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Complete eigenfunctions for an integrable equation linearized around a soliton
solution are the key to the development of a direct soliton perturbation theory. In
this article, we explicitly construct such eigenfunctions for a large class of inte-
grable equations including the KdV, NLS and mKdV hierarchies. We establish the
striking result that the linearization operators of all equations in the same integrable
hierarchy share thesamecomplete set of eigenfunctions. Furthermore, these eigen-
functions are precisely the squared eigenfunctions of the associated eigenvalue
problem. The key step in our derivation is to show that the linearization operator of
an integrable equation can be factored into a function of the integro-differential
operator which generates the integrable equation, and the linearization operator of
the lowest-order integrable equation in the same hierarchy. We also obtain similar
results for the adjoint linearization operator of an integrable equation. Even though
our analysis is conducted only for the KdV, NLS and mKdV hierarchies, similar
results are expected for other integrable hierarchies as well. We further explicitly
present the complete eigenfunctions for the KdV, NLS and mKdV hierarchy equa-
tions and give their inner products, thus they can be readily used to develop a direct
soliton perturbation theory for any of those hierarchy equations. ©2000 Ameri-
can Institute of Physics.@S0022-2488~00!02709-2#

I. INTRODUCTION

Many physical wave systems are governed by nonlinear integrable equations at the
order of approximation. For instance, pulse transmission in optical fibers and wave propaga
deep water are described by the nonlinear Schro¨dinger ~NLS! equation.1,2 Evolution of shallow
water waves is described by the Korteweg–de Vries~KdV! equation,3,4 and internal waves at the
interface of two layers of equal depth are described by the modified Korteweg–de Vries~mKdV!
equation.5 Integrable equations support soliton solutions which travel stationarily and co
elastically. They also possess many other remarkable properties such as infinite conservati
and Painleve´ property.5–7 When perturbations such as damping, higher order dispersion and
linearity are brought into consideration, a physical system is then better modeled by per
integrable equations.1,2,8,9 In a perturbed system, solitons in general will not remain station
anymore. To study their evolution and subsequent excitation of radiation, one would ne
develop a soliton perturbation theory. Several such theories have been developed in the pa
is the inverse-scattering-based soliton perturbation theory, which was developed in the 197010–14

This method is intimately related to the inverse scattering technique. The second one, also
oped in the 1970s, is based on the Green’s function for the linearized integrable equation ex
around solitons.15 The third one, also originated in the 1970s16,17 and further developed in the
1990s,18–23 is the direct soliton perturbation theory. It is based on the complete set of eigen
tions for the linearized equation expanded around solitons. In essence, this theory shares th
ideas as the second one, but it is conceptually simpler and has a wider appeal. Severa
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approaches such as the adiabatic method24 and the variational method25 have also been developed
But these methods cannot capture radiation modes, and thus are mathematically incomple

The key in the direct soliton perturbation theory is to find a complete set of bounded e
functions for the linearized equation around a soliton solution. This set allows one to solv
linear inhomogeneous equations at various orders of the perturbation expansion. Suppres
secular growth in those solutions then results in the dynamical equations for soliton para
and radiation coefficients. At the moment, such a complete set of eigenfunctions has bee
tified only for the sine-Gordon, Benjamin–Ono, NLS and KdV equations.16–22,26But some genera
ideas have also been hinted or put forward. In Ref. 18, Kaup obtained the complete s
eigenfunctions for the linearized NLS equation around a soliton solution from his observatio
these functions are related to the squared Zakharov–Shabat eigenstates. Indeed, the co
between eigenfunctions of linearized integrable equations and squared eigenstates of the
ated eigenvalue problem has been hinted by inverse-scattering-based soliton pertu
theory.10–13But it has never been clearly articulated and demonstrated for the general case.
19, Herman proposed to use the Lax pair of an integrable equation to find the complete
functions of linearized equations. In this approach, one first determines the time evolution
squared eigenfunctions of the associated eigenvalue problem from the Lax pair. Then one
find the correct combination of squared eigenfunctions to satisfy the linearized integrable
tion. Herman applied this method to the KdV and NLS equations and successfully obtaine
complete eigenstates. The procedure proposed by Herman is suggestive, and it can also w
linearization of integrable equations around time-dependent solutions such as multi-soliton
tions. However, its disadvantage is that, for every integrable equation, one has to verif
squared eigenfunctions of the eigenvalue problem solve the linearized equation around a
solution~or a general solution!. It is not clear yet whether this will always be the case. From th
previous works, we see that, although some interesting ideas have been proposed to c
complete eigenfunctions of linearized integrable equations, what these eigenfunctions mus
a general integrable equation is still unknown.

In this article, we construct complete eigenfunctions for a large class of integrable equ
linearized around a single-soliton solution. This class includes the KdV, NLS and mKdV hi
chies. The striking result which we will establish is that linearization operators of all integ
equations in the same hierarchy share thesamecomplete set of eigenfunctions~the corresponding
eigenvalues differ from one equation to another!. Furthermore, these eigenfunctions are a
eigenstates of the integro-differential operator which generates the hierarchy, thus they are
related to the squared eigenfunctions of the eigenvalue problem associated with the hierar
fact, our results are even stronger. We will show that the linearization operator for any equa
a hierarchy can be factored into the integro-differential operator which generates the hier
and the linearization operator of the lowest-order equation in this hierarchy. All the other r
cited above are simple consequences of this factorization result. Our findings confirm that
broad class of integrable equations, squared eigenstates of the eigenvalue problem also s
linearized equation around a soliton solution. Thus, squared eigenfunctions of the eige
problem are the natural basis of expansion in a direct soliton perturbation theory. They
indicate that, unlike Herman’s approach,19 only the eigenvalue operator of the Lax pair is releva
in the construction of complete eigenfunctions for the linearized equation around single-s
solutions. The time evolution operator of the Lax pair can be neglected. This is why an
hierarchy can share the same complete set of eigenfunctions, since they are all associated
same eigenvalue operator. Although our focus of this article is on the KdV, mKdV and
hierarchies, the ideas and basic results should hold for other integrable hierarchies as well
on these results, we then explicitly give the complete sets of eigenfunctions for lineariz
operators of the KdV, NLS and mKdV hierarchies. We also give similar results for the ad
linearization operators, and explicitly obtain the common adjoint eigenstates for each hier
With these complete eigenstates and adjoint eigenstates available, it is now a simple ma
develop a direct soliton perturbation theory for all the KdV, NLS and mKdV hierarchy equat
We note that another application of these complete eigenfunctions is in the study of eige
07 May 2001 to 132.198.203.101. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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bifurcation of solitary waves from the edge of the continuous spectrum in a perturbed integ
equation.27–29 Lastly, we comment that our analysis is independent of the inverse scatt
theory, even though connections to inverse scattering are still visible.

II. COMPLETE EIGENFUNCTIONS OF LINEARIZATION OPERATORS FOR THE KdV
HIERARCHY

We start by considering the eigenmodes of linearization operators for the KdV hierarchy
hierarchy is of the form30

qt1C~4Ls
1!qx50, ~2.1!

whereC(k2) is the phase velocity of the linearized equations, and the integro-differential ope
Ls

1 is

Ls
152

1

4

]2

]x2 2q1
1

2
qxE

x

`

dy. ~2.2!

Here the subscript ‘‘s’’ in Ls
1 refers to ‘‘Schro¨dinger,’’ as the associated eigenvalue problem

the KdV hierarchy~2.1! is the Schro¨dinger equation.30,31 The adjoint operator ofLs
1 is

Ls52
1

4

]2

]x2 2q1
1

2 E2`

x

dyqy . ~2.3!

Notice that

Ls
1 f x5~Lsf !x ~2.4!

for any function f (x) which vanishes at infinity. Thus Eq.~2.1! can be recast in terms of th
adjoint operatorLs as

qt1@C~4Ls!q#x50. ~2.5!

