the residue L0un of the nonlinear wave Eq. (2.1). Then a sensible stopping criterion for
the CG iterations in solving the linear Eq. (2.5) is that the error of DuðiÞn is below a certain fraction of the error of the solution
un itself. In this spirit, we take the stopping criterion of the CG iterations to be
kRðiÞkM < �cgkL0unkM: ð3:3Þ
Here �cg is a small positive error tolerance parameter for CG iterations. Notice that the residue L0un is the inhomogeneous
term of the linear Newton-correction Eq. (2.5). Also notice that due to our choice of the zero initial condition for CG itera-
tions, Rð0Þ ¼ �L0un. Thus the stopping criterion (3.3) for CG iterations is simply
kRðiÞkM < �cgkRð0ÞkM: ð3:4Þ
Regarding the choice of the error tolerance parameter �cg , if it is set too small, this leads to oversolving which is ineffective.
On the other hand, if �cg is set too large, which means that the linear Eq. (2.5) is solved too inaccurately, then the Newton
iterations (2.4) may not converge at all. Thus the optimal �cg should be neither too small nor too large. Our numerical testings
show that the optimal �cg is generally in the range between 10�1 and 10�3. In all numerical examples in this paper, we set
�cg ¼ 10�2. At this value of �cg , if the solution’s accuracy is set at 10�10, then the number of Newton’s iterations in the New-
ton-CG method ranges from 5 to 8 in all our numerical examples.
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In the remainder of this section, we apply this Newton-CG method to various examples of solitary wave computations,
and demonstrate its performances. We also compare its performances to those of the other leading iteration methods which
have been developed in the literature. The leading methods for the ground-state solitons are the accelerated imaginary time
evolution method with amplitude normalization (AITEM) [8] and the Petviashvili method [4]. The leading method for ex-
cited-state solitons is the modified squared operator method (MSOM) [9]. In all our performance illustrations, the error of
the numerical solution un is measured as jL0unjmax, which is the maximum value of the nonlinear residue jL0unj in Eq.
(2.1). In the error diagrams of the Newton-CG method, the error of the numerical solution un after each Newton’s iteration
is plotted against the total number of CG iterations across all preceding Newton’s iterations (NOT against the number of New-
ton iterations). This total number of CG iterations in the Newton-CG method will be compared with the number of iterations
in the other methods (AITEM, Petviashvili and MSOM). These iteration numbers are valuable information since they are com-
puter-independent and software-independent. In addition, these numbers do not change much if finer mesh grids are used.
However, one should bear in mind that the computational costs of one iteration in these different methods are different. Spe-
cifically, when spatial derivatives and M�1 are computed by the Fourier-pseudospectral method, as is done in all examples of
this paper, then the ratios of one iteration’s computational costs for the Newton-CG method, the Petviashvili method, the
AITEM and the MSOM are approximately 1:1:1.3:3 (here one iteration in the Newton-CG method refers to one CG iteration).
In other words, the costs of one CG iteration and one Petviashvili iteration are about the same, one AITEM iteration costs 30%
more, and one MSOM iteration costs three times as much. These computational costs can be understood by counting the
number of Fourier transforms and inverse Fourier transforms which often dominate the computations. Thus the number
of iterations may not accurately reflect the efficiency of a method. A more sensible way to compare the efficiencies of dif-
ferent methods is to compare the CPU times they use for the same solution accuracy. This is also done in all examples of this
paper. In such comparisons, all computations are performed in MATLAB (version 7.0) on a personal computer (with AMD
Athlon processor, 2.4 GHz speed and 4 Gb RAM).

All examples below will show that the Newton-CG method is very robust and always converges (we have never encoun-
tered an exception). In addition, this method is faster than its peers, often by orders of magnitude. Even though a rigorous
proof of its fast convergence is hardly possible, a heuristic understanding is still available. For a matrix equation Ax ¼ b, if the
matrix A is symmetric and positive-definite, then the error of the preconditioned conjugate gradient method (by a precon-
ditioning matrix M) decays at least by a factor of Rcg ¼ ð

ffiffiffiffi
j
p
� 1Þ=ð

ffiffiffiffi
j
p
þ 1Þ with each iteration [16]. Here j is the spectral

condition number of the matrix M�1A, i.e. j ¼ jkmax=kminj, where kmax and kmin are the largest and smallest non-zero eigen-
values of M�1A (in magnitude). From this relation we see that the number of iterations to reach a certain relative reduction
in the error is roughly proportional to

ffiffiffiffi
j
p

. If we extrapolate this result to the CG iterations in the Newton-CG method, then
we can expect that the number of CG iterations to reach a certain error reduction is roughly proportional to

ffiffiffiffi
j
p

, where j is
the spectral condition number of the operator M�1L1. For the AITEM and the Petviashvili method, however, the error decays
by a factor of R ¼ ðj� 1Þ=ðjþ 1Þ, where j is the same as above [8,12]. Thus the numbers of AITEM and Petviashvili iterations
to reach a certain error reduction are roughly proportional to j. For the MSOM, the error decays more erratically, but this
decay is roughly at the rate of Rm ¼ ðj2 � 1Þ=ðj2 þ 1Þ, since the spectral condition number of the squared operator in the
MSOM is roughly j2, where j is the same as above [9]. Thus the number of MSOM iterations to reach a certain error reduc-
tion is roughly proportional to j2. In most solitary wave computations, j is moderate or large, thus the Newton-CG method
converges faster than the AITEM, MSOM and the Petviashvili method. In situations where the spectral condition number of
M�1L1 is very large (such as when the propagation constant lies near the edge of the continuous spectrum), the Newton-CG
method will be much faster than its peers as Examples 3.4 and 3.5 below will show.

Example 3.1 (Ground states of the 2D NLS equation). The first example we consider is the computation of ground states in the
familiar two-dimensional NLS equation
iUt þ Uxx þ Uyy þ jUj2U ¼ 0: ð3:5Þ
Ground states of this equation are of the form Uðx; y; tÞ ¼ uðx; yÞeilt , where uðx; yÞ is a positive function satisfying the equation
uxx þ uyy þ u3 ¼ lu: ð3:6Þ
The linearization operator for this equation is
L1 ¼ @xx þ @yy þ 3u2 � l:
At l ¼ 1, the ground state is shown in Fig. 3.1(a). To compute this ground state, we have applied three iteration methods: the
Petviashvili method, the AITEM, and the Newton-CG method. For both the AITEM and the Newton-CG method, the acceler-
ation operator M is taken as
M ¼ c � @xx � @yy; ð3:7Þ
where c is a positive constant. The computational domain is taken as a square of �15 < x; y < 15, discretized by 256 points
along each dimension. Spatial derivatives as well as M�1 are computed by the Fourier-pseudospectral method, thus the spa-
tial accuracy of our computations is spectral [1,31]. The initial condition is taken as
u0ðx; yÞ ¼ 2:2e�x2�y2
: ð3:8Þ
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Fig. 3.1. (a) The ground state in the 2D NLS Eq. (3.6) with l ¼ 1; (b, c) error diagrams of the Newton-CG method (marked by ‘CG’), the Petviashvili method
and the AITEM versus the number of iterations (b) and the CPU time (c); in the Newton-CG method, the error of the numerical solution after each Newton’s
iteration is plotted against the total number of CG iterations (b) or time (c) across all preceding Newton’s iterations (each circle represents a Newton’s
iteration point); these conventions apply to all figures in this paper; (d) dependence of the total number of CG iterations on the acceleration parameter c in
the Newton-CG method (solution accuracy set at 10�10Þ.
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In the AITEM, the optimal scheme parameters are copt ¼ 1 and Dtopt ¼ 1:3; and in the Newton-CG method, the optimal c
parameter is copt ¼ 1 (for this example, copt ¼ l in general in both methods). At these optimal scheme parameters, the error
diagrams versus the number of iterations are displayed in Fig. 3.1(b). As has been mentioned before, the error diagram of the
Newton-CG method plots the error of the numerical solution after each Newton’s iteration against the total number of pre-
ceding CG iterations (by circle points), which is the case for all figures in this paper. These circle points are connected by
straight lines for illustration purpose. One can see that for an accuracy below 10�10, the Newton-CG method takes six Newton
iterations. Each Newton iteration contains five CG iterations on average, which gives a total of 30 CG iterations. This total
number of CG iterations is slightly more than the number of AITEM iterations, but much less than the number of Petviashvili
iterations. To compare the speeds of these methods, the error diagrams versus the CPU times are displayed in Fig. 3.1(c). One
can see that for an accuracy below 10�10, the Newton-CG method takes about 2.4 s, which is faster than both the AITEM and
Petviashvili methods. Thus, the Newton-CG method delivers the best performance among its peers on this simple example.
To test the sensitivity of the Newton-CG method to the acceleration parameter c, we have tried different c values and re-
corded the number of CG iterations the Newton-CG method takes to reach accuracy below 10�10, and the results are shown
in Fig. 3.1(d). One can see that the efficiency of the Newton-CG method is not very sensitive to the c value as long as c is not
very small. This insensitivity to pre-conditioning parameters is another advantage of the Newton-CG method.

Example 3.2 (Vortex solitons of the 2D NLS equation). The second example we consider is the computation of vortex solitons
in the above 2D NLS Eq. (3.5). These vortex solitons are Uðx; y; tÞ ¼ uðx; yÞeilt , where uðx; yÞ is a complex function of the form
f ðrÞeih, and ðr; hÞ is the polar coordinate of the ðx; yÞ plane. These solitons are the excited states of the 2D NLS equation. At
l ¼ 1, this vortex solution is shown in Fig. 3.2(a). For these excited states, the Petviashvili method and the AITEM do not
converge. Below we apply the Newton-CG method to compute this solution, and compare its performance with that of
the MSOM. For this purpose, we express u ¼ v þ iw, where v and w are the real and imaginary parts of the function u.
The equations for v and w are
vxx þ vyy þ ðv2 þw2Þv ¼ lv ; ð3:9Þ
wxx þwyy þ ðv2 þw2Þw ¼ lw: ð3:10Þ
In both the Newton-CG and MSOM methods, we take the acceleration operator M as
M ¼ ðc � @xx � @yyÞ diag ð1;1Þ; ð3:11Þ
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Fig. 3.2. (a) The vortex soliton juðx; yÞj in the 2D NLS Eq. (3.5) with l ¼ 1; (b, c) error diagrams of the Newton-CG method (marked by ‘CG’) and the MSOM
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where c is a positive parameter. The computational domain is taken as a square of �15 < x; y < 15, discretized by 256 points
along each dimension. The initial condition is taken as
u0ðx; yÞ ¼ 2:5r sech r eih: ð3:12Þ
In the Newton-CG method, the optimal acceleration parameter c is copt ¼ l ¼ 1; in the MSOM, the optimal scheme param-
eters are copt ¼ 2:5 and Dtopt ¼ 1:2. At these optimal scheme parameters, the error diagrams of these two methods versus the
number of iterations and the CPU time are displayed in Fig. 3.2(b and c), respectively. One can see from these diagrams that
for the computation of this vortex soliton, the Newton-CG method is much faster than the MSOM. Specifically, to reach an
accuracy below 10�10, the Newton-CG method takes eight Newton iterations, which contain a total of 65 CG iterations. This
total number of CG iterations is more than five times less than the number of MSOM iterations. In terms of the CPU time, the
Newton-CG method takes under 8 s to reach accuracy 10�10, which is more than 15 times faster than the MSOM (this speed
difference is expected since one MSOM iteration costs about three times as much as one CG iteration, see earlier text in this
section). Thus for this vortex soliton, the Newton-CG method is much more efficient than its peer method MSOM by orders of
magnitude. To test the sensitivity of the Newton-CG method to the acceleration parameter c in this example, we have taken
various c values and recorded the total number of CG iterations to reach solution accuracy 10�10, and the results are shown in
Fig. 3.2(d). One can see that for this excited state, the Newton-CG method is not sensitive to the acceleration parameter c
either, just like Example 3.1.