In this section, we require the phase velocity functionC(z) to be entire. WhenC(z)52z, Eq.
~2.1! becomes the KdV equation:

qt16qqx1qxxx50. ~2.6!

WhenC(z)5z2, Eq. ~2.1! is the fifth-order KdV hierarchy:

qt1qxxxxx110qqxxx120qxqxx130q2qx50. ~2.7!

Other members in this hierarchy can be obtained by choosing different functions for the
velocity C(z).

In the rest of this section, occasions will arise where we want to apply the operatorLs
1 @and

L0
1 to be defined in Eq.~2.13!# on a functiong8(x), whereg(x) is related to continuous eigen

functions and is oscillatory at infinity. In such cases, we adopt the following convention fo
integral term involved:

E
x

`

g8~y! dy[2g~x!. ~2.8!

This convention echoes the fact that, when we obtain a particular KdV hierarchy equation
~2.1!, terms such as*x

`q8(y) dy are always evaluated as2q(x) and so on. This convention
applies notably to the commutability relation~2.20! and the factorization formula~2.22! when they
operate on continuous eigenfunctions. It applies to the eigenfunction relation~2.61! as well. We
07 May 2001 to 132.198.203.101. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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emphasize that this convention is only a technical issue. It does not cause any controve
ambiguity in our main results expressed in Theorems 1 and 2. In fact, we could have cho
work with the operatorLs and avoid operatorsLs

1 ~andL0
1! altogether. The way to do it is to sta

with the KdV hierarchy~2.5! instead of~2.1!. The results of course would be the same, but
derivations would be a little cumbersome.

We now consider soliton solutions in the KdV hierarchy~2.1! and linearization of~2.1!
around solitons. One can check that the soliton family

q~x,t !52h2 sech2 h$x2C~24h2!t% ~2.9!

satisfies Eq.~2.1!, whereh is a free amplitude parameter. By rescaling the variablesx andq by h
and h2, respectively, and by denotingC(h2z) as C(z), we can normalizeh51 in the soliton
solution ~2.9! while keeping the evolution equation~2.1! intact. We also adopt the coordina
system moving with speedC(24), i.e.,

x̄5x2C~24!t, t̄ 5t. ~2.10!

When the bars are dropped, Eq.~2.1! finally becomes

qt1@C~4Ls
1!2C~24!#qx50, ~2.11!

where

q0~x!52 sech2 x ~2.12!

is its normalized soliton solution.
Two operators,L0

1 andL0 , will be used frequently in the rest of this section. They are defi
asLs

1 andLs with q(x,t) replaced byq0(x), i.e.,

L0
152

1

4

]2

]x2 2q01
1

2
q0xE

x

`

dy, ~2.13!

and

L052
1

4

]2

]x2 2q01
1

2 E2`

x

dyq0y . ~2.14!

Naturally,L0 is the adjoint operator ofL0
1 , just asLs is the adjoint operator ofLs

1 . Note that

L0
1q0x52q0x . ~2.15!

This relation will be used in the proof of Theorem 1.
We now linearize the evolution equation~2.11! around its soliton solution~2.12!. We set

q~x,t !5q0~x!1q̃~x,t !, ~2.16!

where q̃!1. When it is substituted into Eq.~2.11! and higher order terms are discarded, t
linearized equation of~2.11! is

q̃t1Lkhq̃50, ~2.17!

whereLkh is the linearization operator. Here the subscript ‘‘kh’’ is the abbreviation of ‘‘KdV
hierarchy.’’ We also denote the adjoint operator ofLkh as Lkh

A . For the KdV equation,C(z)
52z. In this case, linearization of Eq.~2.11! around the soliton~2.12! shows that the linearization
operator is
07 May 2001 to 132.198.203.101. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Lkdv5
]3

]x3 1~6q024!
]

]x
16q0x . ~2.18!

Its adjoint operator is

Lkdv
A 52

]3

]x3 2~6q024!
]

]x
. ~2.19!

An important property is that,L0
1 andLkdv are commutable, andL0 andLkdv

A are commutable, i.e.

L0
1Lkdv5LkdvL0

1 , ~2.20!

and

L0Lkdv
A 5Lkdv

A L0 . ~2.21!

These facts can be verified by direct calculations.
The first important result of this section is the following theorem which gives the sim

expressions for the linearization operatorLkh and its adjoint operatorLkh
A for any KdV hierarchy

equation.
Theorem 1: For any KdV hierarchy equation (2.11) where C(z) is an entire function, the

linearization operator Lkh and its adjoint operator Lkh
A have the following factorizations:

Lkh5M ~4L0
1!Lkdv , ~2.22!

Lkh
A 5M ~4L0!Lkdv

A , ~2.23!

where the function M(z) is defined as

M ~z![
C~24!2C~z!

41z
. ~2.24!

Before proving this theorem, we present an example first. Let us take the fifth-order KdV equ
~2.11!, whereC(z)5z2. ThenM (z)542z. Straightforward calculations show that

M ~4L0
1!Lkdv5

]5

]x5 110q0

]3

]x3 120q0x

]2

]x2 1~216180q0230q0
2!

]

]x
140q0x . ~2.25!

This is exactly the linearization operatorLkh when one linearizes Eq.~2.11! directly. TheLkh
A

factorization formula~2.23! can be similarly verified in this special case.
Proof: It suffices to prove this theorem forC(z) as a power function,C(z)5zn, wheren is

any positive integer, as any entire function can be expanded into a power series. In this ca
~2.11! becomes

qt1@~4Ls
1!n2~24!n#qx50, ~2.26!

and

M ~z!52(
i 51

n

zi 21~24!n2 i . ~2.27!

When Eq.~2.16! is substituted into the operator 4Ls
1 , linearization of 4Ls

1 is
07 May 2001 to 132.198.203.101. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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4Ls
154L0

124q̃12q̃xE
x

`

dy1O~ q̃2!. ~2.28!

Thus, linearization of (4Ls
1)n is

~4Ls
1!n5~4L0

1!n1(
i 51

n

~4L0
1! i 21F24q̃12q̃xE

x

`

dyG~4L0
1!n2 i1O~ q̃2!. ~2.29!

When this equation is utilized, we find the linearization operatorLkh of the evolution equation
~2.26! to be

Lkhq̃5@~4L0
1!n2~24!n#

]q̃

]x
1(

i 51

n

~4L0
1! i 21F24q̃12q̃xE

x

`

dyG~4L0
1!n2 iq0x . ~2.30!

Recalling Eqs.~2.15!, ~2.18! and ~2.27!, the above equation becomes

Lkhq̃5(
i 51

n

~4L0
1! i 21~24!n2 iF ~4L0

114!
]q̃

]x
24q0xq̃22q0q̃xG

5(
i 51

n

~4L0
1! i 21~24!n2 i@2q̃xxx2~6q024!q̃x26q0xq̃#

52(
i 51

n

~4L0
1! i 21~24!n2 iLkdvq̃5M ~4L0

1!Lkdvq̃. ~2.31!

Thus the factorization formula~2.22! is proved. To proveLkh
A factorization formula~2.23!, we

recall the fact that, for any two operatorsP andQ, (PQ)A5QAPA, where the superscript ‘‘A’’
represents the adjoint operator. SinceL0 is the adjoint operator ofL0

1 , thus from Eq.~2.31!, we
have

Lkh
A 52(

i 51

n

~24!n2 iLkdv
A ~4L0! i 21. ~2.32!

But L0 andLkdv
A are commutable@see Eq.~2.21!#. So

Lkh
A 52(

i 51

n

~4L0! i 21~24!n2 iLkdv
A 5M ~4L0!Lkdv

A . ~2.33!

This proves theLkh
A factorization formula~2.23!.