Example 3.3 (Depression and elevation waves in the fifth-order KdV equation). Our next example is the fifth-order KdV
equation
Ut þ 6UUx þ 2Uxxx þ Uxxxxx ¼ 0; ð3:13Þ
which is a normalized model equation for small-amplitude gravity-capillary waves on water of finite depth when the Bond
number is close to 1/3 [32]. Here Uðx; tÞ is the non-dimensionalized free-surface elevation. This equation admits depression
and elevation waves with decaying oscillatory tails which bifurcate from the point of minimum phase speed. These waves
are of the form Uðx; tÞ ¼ uðx� vtÞ, where v < �1 is the wave’s speed, and the function uðxÞ satisfies the equation
uxxxx þ 2uxx þ 3u2 ¼ vu; ð3:14Þ
as well as the boundary conditions uðxÞ ! 0 as x! �1. At v ¼ �1:2, the corresponding depression and elevation waves are
shown in Fig. 3.3(a and b), respectively. Now we compute these waves by the Newton-CG method and its peers. The Petvi-
ashvili method and the AITEM converge for the depression wave, which is the ground state of this system. But for the ele-
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vation wave which is the excited state, they both diverge [8,12], thus the MSOM will be used and compared with the New-
ton-CG method. In all computations, the spatial domain is taken as �15p < x < 15p, discretized by 512 grid points. The
acceleration operator M in the AITEM, MSOM and the Newton-CG method are all taken as the linear part of Eq. (3.14),
Fig. 3.3
method
M ¼ @xxxx þ 2@xx � v ;
which gives optimal or near-optimal performance. The initial condition for the depression wave is taken as
u0ðxÞ ¼ �0:25 sech 0:3x cos x;
while that for the elevation wave is taken as �u0ðxÞ. For the depression wave, the error diagrams against the number of iter-
ations for the Newton-CG and Petviashvili methods are displayed in Fig. 3.3(c). We see that for the solution accuracy of 10�10,
the Newton-CG method takes five Newton iterations consisting of a total of 26 CG iterations. This total number of CG iter-
ations is half the number of Petviashvili iterations. In terms of the CPU time, the Newton-CG method takes about 0.004 s,
which is twice as fast as the Petviashvili method (this is expected since the computational costs of one CG iteration and
one Petviashvili iteration are about the same). The AITEM is found to be slower than the Newton-CG method but faster than
the Petviashvili method. This is analogous to Example 3.1 and thus not shown. For the elevation wave, the error diagrams
against the number of iterations for the Newton-CG method and the MSOM (with Dtopt ¼ 0:24) are displayed in
Fig. 3.3(d). In this case, to reach accuracy 10�10, the Newton-CG method takes six Newton iterations consisting of a total
of 39 CG iterations. This total number of CG iterations is far less than the 95 iterations of the MSOM. In terms of the com-
puting time, the Newton-CG method takes about 0.005 s, which is eight times as fast as the MSOM. Thus for these depression
and elevation waves, the Newton-CG method is superior to its peer methods (especially for the elevation wave).

Example 3.4 (Semi-infinite-gap solitons in the 2D NLS equation with periodic potentials). The next example is the 2D NLS equa-
tion with periodic potentials
iUt þ Uxx þ Uyy � V0ðsin2 xþ sin2 yÞU þ rjUj2U ¼ 0; ð3:15Þ
which models nonlinear light propagation as well as Bose–Einstein condensate’s dynamics in optical lattices [33–35]. Here
r ¼ �1 corresponds to self-focusing or self-defocusing nonlinearity, and V0 is the strength of the periodic potential. This
equation has drawn a lot of attention in recent literature and has been heavily studied. This model admits a rich variety
of solitary waves in the form Uðx; y; tÞ ¼ uðx; yÞe�ilt , where uðx; yÞ satisfies the equation
uxx þ uyy � V0 sin2 xþ sin2 y
� �

uþ rjuj2u ¼ �lu; ð3:16Þ
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and l is the propagation constant [35]. When the nonlinearity is self-focusing ðr ¼ 1Þ, a family of solitary waves admitted in
this model is that the solution uðx; yÞ is positive, and has a single intensity maximum which is located at a lattice site (i.e. a
potential minimum). This so-called on-site solution family resides in the semi-infinite gap of the linear spectrum, and can be
considered as the ground state of this system. Defining the power of a solitary wave uðx; yÞ as P ¼

R1
�1
R1
�1 juj

2 dxdy, then the
power curve of this solution family at the potential strength V0 ¼ 6 is displayed in Fig. 3.4(a). At the marked point ‘d’ on this
power curve ðl ¼ 4:11Þ which is near the edge of the Bloch band, the solution profile is displayed in Fig. 3.4(b). This solution
has low amplitude and is quite broad. At another marked point ‘c’ on the power curve ðl ¼ 3:7Þ, the solution has higher
amplitude and is more localized. Now we compute these two solitons by the Newton-CG method, the Petviashvili method
and the AITEM. The Petviashvili method used here is an extension of the original Petviashvili method which was proposed in
[36]. In both the Newton-CG method and the AITEM, the acceleration operator M is taken as (3.7). For the more localized
soliton at point ‘c’ of the power curve, the computational domain is taken as a square of �5p < x; y < 5p, discretized by
256 points along each dimension. The initial condition is taken as
Fig. 3.4
shaded
by ‘CG’
u0ðx; yÞ ¼ 1:15sech2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
: ð3:17Þ
The optimal scheme parameters in these methods are: copt ¼ 3 in the Newton-CG method; copt ¼ 2:4 in the generalized Pet-
viashvili method [36]; and copt ¼ 2;Dtopt ¼ 0:9 in the AITEM. At these optimal scheme parameters, the error diagrams of
these methods versus the number of iterations are displayed in Fig. 3.4(c). One can see that to reach accuracy 10�10, the New-
ton-CG method takes six Newton iterations which consist of a total of 59 CG iterations. This total number of CG iterations is
one third of those of the Petviashvili and AITEM iterations. In terms of the CPU time, the Newton-CG method takes less than
5 s, which is three times as fast as the Petviashvili method, and four times as fast as the AITEM. For the less localized soliton
at point ‘d’ of the power curve, the computational domain is taken as a square of �10p < x; y < 10p, discretized by 256
points along each dimension. The initial condition is taken the same as (3.17), except that the amplitude is reduced from
1.15 to 0.49. For this less localized soliton, the optimal scheme parameters are copt ¼ 3 for the Newton-CG method,
copt ¼ 1:9 for the generalized Petviashvili method, and copt ¼ 2;Dtopt ¼ 1 for the AITEM. At these optimal scheme parameters,
the error diagrams of these methods versus the number of iterations are displayed in Fig. 3.4(d). This time, the Newton-CG
method is much faster than the other two methods. Specifically, to reach accuracy 10�10, the Newton-CG method takes about
a total of 250 CG iterations (in the seven Newton iterations), which is 12 times less than the Petviashvili iterations and 11
times less than the AITEM iterations. In terms of the CPU time, the Newton-CG method takes about 22 s, which is more than
an order of magnitude faster than the Petviashvili method and the AITEM. Thus for these on-site lattice solitons, the Newton-
CG method is far ahead of its peers, especially near edges of the continuous spectrum where the Newton-CG method is more
than an order of magnitude faster than the others.
3.5 4 4.5
0

2

µ

P

c

d

1st gapsemi−infinite gap

(a)

−10
0

10
−10

0
10

0

0.2

0.4

(b)

xy

u

0 50 100 150 200

10−10

10−5

100

number of iterations

er
ro

r

Petviashvili

AITEMAITEM

(c)

CG

0 1000 2000 3000

10−10

10−5

100

number of iterations

er
ro

r

CG
AITEM

Petviashvili

(d)

. (a) Power diagram of the on-site lattice solitons in the semi-infinite gap of the 2D NLS Eq. (3.16) with periodic potentials ðr ¼ 1;V0 ¼ 6Þ; the
stripe is the first Bloch band; (b) the solution profile at the marked point ‘d’ on the power diagram; (c, d) error diagrams of the Newton-CG (marked

), Petviashvili and AITEM methods versus the number of iterations for solitary waves at the points ‘c’ and ‘d’ in (a), respectively.



J. Yang / Journal of Computational Physics 228 (2009) 7007–7024 7017
Example 3.5 (First-gap solitons in the 2D NLS equation with periodic potentials). Next we consider solitary waves in the above
2D NLS equation with periodic potentials (3.16) which reside in the first bandgap of the linear spectrum under self-defocus-
ing nonlinearity ðr ¼ �1Þ. One family of such gap solitons is that the solution uðx; yÞ is real and sign-indefinite, and has a
single intensity maximum which is located at a lattice site. The power curve of this on-site gap soliton family at the potential
strength V0 ¼ 6 is displayed in Fig. 3.5(a). At the marked point ‘d’ on this power curve ðl ¼ 4:56Þ which is near the edge of
the Bloch band, the solution profile is displayed in Fig. 3.5(b). This solution has oscillatory and decaying tails, and is positive
or negative at different spatial positions. At another marked point ‘c’ on the power curve ðl ¼ 5Þ, the solution is qualitatively
similar to that in Fig. 3.5(b), except that it is more localized and with a higher amplitude. For these gap solitons, the Petvi-
ashvili-type methods and the AITEM can not converge [8,36], thus they will be computed by the MSOM and the Newton-CG
method. In both methods, the acceleration operator M is taken as (3.7). For the more localized soliton at point ‘c’ of the power
curve, the computational domain is taken as a square of �5p < x; y < 5p, discretized by 256 points along each dimension.
The initial condition is taken as
Fig. 3.5
the solu
the num
u0ðx; yÞ ¼ 1:15sech
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
cos x cos y: ð3:18Þ
The optimal scheme parameter for the Newton-CG method is copt ¼ 3, and those for the MSOM are copt ¼ 2:9 and Dtopt ¼ 1:7.
At these optimal scheme parameters, the error diagrams of these two methods versus the number of iterations are displayed
in Fig. 3.5(c). To reach accuracy 10�10, the Newton-CG method takes a total of 75 CG iterations (five Newton iterations). This
total number of CG iterations is less than one quarter of the MSOM iterations. In terms of the CPU time, the Newton-CG
method takes about 6 s, which is 12 times faster than the MSOM. For the less localized soliton at point ‘d’ of the power curve,
the computational domain is taken as a square of �10p < x; y < 10p, discretized by 256 points along each dimension. The
initial condition is taken as
u0ðx; yÞ ¼ 0:56sech0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
cos x cos y: ð3:19Þ
For this less localized soliton, the optimal scheme parameters are copt ¼ 3 for the Newton-CG method, and
copt ¼ 2:5;Dtopt ¼ 0:7 for the MSOM. At these optimal scheme parameters, the error diagrams of these methods versus the
number of iterations are displayed in Fig. 3.5(d). Here, to reach accuracy 10�10, the Newton-CG method takes 6 Newton iter-
ations consisting of a total of 250 CG iterations. These CG iterations are 40 times less than the MSOM iterations. In terms of
the CPU time, the Newton-CG method takes about 20 s, which is 130 times faster than the MSOM. Thus for these gap solitons,
the Newton-CG method is orders of magnitude faster than the MSOM, especially near band edges where over two orders of
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magnitude difference in speed is observed. In Appendix A, the sample MATLAB code for the gap soliton in Fig. 3.5(b) is dis-
played. This code demonstrates the simple implementation of the Newton-CG method.