Remark:The only piece of information we used to prove theLkh factorization formula~2.22!
is the simple relation~2.15! for q0 , and the only information we used to prove theLkh

A factoriza-
tion formula ~2.23! is ~2.22! and the commutability relation between operatorsL0 andLkdv

A .
Theorem 1 is an elegant and important result of this section. It relates the lineariz

operatorsLkh andLkh
A of an arbitrary KdV hierarchy equation to the integro-differential operat

L0
1 , L0 , and the KdV linearization operatorsLkdv and Lkdv

A . Another important fact, which we
will establish later, is thatL0

1 (L0) and Lkdv (Lkdv
A ) share the same complete set of eigensta

This fact, together with the factorization formulas~2.22! and~2.23!, will immediately result in the
samecomplete set of eigenstates forLkh andLkh

A of all KdV hierarchy equations.
We first write down the complete sets of eigenfunctions forLkdv andLkdv

A , which have been
worked out before.19,20,26The complete eigenfunctions and generalized eigenfunctions ofLkdv are
07 May 2001 to 132.198.203.101. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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C~x,k!5
1

~k12i !2 @ ik~k214!24~k212!tanhx28ik tanh2 x18 tanh3 x#eikx, ~2.34!

C1~x!5sech2 x tanhx, C2~x!5sech2 x~12x tanhx!, ~2.35!

where

LkdvC52 ik~k214!C, ~2.36!

LkdvC150, LkdvC2528C1 , ~2.37!

and2`,k,` in ~2.34! and~2.36!. We note that the discrete statesC1 andC2 are obtained by
taking variations to the free amplitude and position parameters in a KdV soliton. Eigenstat
the adjoint operatorLkdv

A are

F~x,k!5
1

~k12i !2 @k224ik tanhx24 tanh2 x#e2 ikx, ~2.38!

F1~x!5sech2 x, F2~x!5tanhx1x sech2 x, ~2.39!

where

Lkdv
A F52 ik~k214!F, ~2.40!

Lkdv
A F150, Lkdv

A F2528F1 , ~2.41!

and2`,k,` in ~2.38! and ~2.40! as well.
The nonzero inner products between eigenstates and their adjoint eigenstates are

^C~x,k!,F~x,k8!&52p ika0
2d~k2k8! ~2.42!

and

^C1~x!,F2~x!&5^C2~x!,F1~x!&51, ~2.43!

wherea05(k22i )/(k12i ). Here the inner products between two~vector! functions f (x) and
g(x) are defined as

^ f ~x!,g~x!&[E
2`

`

f ~x!Tg~x! dx, ~2.44!

and the superscript ‘‘T’’ represents the transverse of a vector or matrix. The closure relation

E
2`

` 1

2p ika0
2 C~x,k!F~x8,k!dk1(

j 51

2

C j~x!F j~x8!5d~x2x8!. ~2.45!

A critical fact is that the above eigenstates ofLkdv andLkdv
A arealso the eigenstates ofL0

1 andL0 ,
respectively. More specifically, we have

L0
1C5

k2

4
C, L0

1C152C1 , L0
1C252C22C1 , ~2.46!

and
07 May 2001 to 132.198.203.101. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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L0F5
k2

4
F, L0F152F1 , L0F252F221. ~2.47!

These results can be proved in several different ways. One way is to verify them direc
substituting the eigenstates~2.34!, ~2.35!, ~2.38!, and~2.39! into Eqs.~2.46! and ~2.47!. A better
way is to recall the crucial fact thatL0

1 (L0) andLkdv (Lkdv) are commutable. Thus

LkdvL0
1C~x,k!5L0

1LkdvC~x,k!52 ik~k214!L0
1C~x,k!. ~2.48!

This shows thatL0
1C is an eigenstate ofLkdv with eigenvalue2 ik(k214). But we know from

~2.36! that the only eigenstate ofLkdv with eigenvalue2 ik(k214) is C(x,k). Thus L0
1C

5lC, wherel is a constant. In other words,C(x,k) is also an eigenstate ofL0
1 . By taking the

limit x→`, we can easily find that the eigenvaluel5 k2/4. Other relations in~2.46! and ~2.47!
can be proved similarly.

The third way of proving~2.46! and~2.47! is probably the most stimulating. This proof mak
use of the important relationship between eigenfunctions~2.34!, ~2.35!, ~2.38!, and~2.39! of the
KdV linearization operators and squared eigenstates of the Schro¨dinger equation with a soliton
potential~2.12!:

vxx1~z21q0~x!!v50. ~2.49!

Using conventional notation, we define the eigenstatesc(x,z) andf(x,z) of ~2.49! as

c→ei zx, x→`, ~2.50!

f→e2 i zx, x→2`. ~2.51!

Then it is easy to check that

c~x,z!5
z1 i tanhx

z1 i
ei zx ~2.52!

and

f~x,z!5
z2 i tanhx

z1 i
e2 i zx. ~2.53!

For real values ofz, Eqs. ~2.52! and ~2.53! give the continuous eigenstates of the Schro¨dinger
operator. Whenz5 i , they produce the same discrete eigenstate

c15f15 1
2 sechx. ~2.54!

It can be directly verified that eigenstates~2.34!, ~2.35!, ~2.38!, and~2.39! of the KdV linearization
operators are related to the the squared eigenstates of the Schro¨dinger operator as follows:

C~x,k!5
]c2~x,k/2!

]x
, ~2.55!

C1~x!522
]c1

2

]x
, C2~x!52S i

]2c2

]x]z
1

]c2

]x D U
z5 i

, ~2.56!

F~x,k!5f2~x,k/2!, ~2.57!
07 May 2001 to 132.198.203.101. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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F1~x!54f1
2 , F2~x!52S i

]f2

]z
1f2D U

z5 i

21. ~2.58!

Now we need to recall the fact that squared eigenstates of the Schro¨dinger equation are eigenstate
of the integro-differential operatorsL0

1 andL0 . Specifically, we have

L0f25z2f2, ~2.59!

L0f1
252f1

2 , L0

]f2

]z U
z5 i

5S 2
]f2

]z
12if2D U

z5 i

, ~2.60!

L0
1~c2!x5z2~c2!x , ~2.61!

L0
1~c1

2!x52~c1
2!x , L0

1
]2c2

]z]x U
z5 i

5H 2
]2c2

]z]x
12i ~c2!xJ U

z5 i

. ~2.62!

Proof of Eq.~2.59! for general potentialq(x,t) can be found in Ref. 30. By takingz5 i in ~2.59!,
the first equation in~2.60! can be obtained. By taking the derivative of Eq.~2.59! with respect to
z, and then takingz5 i , the second equation in~2.59! is proved. Equations~2.61! and~2.62! can
be derived similarly. We note that Eq.~2.61! is valid for general potentialq(x,t), not just the
soliton potential~2.12!. We also remind the reader that in Eq.~2.61!, the convention~2.8! has been
applied. When all the relations~2.55!–~2.58! and~2.59!–~2.62! are utilized, Eqs.~2.46! and~2.47!
are proved again.

Now since the eigenstates ofLkdv (Lkdv
A ) are also the eigenstates ofL0

1 (L0), theLkh andLkh
A

factorization formulas~2.22! and~2.23! quickly show that the eigenstates of the KdV linearizati
operatorLkdv (Lkdv

A ) are also the eigenstates of the linearization operatorsLkh (Lkh
A ) of all KdV

hierarchy equations. This is the major result of this section. We summarize it in the follo
theorem.

Theorem 2: The linearization operators Lkh of all KdV hierarchy equations (2.11) expande
around the soliton (2.12) share the same complete set of Lkdv-eigenstates (2.34) and (2.35), an
the adjoint linearization operators Lkh

A of all KdV hierarchy equations (2.11) share the sam
complete set of Lkdv

A -eigenstates (2.38) and (2.39). Furthermore,

LkhC~x,k!5 ik$C~k2!2C~24!%C~x,k!, ~2.63!