Example 3.6 (Convergence of the Newton-CG method when the kernel of L1 contains non-invariance-related eigenfunctions). In
generic cases, the kernel of the linearization operator L1 contains only eigenfunctions which are induced by the invariances
of solitary waves which do not affect the convergence of iteration methods [8,9,12]. However, in certain non-generic cases,
the kernel of L1 may contain eigenfunctions which are not induced by the invariances of solitary waves. In such cases, pre-
vious iteration methods (including the MSOM) would not converge [9]. However, the Newton-CG method will still quickly
converge in these cases. A heuristic reason for this has been given earlier in this section. To demonstrate, we consider the 1D
NLS equation with the saturable nonlinearity and a quasi-periodic potential
Fig. 3.6
eigenva
diagram
iUt þ Uxx �
6

1þ jUj2 þ ILðxÞ
U ¼ 0; ð3:20Þ
which models light beam propagation in a photorefractive crystal with a photonic lattice [37]. Here
ILðxÞ ¼ 3 cos2 xð1þ 0:5e�x8=128Þ is the intensity field of the photonic lattice with a single-site defect. This equation admits a
family of defect solitons Uðx; tÞ ¼ uðx;lÞe�ilt in the semi-infinite gap, where uðx;lÞ > 0 and satisfies the equation:
L0u ¼ uxx �
6

1þ u2 þ ILðxÞ
uþ lu ¼ 0: ð3:21Þ
The power diagram of this solution family is displayed in Fig. 3.6(a). For this solution family, the largest eigenvalue k1ðlÞ of
the linearization operator L1 is always positive, and its eigenfunction is symmetric. The second largest eigenvalue k2ðlÞ of L1

(with anti-symmetric eigenfunctions) can be positive or negative depending on the l value. The graph of k2ðlÞ is shown in
Fig. 3.6(b). We can see that at l ¼ 1:18; k2 ¼ 0, thus the kernel of L1 here contains an anti-symmetric eigenfunction which is
not invariance-induced. The defect soliton at this l value is shown in Fig. 3.6(c), and its location on the power curve is
marked by the letter ‘c’ in Fig. 3.6(a). It is noted that according to the Vakhitov–Kolokolov stability criterion [38,39], this de-
fect soliton is on the boundary between unstable solitons (on the left of l ¼ 1:18) and stable ones (on the right of l ¼ 1:18).
To compute this soliton, we take a generic initial condition
u0ðxÞ ¼ 3e�0:5x2 þ 0:5 sechx tanh x;
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which contains both symmetric and anti-symmetric components. For this initial condition, previous iteration methods such
as the AITEM, MSOM and generalized Petviashvili methods do not converge due to the presence of that non-invariance-in-
duced eigenfunction in the kernel of L1 [6,8,9]. To illustrate, the error diagram of the MSOM (with c ¼ 2;Dt ¼ 0:8) is shown in
Fig. 3.6(d). It is seen that the error levels off with the number of iterations, indicating non-convergence. However, the New-
ton-CG method can converge very quickly. The error diagram of the CG method (with c ¼ 2) is also plotted in Fig. 3.6(d). It is
seen that the error drops below 10�10 in 65 total CG iterations (seven Newton iterations). Thus the Newton-CG method can
converge regardless the kernel structure of the linearization operator L1. This is a notable advantage over its peers.

Besides the above six physical models, we have applied the Newton-CG method to a number of other wave systems as
well, including the coupled NLS equations and the second-harmonic generation system whose solitary waves have been
computed in [9] before (for the latter model, Eq. (143) in [9] is multiplied by 2 so that the resulting linearization operator L1

is self-adjoint and hence the Newton-CG method can apply). In addition, we have applied the Newton-CG method to
compute gap vortex solitons in the 2D NLS Eq. (3.15) with periodic potentials under either self-focusing or self-defocusing
nonlinearity [40]. For all the wave equations we tested, the Newton-CG method always converged as long as the initial
condition is reasonably close to the exact solution (no breakdown or divergence ever happened). In addition, the Newton-CG
method always converged faster or much faster than its peers. Thus the Newton-CG method proves to be a very robust and
most efficient numerical method for computing both the ground-state and excited-state solitary waves in nonlinear systems
if the linearization operator L1 is self-adjoint.
4. Comparison between the Newton-CG method and nonlinear conjugate-gradient methods

For solitary wave computations in Eq. (2.1), instead of the above Newton-CG method which is based on linear conjugate-
gradient iterations to the linear Eq. (2.5), one can also apply nonlinear conjugate-gradient iterations to the original nonlinear
Eq. (2.1) directly. Nonlinear conjugate-gradient methods have been developed for nonlinear optimization problems already
in the literature [17,25]. Those methods can be easily extended to solitary wave computations in Eq. (2.1). The extended
algorithm (with preconditioning) is described in Appendix B. In this section, we compare this nonlinear conjugate-gradient
(nonlinear-CG) method with the above Newton-CG method, and demonstrate that the Newton-CG method is much more
robust and also faster than the nonlinear-CG method.

We have compared the Newton-CG and nonlinear-CG methods on various examples of solitary wave computations
(including those in the previous section), and the results are all similar. Thus we only display below the comparison results
for the gap soliton in Fig. 3.5(b) for the 2D NLS equation with periodic potentials (3.16). In the nonlinear-CG method, the
preconditioning (acceleration) operator M is taken as (3.7) with c ¼ 3 as in the Newton-CG method. The computational do-
main as well as the number of grid points are taken the same as in the Newton-CG method as well. However, if the initial
condition (3.19) of the Newton-CG method is used, we find that the nonlinear-CG method does not converge at all. Further
numerical testing shows that the convergence or divergence of the nonlinear-CG method is very sensitive to the initial con-
dition, even when the initial condition is very close to the exact solution. To demonstrate, let us take the initial condition as
the exact solution plus a perturbation,
Fig. 4.1
(3.22) w
u0ðxÞ ¼ uðxÞ þ �sech
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
cos x cos y; ð3:22Þ
where uðxÞ is the exact gap soliton, and � is the strength of perturbation. For this form of initial condition, we find that the
nonlinear-CG method does not converge when � ¼ 0:001, but does converge at a slightly different value of � ¼ 0:0011. These
behaviors can be seen clearly from the error diagrams of these two cases in Fig. 4.1(a and b). This sensitivity to initial con-
ditions indicates that the nonlinear-CG method is not a robust numerical method for solitary wave computations. The New-
ton-CG method, on the other hand, is very robust. Indeed, for the type of initial conditions (3.22), the Newton-CG method
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. Error diagrams of the Newton-CG method and the nonlinear-CG method for the computation of the gap soliton in Fig. 3.5(b). The initial condition is
ith � ¼ 0:001 in (a) and � ¼ 0:0011 in (b).
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converges for � anywhere in the wide interval of �0:15 < � < 0:23. For instance, at the above two � values, the error dia-
grams of the Newton-CG method are also plotted in Fig. 4.1(a and b) for comparison. The reason for the sensitivity of the
nonlinear-CG method and the robustness of the Newton-CG method appears to be that, in the nonlinear-CG method, since
the solution is frequently updated, this makes it difficult for successive search directions to maintain conjugacy, which
causes the method to degrade. But in the Newton-CG method, each time Eq. (2.5) is solved by CG iterations, the linear oper-
ator L1n and the inhomogeneous term L0un are fixed, hence the successive search directions of these conjugate-gradient iter-
ations can remain conjugate to each other, so the benefit of the conjugate-gradient method can be fully realized. Fig. 4.1 also
shows that even when the nonlinear-CG method does converge, its error diagram exhibits strong oscillations, but that of the
Newton-CG method is monotone (it should be said that the inner linear conjugate-gradient iterations in the Newton-CG
method for solving Eq. (2.5) also show oscillations in the residue of that equation since L1 is indefinite, but such oscillations
are much weaker, and they usually do not cause oscillations in the error of the outer Newton iterations as plotted in Fig. 4.1).
Additionally, Fig. 4.1 shows that the nonlinear-CG method takes more iterations than the Newton-CG method to reach the
same accuracy. Recalling that each linear CG iteration in the Newton-CG method requires only two operator evaluations (L1

and M�1), while each nonlinear-CG iteration requires three operator evaluations (L0; L1 and M�1), we see that the Newton-CG
method would be at least 50% faster than the nonlinear-CG method (if the latter method can converge). Our conclusion is
that when applying conjugate-gradient ideas to solitary wave computations, the Newton-CG method we proposed in the
previous section is much better than the nonlinear conjugate-gradient methods.
5. The preconditioned biconjugate-gradient method for non-self-adjoint linearization operators L1

For some solitary wave equations, the linearization operator L1 is not self-adjoint. In such cases, the conjugate-gradient
iterations on Eq. (2.5) usually do not converge. In matrix computations, when the matrix is not symmetric, various exten-
sions of the conjugate-gradient method have been developed [21–24]. Among those extended methods, we pick out the
biconjugate-gradient (BCG) method for its efficiency and easy implementation [22]. In this method, two sequences of resi-
dues and search directions are updated using both the matrix and its transpose. Extending the BCG method to Eq. (2.5) and
incorporating preconditioning, the preconditioned BCG iterations are
Duð0Þ ¼ 0;

Rð0Þ ¼ ~Rð0Þ ¼ �L0u;

Dð0Þ ¼ ~Dð0Þ ¼M�1Rð0Þ;

aðiÞ ¼ h
~RðiÞ;M�1RðiÞi
h~DðiÞ; L1DðiÞi

;

Duðiþ1Þ ¼ DuðiÞ þ aðiÞDðiÞ;

Rðiþ1Þ ¼ RðiÞ � aðiÞL1DðiÞ;
~Rðiþ1Þ ¼ ~RðiÞ � aðiÞLy1 ~DðiÞ;

bðiþ1Þ ¼ h
~Rðiþ1Þ;M�1Rðiþ1Þi
h~RðiÞ;M�1RðiÞi

;

Dðiþ1Þ ¼M�1Rðiþ1Þ þ bðiþ1ÞDðiÞ;

~Dðiþ1Þ ¼M�1 ~Rðiþ1Þ þ bðiþ1Þ ~DðiÞ:
Here Ly1 is the adjoint operator (or more generally the Hermitian operator) of L1, and M is a self-adjoint and positive-definite
preconditioning operator. When these BCG iterations are embedded inside the Newton iterations (2.4), the resulting method
will be called the Newton-BCG method for solitary waves in Eq. (2.1).

Notice that one BCG iteration above involves four operator evaluations (L1; L
y
1, and two M�1), which doubles that of one

conjugate-gradient iteration. If the linear operator L1 is self-adjoint, then these BCG iterations become the same as the con-
jugate-gradient iterations of Section 3, but at twice the cost per iteration.

These BCG iterations for Eq. (2.5) need to be stopped when the approximate solution DuðiÞn has reached certain accuracy.
For the same reasons as explained in Section 3, the stopping criterion for these BCG iterations will be taken the same as (3.3)
[or equivalently (3.4)] for conjugate gradient iterations, and the error tolerance parameter will be taken to be �cg ¼ 10�2 as
well in our examples below.

Similar to the Newton-CG method, the Newton-BCG method might also break down in theory since the updating formu-
lae for aðiÞ and bðiþ1Þ during BCG iterations may encounter zero denominators. But as with the Newton-CG method, we did not
encounter this breakdown in our various solitary wave computations by the Newton-BCG method. For instance, in the exam-
ple to be shown below, we tried many different initial conditions near the exact solution, and in all cases the Newton-BCG
method quickly converged. Thus the Newton-BCG method proves to be a robust and efficient numerical method for comput-
ing solitary waves when the linearization operator L1 is non-self-adjoint.