LkhC1~x!50, LkhC2~x!528M ~24!C1~x!, ~2.64!

Lkh
A F~x,k!5 ik$C~k2!2C~24!%F~x,k!, ~2.65!

Lkh
A F1~x!50, Lkh

A F2~x!528M ~24!F1~x!. ~2.66!

The proof of this theorem follows readily from the factorization formulas~2.22! and ~2.23!, the
Lkdv andLkdv

A eigenfunction relations~2.36!, ~2.37!, ~2.40!, and~2.41!, andL0
1 andL0 eigenfunc-

tion relations~2.46! and ~2.47!. With the results of Theorem 2, one can now develop a dir
soliton perturbation theory for any KdV hierarchy equation.6,14,19,20

An interesting fact which was not appreciated in the past is that, for any constantl, all the
linearly independent solutions to the linearization operator equation

Lkhu~x!5lu~x! ~2.67!

are given by the functionC(x,k) @see Eq.~2.34!#, where

l5 ik$C~k2!2C~24!%, ~2.68!
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andk is allowed to be a complex number. This fact follows directly from Theorem 2. To see
we takeC(z) as a power function,C(z)5zn, wheren is a positive integer. Notice that operato
Lkh , as well as Eq.~2.67!, is (2n11)-th order. Thus Eq.~2.67! should have (2n11) linearly
independent solutions. But Eq.~2.68! has exactly (2n11) roots, and each rootk would give one
solutionC(x,k) for ~2.67!. Thus we do get (2n11) solutions altogether for~2.67!, all of which
are in the same formC(x,k) with just different k values. If k is real, C(x,k) is bounded at
infinity, and is thus an eigenfunction of operatorLkh . If k is truly complex, then the correspondin
C(x,k) solution becomes unbounded. Thus we see that, for the integrable KdV hierarch
linearization operator equation~2.67! is also completely solvable. Similar facts go to the adjo
operator equationLkh

A ū5l̄ū, where all its solutions are given byF(x,k̄) with l̄5 i k̄@C( k̄2)
2C(24)#. These facts are additional manifestations of magic associated with integrable
tions.

In the next two sections, we will derive similar results for the NLS and mKdV hierarch
More specifically, we will show that the linearization operators of all NLS~mKdV! hierarchy
equations share the same complete sets of eigenfunctions. In each case, we will pres
common eigenfunctions explicitly, work out their inner products, and relate them to squ
eigenstates of the associated eigenvalue problem.

III. COMPLETE EIGENFUNCTIONS OF LINEARIZATION OPERATORS FOR THE NLS
HIERARCHY

The integrable equations associated with the Zakharov–Shabat eigenvalue problem
written as30

i F r t

2qt
G2v~2Lz

1!F r
qG50, ~3.1!

where the integro-differential operatorLz
1 is

Lz
15

1

2i F ]

]x
22r E

2`

x

dyq 2r E
2`

x

dyr

22qE
2`

x

dyq 2
]

]x
12qE

2`

x

dyr
G , ~3.2!

andv(k) is the dispersion relation of the linearization equation in ther -component. The adjoin
operator ofLz

1 is

Lz5
1

2i F 2
]

]x
22qE

x

`

dyr 22qE
x

`

dyq

2r E
x

`

dyr
]

]x
12r E

x

`

dyq
G . ~3.3!

For the NLS hierarchy,v(k) must be an even function ofk, andq52r * . In this section, we
requirev(k) to be an entire function ofk. Thenv(k) can be expanded into a Taylor series
even powers ofk. Thus, we can rewrite the NLS hierarchy~3.1! as

i F r t

2qt
G2V~ L̂1!F r

qG50, ~3.4!

where the operator

L̂154Lz
12 , ~3.5!
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or specifically,

L̂152F ]2

]x2 24qr22r xE
2`

x

dyq12r E
2`

x

dyqy 2r xE
2`

x

dyr12r E
2`

x

dyry

2qxE
2`

x

dyq12qE
2`

x

dyqy

]2

]x2 24qr22qxE
2`

x

dyr12qE
2`

x

dyry
G ,

~3.6!

V(z) is an entire function, andq52r * . The adjoint operatorL̂ of L̂1 is 4Lz
2 , i.e.,

L̂52F ]2

]x2 24qr12qxE
x

`

dyr22qE
x

`

dyry 2qxE
x

`

dyq12qE
x

`

dyqy

2r xE
x

`

dyr12r E
x

`

dyry

]2

]x2 24qr12r xE
x

`

dyq22r E
x

`

dyqy
G .

~3.7!

WhenV(z)5z, Eq. ~3.4! becomes the NLS equation

ir t1r xx12ur u2r 50. ~3.8!

WhenV(z)5z2, Eq. ~3.4! gives the fourth-order NLS hierarchy equation:

ir t2@r xxxx16~ ur u2r x!x12ur u2r xx12r 2r xx* 22rr xr x* 16ur u4r #50. ~3.9!

Higher order NLS hierarchy equations can be obtained similarly.
The NLS hierarchy~3.4! allows soliton solutions whose amplitude and velocities are f

parameters, just like the NLS equation. We can normalize the velocity to be zero by a Ga
transformation, and amplitude to be 1 by a rescaling of variables. Then the normalized s
simply becomes

F r
qG5F sechx e2 iV(21)t

2sechx eiV(21)tG . ~3.10!

With a change of variables

r̄ 5re2 iV(21)t, q̄5qeiV(21)t, ~3.11!

and the bars dropped, the NLS hierarchy~3.4! becomes

i F r t

2qt
G1@V~21!2V~ L̂1!#F r

qG50, ~3.12!

and

r 052q05sechx ~3.13!

is its soliton solution. We define operatorsL̂0
1 and L̂0 as L̂1 and L̂ with (r ,q) replaced by

(r 0 ,q0), Then one can verify that

L̂0
1F r 0

q0
G52F r 0

q0
G . ~3.14!

This relation will be used to prove Theorem 3.
Next, we linearize the NLS hierarchy~3.12! around its soliton~3.13!. We write
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F r
qG5F r 01 r̃

q02q̃G , ~3.15!

where r̃ ,q̃!1. When ~3.15! is substituted into the NLS hierarchy~3.12!, linearization of this
equation is

i F r̃
q̃G

t

1LnhF r̃
q̃G50, ~3.16!

whereLnh is the linearization operator, and the subscript ‘‘nh’’ is abbreviation for ‘‘NLS hierar-
chy.’’ The adjoint operator ofLnh will be denoted asLnh

A . For the NLS equation,V(z)5z. Then
linearization of Eq.~3.12! shows that

LNLS5F ]2

]x2 2114sech2 x 2 sech2 x

22sech2 x 2
]2

]x2 1124 sech2 x
G . ~3.17!

Its adjoint operatorLNLS
A is

LNLS
A 5LNLS

T . ~3.18!

We introduce the Pauli spin matrices

s15F0 1

1 0G , s35F1 0

0 21G , ~3.19!

which we will use below. Then

LNLSs35s3LNLS
A , ~3.20!

asLNLSs3 is a self-adjoint operator.
Similar to the KdV hierarchy, here we also have the important property thatLNLS andL̂0

1 are
commutable, andLNLS

A and L̂0 are commutable, i.e.,

LNLSL̂0
15L̂0

1LNLS , ~3.21!

and

LNLS
A L̂05L̂0LNLS

A . ~3.22!

In addition, the following factorization theorem forLnh andLnh
A holds.

Theorem 3: For any NLS hierarchy equation (3.12) whereV(z) is an entire function, the
linearization operator Lnh and its adjoint operator Lnh

A have the following factorizations:

Lnh5M̂ ~ L̂0
1!LNLS , ~3.23!