J. Yang / Journal of Computational Physics 228 (2009) 7007–7024 7021
Example 5.1 (Depression and elevation waves in the fifth-order KP equation). As an example of application of the Newton-BCG
method, we consider the fifth-order KadomtsevPetviashvili (KP) equation
Fig. 5.1
(marke
ðUt þ 6UUx þ 2Uxxx þ UxxxxxÞx þ Uyy ¼ 0; ð5:1Þ
which is a normalized model for two-dimensional small-amplitude gravity-capillary waves on water of finite depth when
the Bond number is close to 1/3 [41]. Here Uðx; y; tÞ is the non-dimensionalized free-surface elevation. Looking for traveling
solitary wave solutions of the form Uðx; y; tÞ ¼ uðx� vt; yÞ, where v is the wave’s velocity, then the function uðx; yÞ satisfies
the equation
ðuxxxx þ 2uxx þ 3u2 � vuÞxx þ uyy ¼ 0: ð5:2Þ
This equation admits two-dimensional depression and elevation waves which decay oscillatorily along the x-direction and
monotonically along the y-direction when v < �1, and these waves bifurcate from the minimum phase speed point of
vmin ¼ �1 [41]. At v ¼ �1:2, the corresponding depression and elevation waves are shown in Fig. 5.1(a and b), respectively.
Note that for each value of v < �1, Eq. (5.2) also admits a continuous family of solutions which approach a constant as
ðx; yÞ ! 1. Thus to seek solitary waves in this equation, we need to introduce a constraint which can be taken as
Z 1

�1

Z 1

�1
uðx; yÞdxdy ¼ 0: ð5:3Þ
For Eq. (5.2), the linearization operator
L1w ¼ ðwxxxx þ 2wxx þ 6uw� vwÞxx þ wyy ð5:4Þ
is not self-adjoint, thus we need to use the Newton-BCG method to compute its solitary waves. To obtain the depression and
elevation waves in Fig. 5.1(a and b) with v ¼ �1:2, we take the spatial domain as �60p < x < 60p;�30p < y < 30p, discret-
ized by 1024 and 128 grid points along the x and y-directions, respectively. The acceleration operator M is taken as
M ¼ c � @xxð@xxxx þ 2@xx � vÞ; ð5:5Þ
with c ¼ 0:0001. The initial condition for the depression wave is taken as
u0ðx; yÞ ¼ �0:43 sech 0:3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
cos x; ð5:6Þ
−20 −10 0 10 20−20
0

20

−0.2

0

0.2
(a)

x

y

u

0 30 60

10−10

10−5

100

BCG

Petviashvili

(c)

number of iterations

er
ro

r

−20 −10 0 10 20−20
0

20

−0.2

0

0.2
(b)

x
y

u

0 50 100 150 200

10−10

10−5

100

BCG

MSOM

(d)

number of iterations

er
ro

r

. (a, b) The depression wave (a) and elevation wave (b) in the fifth-order KP Eq. (5.2) with v ¼ �1:2; (c, d) error diagrams of the Newton-BCG method
d by ‘BCG’) and its peers for the depression wave (c) and elevation wave (d).



7022 J. Yang / Journal of Computational Physics 228 (2009) 7007–7024
while that for the elevation wave is taken as �u0ðx; yÞ. The constraint (5.3) is imposed by setting the ðkx; kyÞ ¼ 0 Fourier com-
ponent of the solution unðx; yÞ to be zero after each Newton iteration (2.4). The error diagrams for these depression and ele-
vation waves are displayed in Fig. 5.1(c and d).

As with the previous Newton-CG method, the error diagram of the Newton-BCG method here also plots the error of the
numerical solution after each Newton’s iteration against the total number of preceding BCG iterations (by circle points), and
these circle points are connected by straight lines for illustration purpose.

One can see that to reach accuracy 10�10, the Newton-BCG method takes only a total of 39 BCG iterations (six Newton
iterations) for the depression wave and 53 total BCG iterations (seven Newton iterations) for the elevation wave.

Now we compare the Newton-BCG method with its peers. For this depression wave, the Petviashvili method also
converges. With the same initial condition (5.6), the error diagram of this method is also shown in Fig. 5.1(c). To reach
accuracy 10�10, the Petviashvili method takes 62 iterations. Noticing that one BCG iteration involves about twice the amount
of computations as one Petviashvili iteration, we find that the Newton-BCG and Petviashvili methods take about the same
CPU times (15 s) on this example. However, if the wave speed v is closer to the minimum phase speed vmin ¼ �1 (where the
wave is less localized), the Newton-BCG method will be faster than the Petviashvili method analogously to Example 3.4. For
the elevation wave in Fig. 5.1(b), the Petviashvili method does not converge. Thus we use the MSOM on this example. The
acceleration operator M is taken the same as Eq. (5.5), and the constraint (5.3) is imposed the same way as in the BCG
method. Our numerical testings show that the MSOM is extremely slow on this example. For instance, with c ¼ 0:01 and
Dt ¼ 0:025, the error diagram of the MSOM is shown in Fig. 5.1(d). We find that the error is still on the order of 10�4 even
after thousands of iterations. Thus the Newton-BCG method is much faster than the MSOM on this example.
6. Summary and discussion

In this paper, we proposed conjugate-gradient-type methods for solitary wave computations. Our schemes are based on
Newton outer iterations (2.4), coupled with inner conjugate-gradient iterations to solve the linear Eq. (2.5). When the line-
arization operator L1 is self-adjoint, we used the preconditioned conjugate gradient method to solve this linear Eq. (2.5). If L1

is non-self-adjoint, we used the preconditioned biconjugate-gradient method to solve this linear equation. The resulting
Newton-CG and Newton-BCG methods were applied to compute both the ground states and excited states in various phys-
ical systems such as the two-dimensional NLS equations with and without periodic potentials, the fifth-order KdV equation,
the fifth-order KP equation, and many others. The numerical results showed that these proposed methods are very robust
and always converge without breakdowns. More importantly, these methods are faster than the other leading numerical
methods, often by orders of magnitude. In addition, these methods are very easy to implement in arbitrary spatial dimen-
sions. Furthermore, we showed that the nonlinear conjugate-gradient methods are not robust and thus inferior to these pro-
posed methods.