Lnh
A 5M̂ ~ L̂0!LNLS

A , ~3.24!

where the function Mˆ (z) is defined as

M̂ ~z![
V~z!2V~21!

z11
. ~3.25!
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Proof: Recall that an entire function can be expanded into a power series. Thus it suffi
prove the above theorem forM̂ (z)5zn, where n is a positive integer. In this case, the NL
hierarchy~3.12! becomes

i F r t

2qt
G1@~21!n2~ L̂1!n#F r

qG50, ~3.26!

and M̂ (z)5( i 51
n zi 21(21)n2 i . We first derive the linearization of operator (L̂1)n. Substituting

Eq. ~3.15! into ~3.6!, we find that

L̂15L̂0
11F1O~ r̃ 2, r̃ q̃,q̃2!, ~3.27!

where the operatorF contains all terms which are first order inr̃ and q̃. Even though the
expression forF can be readily obtained, it is not really needed in this proof. From theL̂1

linearization~3.27!, we then find linearization of (L̂1)n as

~ L̂1!n5~ L̂0
1!n1(

i 51

n

~ L̂0
1! i 21F~ L̂0

1!n2 i1O~ r̃ 2, r̃ q̃,q̃2!. ~3.28!

When the above equation and~3.15! are substituted into the NLS hierarchy~3.26!, we find that the
linearization operatorLnh as defined in Eq.~3.16! is

LnhF r̃
q̃G5@~21!n2~ L̂0

1!n#s3F r̃
q̃G2(

i 51

n

~ L̂0
1! i 21F~ L̂0

1!n2 iF r 0

q0
G . ~3.29!

Recalling the relation~3.14!, we can simplify Eq.~3.29! as

LnhF r̃
q̃G52M̂ ~ L̂0

1!H ~ L̂0
111!s3F r̃

q̃G1FF r 0

q0
G J . ~3.30!

This equation holds for any positive integers ofn. Whenn51, the NLS hierarchy~3.26! becomes
the NLS equation, andM̂ (z)51. Thus Eq.~3.30! leads to the relation

LNLSF r̃
q̃G52 H ~ L̂0

111!s3F r̃
q̃G1FF r 0

q0
G J . ~3.31!

Of course, this relation can also be checked directly when one derives the specific express
F from the linearization ofL̂1, and substitutes it into the above equation. Finally, when Eq.~3.31!
is inserted into Eq.~3.30!, the Lnh factorization formula~3.23! is then proved. To prove theLnh

A

factorization formula~3.24!, we note thatL̂0 is the adjoint operator ofL̂0
1 . Thus, from~3.23!, we

immediately have

Lnh
A 5LNLS

A M̂ ~ L̂0!. ~3.32!

But L̂0 andLNLS
A are commutable@see Eq.~3.22!#, thus formula~3.24! is obtained.

Next, we use the factorization formulas~3.23! and~3.24! to construct complete sets of eige
states forLnh andLnh

A of an arbitrary NLS hierarchy equation. The complete sets of eigenstate
the NLS linearization operatorsLNLS andLNLS

A have been worked out by Kaup18 by his observa-
tion that these eigenstates were related to the squared Zakharov–Shabat eigenfunctions.
formulate his results as follows. For the operatorLNLS , the continuous and discrete eigenstates

C~x,k!5
1

~k1 i !2 F 2sech2 x
~ tanhx1 ik !2Ge2 ikx, 2`,k,`, ~3.33!
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C̄~x,k!5s1C~x,k!, ~3.34!

C1~x!5sechxF 1
21G , C2~x!5sechx tanhxF11G , ~3.35!

C3~x!5sechx~x tanhx21!F11G , C4~x!5x sechxF 1
21G , ~3.36!

where

LNLSC5~11k2!C, LNLSC̄52~11k2!C̄, ~3.37!

LNLSC15LNLSC250, ~3.38!

LNLSC3522C1 , LNLSC4522C2 . ~3.39!

Note that these four discrete eigenstates are derived from variations of the NLS soliton
respect to its four free parameters: phase, position, amplitude and velocity. The continuo
discrete eigenstates for the adjoint operatorLNLS

A are

F~x,k!52
1

~k1 i !2 F sech2 x
~ tanhx2 ik !2Geikx, 2`,k,`, ~3.40!

F̄~x,k!5s1F~x,k!, ~3.41!

F j~x!5s3C j~x!, j 51,2,3,4, ~3.42!

where

LNLS
A F5~11k2!F, LNLS

A F̄52~11k2!F̄, ~3.43!

LNLS
A F15LNLS

A F250, ~3.44!

LNLS
A F3522F1 , LNLS

A F4522F2 . ~3.45!

The nonzero inner products between the eigenstates and adjoint eigenstates are

^C~x,k!,F~x,k8!&522pa2d~k2k8!, ~3.46!

^C̄~x,k!,F̄~x,k8!&52pa2d~k2k8!, ~3.47!

^C1 ,F3&5225^C3 ,F1&, ~3.48!

^C2 ,F4&525^C4 ,F2&. ~3.49!

Here the inner product̂,& is as defined in Eq.~2.44!, and

a5~k2 i !/~k1 i !. ~3.50!

The closure relation is
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F1 0

0 1Gd~x2x8!5E
2`

` 1

2pa2 @C̄~x,k!F̄~x8,k!2C~x,k!F~x8,k!#dk

1
1

2
@C2~x!F4~x8!1C4~x!F2~x8!2C1~x!F3~x8!2C3~x!F1~x8!#.

~3.51!

Commutability relations~3.21! and~3.22! between operatorsL̂0
1 (L̂0) andLNLS (LNLS

A ) imply
that the eigenstates ofLNLS (LNLS

A ) are also eigenstates ofL̂0
1 (L̂0). Indeed, we can show that

L̂0
1C~x,k!5k2C~x,k!, ~3.52!

L̂0
1C̄~x,k!5k2C̄~x,k!, ~3.53!

L̂0
1C j~x!52C j~x!, j 51,2, ~3.54!

L̂0
1C3~x!52C3~x!22C2~x!, ~3.55!

L̂0
1C4~x!52C4~x!22C1~x!, ~3.56!

and

L̂0F~x,k!5k2F~x,k!, ~3.57!

L̂0F̄~x,k!5k2F̄~x,k!, ~3.58!

L̂0F j~x!52F j~x!, j 51,2, ~3.59!

L̂0F3~x!52F3~x!12F2~x!, ~3.60!

L̂0F4~x!52F4~x!12F1~x!. ~3.61!

This fact, together with theLnh and Lnh
A factorization formulas~3.23! and ~3.24!, immediately

leads to the conclusion that theLNLS (LNLS
A ) eigenstates are eigenstates of linearization opera

Lnh (Lnh
A ) of all NLS hierarchy equations. This result is summarized in the following theore

Theorem 4: The linearization operators Lnh of all NLS hierarchy equations (3.12) expande
around the soliton (3.13) share the same complete set of LNLS eigenstates (3.33) to (3.36), and th
adjoint operators Lnh

A of all NLS hierarchy equations share the same complete set of LNLS
A eigen-

states (3.40)–(3.42). Furthermore,

LnhC~x,k!5@V~k2!2V~21!#C~x,k!, ~3.62!

LnhC̄~x,k!52@V~k2!2V~21!#C̄~x,k!, ~3.63!

LnhC1~x,k!5LnhC2~x,k!50, ~3.64!

LnhC3~x,k!522M̂ ~21!C1 , LnhC4~x,k!522M̂ ~21!C2 , ~3.65!

and

Lnh
A F~x,k!5@V~k2!2V~21!#F~x,k!, ~3.66!
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Lnh
A F̄~x,k!52@V~k2!2V~21!#F̄~x,k!, ~3.67!

Lnh
A F1~x,k!5Lnh

A F2~x,k!50, ~3.68!

Lnh
A F3~x,k!522M̂ ~21!F1 , Lnh

A F4~x,k!522M̂ ~21!F2 . ~3.69!

The equations~3.62!–~3.69! come directly from Eqs.~3.23!, ~3.24!, ~3.33!–~3.36!, ~3.40!–~3.42!,
and ~3.52!–~3.61!. A by-product of this theorem is that, for any constantsl and l̄, the linear
equationLnhu5lu and its adjoint equationLnh

A ū5l̄ū are completely solvable, and their solution
all have the formC(x,k) and F(x,k̄), respectively~k and k̄ are now allowed to be comple
numbers!. This is similar to the KdV hierarchy case~see the end of Sec. II!.

Lastly, we would like to draw the reader’s attention to the close relationship between e
states~3.33!–~3.36! and ~3.40!–~3.42! of linearized NLS hierarchy equations~3.12! and squared
eigenstates of the Zakharov–Shabat eigenvalue problem with a soliton potential:

v1x1 i zv15q0v2 , ~3.70!

v2x2 i zv25r 0v1 , ~3.71!

wherer 0 andq0 are given in Eq.~3.13!. This connection was first mentioned in Ref. 18. It is al
hinted by the result that the NLS hierarchy eigenstates~3.33!–~3.36! and ~3.40!–~3.42! are also
eigenstates of the integro-differential operatorsL̂0

1 and L̂0 . Using standard notations, we defin
Jost functions of Eqs.~3.70! and ~3.71! as

c~x,z!5Fc1

c2
G→F01Gei zx, x→`, ~3.72!

c̄~x,z!5F c̄1

c̄2
G→F10Ge2 i zx, x→`, ~3.73!

f~x,z!5Ff1

f2
G→F10Ge2 i zx, x→2`, ~3.74!

f̄~x,z!5F f̄1

f̄2
G→F 0

21Gei zx, x→2`. ~3.75!

For the soliton potential~3.13!, these Jost functions have the following simple expressions:

c~x,z!5
1

122i z F sechx
tanhx22i z Gei zx, ~3.76!

c̄~x,z!5
1

112i z F tanhx12i z
2sechx Ge2 i zx, ~3.77!

f~x,z!5
2i z11

2i z21
c̄~x,z!, f̄~x,z!5

122i z

112i z
c~x,z!. ~3.78!

An important property is that the squared eigenstates of the Zakharov–Shabat system are
functions of operatorsLz

1 andLz .30 Specifically,
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Lz
1F f2

2

2f1
2G5zF f2

2

2f1
2G , Lz

1F f̄2
2

2f̄1
2G5zF f̄2

2

2f̄1
2G , ~3.79!

LzFc1
2

c2
2G5zFc1

2

c2
2G , LzF c̄1

2

c̄2
2G5zF c̄1

2

c̄2
2G . ~3.80!

These relations hold for general potentials, not just for soliton ones.
Now it is a simple matter to recognize that eigenstates~3.33!–~3.36! and ~3.40!–~3.42! are

related to the squares of the Zakharov–Shabat eigenstates~3.76!–~3.78! as follows:

C~x,k!5F f2
2

2f1
2G

z5k/2

, C̄~x,k!5F f̄2
2

2f̄1
2G

z52k/2

, ~3.81!

C1~x!52H F f2
2

2f1
2G

z5 i /2

1F f̄2
2

2f̄1
2G

z52 i /2
J , ~3.82!

C2~x!52H F f2
2

2f1
2G

z5 i /2

2F f̄2
2

2f̄1
2G

z52 i /2
J , ~3.83!

C3~x!5 i H ]

]z F f2
2

2f1
2G

z5 i /2

1
]

]z F f̄2
2

2f̄1
2G

z52 i /2
J 12H F f2

2

2f1
2G

z5 i /2

2F f̄2
2

2f̄1
2G

z52 i /2
J , ~3.84!

C4~x!5 i H ]

]z F f2
2

2f1
2G

z5 i /2

2
]

]z F f̄2
2

2f̄1
2G

z52 i /2
J , ~3.85!

F~x,k!5Fc1
2

c2
2G

z5k/2

, F̄~x,k!5F c̄1
2

c̄2
2G

z52k/2

, ~3.86!

F1~x!52H Fc1
2

c2
2G

z5 i /2

1F c̄1
2

c̄2
2G

z52 i /2
J , ~3.87!

F2~x!522H Fc1
2

c2
2G

z5 i /2

2F c̄1
2

c̄2
2G

z52 i /2
J , ~3.88!

F3~x!5 i H ]

]z Fc1
2

c2
2G

z5 i /2

1
]

]z F c̄1
2

c̄2
2G

z52 i /2
J 12H Fc1

2

c2
2G

z5 i /2

2F c̄1
2

c̄2
2G

z52 i /2
J , ~3.89!

F4~x!52 i H ]

]z Fc1
2

c2
2G

z5 i /2

2
]

]z F c̄1
2

c̄2
2G

z52 i /2
J . ~3.90!

It has been shown by Kaup10 that the sets of squared Zakharov–Shabat eigenstates

H F f2
2

2f1
2G ,F f̄2

2

2f̄1
2G ,z real,F f2

2

2f1
2G

z5 i /2

,
]

]z F f2
2

2f1
2G

z5 i /2

,F f̄2
2

2f̄1
2G

z52 i /2

,
]

]z F f̄2
2

2f̄1
2G

z52 i /2
J
~3.91!
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and

H Fc1
2

c2
2G ,F c̄1

2

c̄2
2G ,z real,Fc1

2

c2
2G

z5 i /2

,
]

]z Fc1
2

c2
2G

z5 i /2

,F c̄1
2

c̄2
2G

z52 i /2

,
]

]z F c̄1
2

c̄2
2G

z52 i /2
J ~3.92!

are each complete~Kaup’s proof was actually made for general potentials!. Thus, in view of the
above relationship between NLS hierarchy eigenstates and squared Zakharov–Shabat eig
the respective completeness of the NLS hierarchy eigenstates~3.33!–~3.36! and adjoint eigenstate
~3.40!–~3.42! naturally follows. In fact, this is how Kaup18 established the completeness of t
NLS eigenstates~3.33!–~3.36! in the first place. We also note that Eqs.~3.79! and~3.80!, together
with the relations~3.81!–~3.90!, reproduce Eqs.~3.52!–~3.61! again.

IV. COMPLETE EIGENFUNCTIONS OF LINEARIZATION OPERATORS FOR THE mKdV
HIERARCHY

In this section, we extend our results above to the mKdV hierarchy. Similar to the
hierarchy, the mKdV hierarchy is also a special case of the more general class of inte
equations~3.1!. It can be written as

F r t

2qt
G1C̄~2Lz

1!F r x

2qx
G50, ~4.1!

whereq52r , Lz
1 is the operator defined in Eq.~3.2!, and C̄(k) is the phase velocity of both

variables and must be an even function. In this section, we requireC̄(k) to be entire. The vector
form ~4.1! of the mKdV hierarchy is convenient as it then becomes a special class of the ge
integrable equations~3.1!, on which a wealth of information has been obtained.30 However, in
applications, one usually works with only one variable, and the equation is scaler, just lik
mKdV equation. It is often awkward to work with the vector form~4.1! of this hierarchy and
translate the results into the scaler form in the end. Thus one is motivated to obtain a scale
for the mKdV hierarchy and work with it from the very beginning. We will do this and const
complete eigenstates of linearization operators for the scaler mKdV hierarchy below.

We first derive the scaler form of the mKdV hierarchy~4.1!. Note thatC̄(k) is an even and
entire function. Thus we can writeC̄(2Lz

1) as C(4Ls
12), where C(k) is entire. Recallingq

52r , the operator 4Ls
12 becomes

4Ls
125FA B

B AG , ~4.2!

where operatorsA andB are

A52
]2

]x2 24r 222r xE
2`

x

dyr12r E
2`

x

dyry , ~4.3!