We would like to mention that even though these proposed methods were found to be very robust and never break down
in our extensive numerical testings on various examples and initial conditions, the risk of their breakdown still exists. If this
breakdown does occur, it can be avoided by changing the initial guess function. Another potential risk is that these methods
may not converge even if there is no breakdown. This scenario was never observed in our numerous testings of these meth-
ods, but this risk may exist since there is no theoretical guarantee for the convergence of conjugate-gradient or biconjugate-
gradient iterations in the absence of breakdowns if the matrix is symmetric indefinite or non-symmetric. If one wishes for a
conjugate-gradient-type method with a guaranteed convergence, a simple option is to multiply the linear Eq. (2.5) by Ly1n and
turn it into a normal equation. The linear operator Ly1nL1n of this normal equation is self-adjoint and semi-positive-definite,
thus it can be solved by the preconditioned conjugate-gradient iterations. This method will be slower than the Newton-CG or
Newton-BCG method, but it does offer guaranteed convergence if the reader needs it. Another idea which was pursued in
[42] is to incorporate mode elimination [14] into the nonlinear conjugate-gradient methods in order to guarantee the con-
vergence of nonlinear conjugate-gradient methods for ground-state solitary waves. This idea was met with limited success.
But it only applies to the computation of ground states. In addition, it is about twice slower than the Newton-CG/BCG meth-
ods of this paper.
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Appendix A. MATLAB code of the newton-CG method for Example 3.5

Below is a sample MATLAB code of the Newton-CG method which computes the gap soliton of Fig. 3.5(b) in Example 3.5.

Lx=20*pi; Ly=20*pi; N=256; errormax=1e-10; errorCG=1e-2;

x=-Lx/2:Lx/N:Lx/2-Lx/N; kx=[0:N/2-1 -N/2:-1]*2*pi/Lx;
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y=-Ly/2:Ly/N:Ly/2-Ly/N; ky=[0:N/2-1 -N/2:-1]*2*pi/Ly;

[X,Y]=meshgrid(x,y); [KX,KY]=meshgrid(kx,ky); K2=KX.
2
+KY.

2
;

V=-6*(sin(X).
2
+sin(Y).

2
); c=3; mu=4.56;

U=0.56*sech(0.5*sqrt(X.
2
+Y.

2
)). *cos(X).*cos(Y);

ncg=0; nnt=0;

while 1

nnt=nnt+1;

L0U=ifft2(-K2.*fft2(U))+(V-U.*U+mu).*U;

errorU(nnt)=max(max(abs(L0U)));

iterations(nnt)=ncg;

errorU(nnt)

if errorU(nnt) < errormax

break

end

DU=0*X;

R=-L0U; MinvR=ifft2(fft2(R)./(K2+c));

R2=sum(sum(R.*MinvR)); R20=R2;

D=MinvR;

while (R2 > R20*errorCG
2
)

L1D=ifft2(-K2.*fft2(D))+(V-3*U.*U+mu).*D;

a=R2/sum(sum(D.*L1D));

DU=DU+a*D;

R=R-a*L1D; MinvR=ifft2(fft2(R)./(K2+c));

R2old=R2;

R2=sum(sum(R.*MinvR));

b=R2/R2old;

D=MinvR+b*D;

ncg=ncg+1;

end

U=U+DU;

end

figure(1); mesh(x,y,U); xlabel(’x’); ylabel(’y’); zlabel(’U’);

figure(2); semilogy(iterations, errorU);

xlabel(’number of iterations’); ylabel(’error’)

Appendix B. Preconditioned nonlinear conjugate-gradient methods for solitary waves

The linear conjugate-gradient method was developed for solving systems of linear equations. To solve systems of nonlin-
ear equations, nonlinear conjugate-gradient methods have been developed in the literature [17,25]. These nonlinear conju-
gate-gradient methods can be easily extended to compute solitary waves in Eq. (2.1). With preconditioning incorporated, the
outline of the preconditioned nonlinear conjugate gradient method for Eq. (2.1) is
R0 ¼ �L0u0;

D0 ¼M�1R0;

Find an so that hDn; L0ðun þ anDnÞi ¼ 0;
unþ1 ¼ un þ anDn;

Rnþ1 ¼ �L0unþ1;

bnþ1 ¼
hRnþ1;M

�1Rnþ1i
hRn;M

�1Rni
;

Dnþ1 ¼M�1Rnþ1 þ bnþ1Dn:
Here the updating formula for bnþ1 is the Fletcher-Reeves formula. An alternative formula for bnþ1 is the Polak-Ribière
formula [17]. Our numerical testings on these two formulas show similar results, thus the slightly simpler Fletcher-Reeves
formula is used above.

Regarding the formula for an, if un is close to the exact solution u (i.e. the error term anDn is small), then we can linearize
the inner product for an around un and hence obtain an approximate formula for an as
an ¼
hDn;Rni
hDn; L1nDni

; ðB:1Þ
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where L1n is the linearization operator of (2.1) evaluated at un (as in the main text). If un is not close to the exact solution u, it
may be necessary to obtain an iteratively by the Newton’s method on the above inner product equation for an. In that case,
the resulting nonlinear-CG method would be a loop-within-loop operation. But here the Newton’s iteration is the inner loop,
which contrasts the Newton-CG method where the Newton iteration is the outer loop.

In the comparison of Section 4, the an formula (B.1) was used in the nonlinear-CG method. The resulting algorithm was
found to be sensitive to initial conditions, even when the initial condition is very close to the exact solution. If an is obtained
by Newton’s iterations, the resulting nonlinear-CG method would still be sensitive to initial conditions (even when they are
close to the exact solution), and thus is still not a robust numerical method for solitary wave computations.
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