B522r xE
2`

x

dyr22r E
2`

x

dyry . ~4.4!

One can verify that, for any positive integern,

~4Ls
12!n5FAn Bn

Bn An
G , ~4.5!

where
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An1Bn5~A1B!n. ~4.6!

Thus, if we define the operator

Lm
15 1

2 ~A1B!, ~4.7!

i.e.,

Lm
152

1

4

]2

]x2 2r 22r xE
2`

x

dyr, ~4.8!

then the mKdV hierarchy~4.1! simply becomes

r t1C~4Lm
1!r x50. ~4.9!

This equation is the scaler form of the mKdV hierarchy~4.1!. Notice that it is very similar to the
KdV hierarchy~2.1!. WhenC(k)52k, Eq. ~4.9! gives the mKdV equation

r t1r xxx16r 2r x50. ~4.10!

Other mKdV hierarchy equations can be obtained by choosing different phase velocity fun
C(k).

The rest of this section runs parallel to Secs. II and III. We first note that the mKdV hiera
~4.9! admits a family of soliton solutions whose amplitude is a free parameter. With a scali
variables, we can normalize the amplitude to be 1. The normalized soliton is

r ~x,t !5sech$x2C~21!t%. ~4.11!

In moving coordinates,

x̄5x2C~21!t, t̄ 5t, ~4.12!

and with the bars dropped, the mKdV hierarchy~4.9! becomes

r t1@C~4Lm
1!2C~21!#r x50, ~4.13!

and

r 0~x!5sechx ~4.14!

is its soliton solution.
Next, we linearize the mKdV hierarchy~4.13! around its soliton~4.14!. We set

r ~x,t !5r 0~x!1 r̃ ~x,t !, ~4.15!

wherer̃ !1, and substitute it into Eq.~4.13!. With the higher order terms inr̃ neglected, Eq.~4.13!
becomes the linearized equation

r̃ t1Lmhr̃ 50, ~4.16!

whereLmh is the linearization operator. Here the subscript ‘‘mh’’ refers to ‘‘mKdV hierarchy.’’
Similar to the KdV and NLS hierarchy cases, we have the following factorization theorem forLmh

and its adjoint operatorLmh
A .

Theorem 5: For any mKdV hierarchy equation (4.13) where C(z) is an entire function, the
linearization operator Lmh and its adjoint operator Lmh

A expanded around the soliton (4.14) ha
the following factorizations:
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Lmh5M̄ ~4Lm0
1 !Lmkdv, ~4.17!

Lmh
A 5M̄ ~4Lm0!Lmkdv

A . ~4.18!

Here operator Lm0
1 is defined as Lm

1 with r(x,t) replaced by r0(x), i.e.,

Lm0
1 52

1

4

]2

]x2 2r 0
22r 0xE

2`

x

dyr0 , ~4.19!

Lm0 is the adjoint operator of Lm0
1 , which is

Lm052
1

4

]2

]x2 2r 0
22r 0E

x

`

dyr0y , ~4.20!

Lmkdv is the linearization operator of the mKdV equation,

Lmkdv5
]3

]x3 1~6r 0
221!

]

]x
1~6r 0

2!x , ~4.21!

its adjoint operator Lmkdv
A is

Lmkdv
A 52

]3

]x3 2~6r 0
221!

]

]x
, ~4.22!

and function M̄(z) is defined as

M̄ ~z![
C~21!2C~z!

11z
. ~4.23!

The proof of this theorem is very similar to those of Theorems 1 and 3 for the KdV and
hierarchies, and is thus omitted here.

Also similar to the KdV and NLS hierarchies, we can verify that operatorsLm0
1 andLmkdv are

commutable, andLm0 andLmkdv
A are commutable, i.e.,

Lm0
1 Lmkdv5LmkdvLm0

1 , Lm0Lmkdv
A 5Lmkdv

A Lm0 . ~4.24!

This fact implies thatLmkdv (Lmkdv
A ) andLm0

1 (Lm0) share the same set of eigenfunctions. Then
factorization formulas~4.17! and~4.18! indicate that these same sets of eigenstates are then s
by linearization operators of all mKdV hierarchy equations. The complete sets of eigensta
mKdV linearization operatorsLmkdv andLmkdv

A have not been reported before in the literature. B
we can obtain them from eigenstates ofLm0

1 andLm0 , as will be done below.
For generalr andq potentials in the Zakharov–Shabat eigenvalue problem~3.70! and~3.71!,

Eq. ~3.79! holds. Whenq52r , as is the case for the mKdV hierarchy~4.1!, it is easy to see tha

f̄1~x,z!5f2~x,2z!, f̄2~x,z!52f1~x,2z!. ~4.25!

Thus we find from~3.79! that the two relations

4Ls
12F f2

2

2f1
2G54z2F f2

2

2f1
2G ~4.26!

and
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4Ls
12F f1

2

2f2
2G54z2F f1

2

2f2
2G ~4.27!

hold simultaneously. Subtracting the second equation from the first one, we get

4Ls
12Ff2

22f1
2

f2
22f1

2G54z2Ff2
22f1

2

f2
22f1

2G . ~4.28!

Recalling Eqs.~4.2! and ~4.7!, the above equation leads to

Lm
1~f2

22f1
2!5z2~f2

22f1
2!, ~4.29!

i.e., f2
22f1

2 are eigenfunctions of operatorLm
1 . Similarly, we can show that

Lm~c1
21c2

2!5z2~c1
21c2

2! ~4.30!

for generalr andq potentials. Soc1
21c2

2 are eigenfunctions of operatorLm .
For soliton potentialsr 052q05sechx, the Zakharov–Shabat eigenstates (c1 ,c2)T and

(f1 ,f2)T have been given in Eqs.~3.76! and ~3.78!. We define two sets of functions

C~x,k![~f2
22f1

2!uz5k/25
1

~k1 i !2 @~ tanhx1 ik !22sech2 x#e2 ikx, 2`,k,`, ~4.31!

C1~x!5sechx tanhx, C2~x!5sechx~12x tanhx!, ~4.32!

and

F~x,k![~c1
21c2

2!uz5k/252
1

~k1 i !2 @~ tanhx2 ik !21sech2 x#eikx, 2`,k,`, ~4.33!

F1~x!5sechx, F2~x!5x sechx. ~4.34!

Then from Eqs.~4.29! and~4.30! we see thatC(x,k) @F(x,k)# are continuous eigenfunctions o
operatorsLm0

1 (Lm0) with

Lm0
1 C~x,k!5

k2

4
C~x,k!, ~4.35!

Lm0F~x,k!5
k2

4
F~x,k!, ~4.36!

and C j (x) @F j (x)#, j 51,2, are discrete eigenmodes or generalized eigenmodes ofLm0
1 (Lm0)

with

Lm0
1 C152 1

4 C1 , Lm0
1 C252 1

4 C21 1
2 C1 , ~4.37!

and

Lm0F152 1
4 F1 , Lm0F252 1

4 F21 1
2 F1 . ~4.38!

Commutability of operatorsLmkdv (Lmkdv
A ) andLm0

1 (Lm0) indicates that the above eigenmodes
Lm0

1 (Lm0) are also eigenstates ofLmkdv (Lmkdv
A ). Indeed, the set

$C~x,k!, real; C1~x!,C2~x!% ~4.39!
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are all the linearly independent eigenstates and generalized eigenstates of operatorLmkdv, where

LmkdvC~x,k!5 ik~k211!C~x,k!, ~4.40!

LmkdvC150, LmkdvC2522C1 ; ~4.41!

and the set

$F~x,k!, k real; F1~x!,F2~x!% ~4.42!

are all the linearly independent eigenstates and generalized eigenstates of operatorLmkdv
A , where

Lmkdv
A F~x,k!5 ik~k211!F~x,k!, ~4.43!

Lmkdv
A F150, Lmkdv

A F2522F1 . ~4.44!

To calculate the inner products between eigenstates~4.39! and adjoint eigenstates~4.42!, we first
recall Eqs.~3.81! and~3.86! and inner-product relations such as~3.46! in Sec. III. Explicitly, such
inner-product relations tell us that

E
2`

`

@f2
2~x,k/2!c1

2~x,k8/2!2f1
2~x,k/2!c2

2~x,k8/2!#dx522pa2d~k2k8!, ~4.45!

and

E
2`

`

@f2
2~x,k/2!c2

2~x,k8/2!2f1
2~x,k/2!c1

2~x,k8/2!#dx50, ~4.46!

wherea is given in Eq.~3.50!. Adding these two equations together, and recalling Eqs.~4.31! and
~4.33!, we find the inner product betweenC(x,k) andF(x,k8) as

^C~x,k!,F~x,k8!&522pa2d~k2k8!. ~4.47!

Similarly, we get

^C1 ,F2&5^C2 ,F1&51, ~4.48!

and all other inner products are zero.
Next, we show that each of the two sets~4.39! and ~4.42! is complete. In Sec. III, we have

known that theLNLS eigenstates

H F f2
2

2f1
2G

z5k/2

,F f̄2
2

2f̄1
2G

z52k/2

,k real; sechxF 1
21G ,sechx tanhxF11G ,

sechx~x tanhx21!F11G ,x sechxF 1
21G J ~4.49!

is complete. Here (f1 ,f2)T and (f̄1 ,f̄2)T are given in Eq.~3.78!. Recalling Eq.~4.25!, we see
that the set~4.49! with (f̄2

2 ,2f̄1
2)z52k/2

T replaced by (f1
2 ,2f2

2)z5k/2
T is also complete. Thus, fo

any functionf (x) in L2 functional space, we can expand the vector function@ f (x), f (x)#T into this
complete set and get
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F f ~x!

f ~x!G5E
2`

` H c1~k!F f2
2

2f1
2G

z5k/2

1c2~k!F f1
2

2f2
2G

z5k/2
J dk1a1 sechxF 1

21G
1a2 sechx tanhxF11G1a3 sechx~x tanhx21!F11G1a4x sechxF 1

21G , ~4.50!

wherec1(k),c2(k),a j ,1< j <4 are constants. Adding the two components of Eq.~4.50! together,
we get

f ~x!5
1

2 E2`

`

@c1~k!2c2~k!#~f2
22f1

2!z5k/2 dk1a2 sechx tanhx1a3sechx~x tanhx21!.

~4.51!

In view of the definitions~4.31!–~4.34!, Eq. ~4.51! means that the set~4.39! is complete. Simi-
larly, the completeness of the set~4.42! can also be proved. The closure relation for these two
is then

2E
2`

` 1

2pa2 C~x,k!F~x8,k! dk1C1~x!F2~x8!1C2~x!F1~x8!5d~x2x8!. ~4.52!

With the complete sets of eigenstates~4.31! to ~4.34! for Lmkdv andLmkdv
A obtained, then from the

factorization formulas~4.17! and ~4.18! and eigenfunction relations~4.35!–~4.38! and ~4.40!,
~4.41!, ~4.43!, and~4.44!, the following theorem naturally follows.

Theorem 6: The linearization operators Lmh of all mKdV hierarchy equations (4.13) ex
panded around the soliton (4.14) share the same complete set of Lmkdv eigenstates (4.31) and
(4.32), and the adjoint linearization operators Lmh

A of all mKdV hierarchy equations share th
same complete set of Lmkdv

A eigenstates (4.33) and (4.34). Furthermore,

LmhC~x,k!52 ik$C~k2!2C~21!%C~x,k!, ~4.53!

LmhC1~x!50, LmhC2~x!522M̄ ~21!C1~x!, ~4.54!

Lmh
A F~x,k!52 ik$C~k2!2C~21!%F~x,k!, ~4.55!

Lmh
A F1~x!50, Lmh

A F2~x!522M̄ ~21!F1~x!. ~4.56!

Obviously, Theorem 6 is the counterpart of Theorems 2 and 4. A by-product of this theorem
the linear equationLmhu5lu and its adjoint equationLmh

A ū5l̄ū are completely solvable, and a
their solutions are given byC(x,k) andF(x,k̄), respectively~with k and k̄ complex in general!.

V. CONCLUDING REMARKS

In this article, we constructed complete sets of eigenfunctions for linearized KdV, NLS
mKdV hierarchy equations expanded around single-soliton solutions. We showed that all
tions within the same integrable hierarchy share thesamecomplete sets of eigenfunctions. Fu
thermore, these eigenstates are intimately connected to the squared eigenstates of the a
eigenvalue problem. We then explicitly obtained these eigenstates, derived their inner pro
and established their closure relations. Even though our analysis is just for the KdV, NLS
mKdV hierarchies, it is quite obvious that similar results should hold for other integrable hi
chies as well.

The value of this work, as we see it, is that it allows one to develop a direct soliton pe
bation theory for all equations in the same integrable hierarchy. As we mentioned in the
duction, the direct soliton perturbation theory has a simplistic appeal, and its key componen
complete set of eigenfunctions for the linearized integrable equation expanded around solit
07 May 2001 to 132.198.203.101. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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the literature, this theory was developed only for the sine-Gordon, Benjamin–Ono, KdV and
equations16–22~it was also developed for the nonintegrable cubic-quintic NLS equation,23 but that
theory was not complete!. Based on our results in this article, however, one can now rea
develop direct soliton perturbation theories for the mKdV equation and all higher order KdV,
and mKdV hierarchy equations. From a physical point of view, at the moment, only the lo
order hierarchy equations such as the KdV and NLS equations found most physical applicat1,5

However, higher order hierarchy equations do become relevant in certain situations. One e
is the fifth-order KdV hierarchy equation, which arises in shallow water waves.8,9 So perturbation
theories for higher order equations are in order. As physical systems become more comple
their studies get more quantitative, we expect more applications of soliton perturbation the
higher order hierarchy equations in the coming years. In some cases, such perturbation the
higher order equations prove to be very beneficial, as they reveal interesting soliton dyn
which is totally absent in the perturbed lowest order hierarchy equations. The compreh
study of embedded-soliton dynamics in the perturbed fifth-order KdV hierarchy equation i
good example.32

We would like to point out that the key results of this article actually were already hinte
the inverse-scattering-based soliton perturbation theory, which was developed in the 1970s.10–13In
those works, the soliton perturbation theory was developed for a large class of integrable eq
associated with the Zakharov–Shabat eigenvalue problem. For all those equations, the ex
basis for the potentials was the same squared eigenstates of the Zakharov–Shabat syst
main contribution of this article is that we have shown those squared eigenstates also so
linearized equations of an entire hierarchy expanded around soliton solutions, thus they a
the expansion basis in the direct soliton perturbation theory. This connection indicates th
direct soliton perturbation theory and inverse-scattering soliton perturbation theory are intim
related.

Lastly, we note that the eigenfunctions we constructed in this article are only for integ
equations linearized around single-soliton solutions. However, these results can be exten
linearization around any time-dependent solution such as a multi-soliton solution. In this g
case, the elegant factorization results of linearization operators for the single-soliton cas~see
Theorems 1, 3 and 5! are no longer valid. But we can still show that the squared eigenstates o
eigenvalue problem also solve the linearized equation, thus they still form the complete
eigenfunctions for the linearization operator around any time-dependent solution. This fac
allows one to develop a direct multi-soliton perturbation theory for a large class of integ
equations including the KdV, NLS and mKdV hierarchies. We will report these results in a fu
article.
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