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Complete eigenfunctions for an integrable equation linearized around a soliton
solution are the key to the development of a direct soliton perturbation theory. In
this article, we explicitly construct such eigenfunctions for a large class of inte-
grable equations including the KdV, NLS and mKdV hierarchies. We establish the
striking result that the linearization operators of all equations in the same integrable
hierarchy share theamecomplete set of eigenfunctions. Furthermore, these eigen-
functions are precisely the squared eigenfunctions of the associated eigenvalue
problem. The key step in our derivation is to show that the linearization operator of
an integrable equation can be factored into a function of the integro-differential
operator which generates the integrable equation, and the linearization operator of
the lowest-order integrable equation in the same hierarchy. We also obtain similar
results for the adjoint linearization operator of an integrable equation. Even though
our analysis is conducted only for the KdV, NLS and mKdV hierarchies, similar
results are expected for other integrable hierarchies as well. We further explicitly
present the complete eigenfunctions for the KdV, NLS and mKdV hierarchy equa-
tions and give their inner products, thus they can be readily used to develop a direct
soliton perturbation theory for any of those hierarchy equations.2000 Ameri-

can Institute of Physic§S0022-2488)0)02709-3

I. INTRODUCTION

Many physical wave systems are governed by nonlinear integrable equations at the lowest
order of approximation. For instance, pulse transmission in optical fibers and wave propagation in
deep water are described by the nonlinear Sdinger (NLS) equation'? Evolution of shallow
water waves is described by the Korteweg—de V(isV) equatiort® and internal waves at the
interface of two layers of equal depth are described by the modified Korteweg—de(iviiel/)
equatior® Integrable equations support soliton solutions which travel stationarily and collide
elastically. They also possess many other remarkable properties such as infinite conservation laws
and Painleveproperty®~’ When perturbations such as damping, higher order dispersion and non-
linearity are brought into consideration, a physical system is then better modeled by perturbed
integrable equations®®°In a perturbed system, solitons in general will not remain stationary
anymore. To study their evolution and subsequent excitation of radiation, one would need to
develop a soliton perturbation theory. Several such theories have been developed in the past. One
is the inverse-scattering-based soliton perturbation theory, which was developed in thé°1§70s.

This method is intimately related to the inverse scattering technique. The second one, also devel-
oped in the 1970s, is based on the Green'’s function for the linearized integrable equation expanded
around solitong® The third one, also originated in the 19¥®Y and further developed in the
1990s!8-Zis the direct soliton perturbation theory. It is based on the complete set of eigenfunc-
tions for the linearized equation expanded around solitons. In essence, this theory shares the same
ideas as the second one, but it is conceptually simpler and has a wider appeal. Several other
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approaches such as the adiabatic methadd the variational methédhave also been developed.
But these methods cannot capture radiation modes, and thus are mathematically incomplete.

The key in the direct soliton perturbation theory is to find a complete set of bounded eigen-
functions for the linearized equation around a soliton solution. This set allows one to solve the
linear inhomogeneous equations at various orders of the perturbation expansion. Suppression of
secular growth in those solutions then results in the dynamical equations for soliton parameters
and radiation coefficients. At the moment, such a complete set of eigenfunctions has been iden-
tified only for the sine-Gordon, Benjamin—Ono, NLS and KdV equati3h&>?°But some general
ideas have also been hinted or put forward. In Ref. 18, Kaup obtained the complete sets of
eigenfunctions for the linearized NLS equation around a soliton solution from his observation that
these functions are related to the squared Zakharov—Shabat eigenstates. Indeed, the connection
between eigenfunctions of linearized integrable equations and squared eigenstates of the associ-
ated eigenvalue problem has been hinted by inverse-scattering-based soliton perturbation
theory®~13But it has never been clearly articulated and demonstrated for the general case. In Ref.
19, Herman proposed to use the Lax pair of an integrable equation to find the complete eigen-
functions of linearized equations. In this approach, one first determines the time evolution of the
squared eigenfunctions of the associated eigenvalue problem from the Lax pair. Then one tries to
find the correct combination of squared eigenfunctions to satisfy the linearized integrable equa-
tion. Herman applied this method to the KdV and NLS equations and successfully obtained the
complete eigenstates. The procedure proposed by Herman is suggestive, and it can also work for
linearization of integrable equations around time-dependent solutions such as multi-soliton solu-
tions. However, its disadvantage is that, for every integrable equation, one has to verify that
squared eigenfunctions of the eigenvalue problem solve the linearized equation around a soliton
solution(or a general solution |t is not clear yet whether this will always be the case. From these
previous works, we see that, although some interesting ideas have been proposed to construct
complete eigenfunctions of linearized integrable equations, what these eigenfunctions must be for
a general integrable equation is still unknown.

In this article, we construct complete eigenfunctions for a large class of integrable equations
linearized around a single-soliton solution. This class includes the KdV, NLS and mKdV hierar-
chies. The striking result which we will establish is that linearization operators of all integrable
equations in the same hierarchy sharegshmecomplete set of eigenfunctiorithe corresponding
eigenvalues differ from one equation to anojhdfurthermore, these eigenfunctions are also
eigenstates of the integro-differential operator which generates the hierarchy, thus they are directly
related to the squared eigenfunctions of the eigenvalue problem associated with the hierarchy. In
fact, our results are even stronger. We will show that the linearization operator for any equation in
a hierarchy can be factored into the integro-differential operator which generates the hierarchy,
and the linearization operator of the lowest-order equation in this hierarchy. All the other results
cited above are simple consequences of this factorization result. Our findings confirm that, for a
broad class of integrable equations, squared eigenstates of the eigenvalue problem also solve the
linearized equation around a soliton solution. Thus, squared eigenfunctions of the eigenvalue
problem are the natural basis of expansion in a direct soliton perturbation theory. They also
indicate that, unlike Herman'’s approathynly the eigenvalue operator of the Lax pair is relevant
in the construction of complete eigenfunctions for the linearized equation around single-soliton
solutions. The time evolution operator of the Lax pair can be neglected. This is why an entire
hierarchy can share the same complete set of eigenfunctions, since they are all associated with the
same eigenvalue operator. Although our focus of this article is on the KdV, mKdV and NLS
hierarchies, the ideas and basic results should hold for other integrable hierarchies as well. Based
on these results, we then explicitly give the complete sets of eigenfunctions for linearization
operators of the KdV, NLS and mKdV hierarchies. We also give similar results for the adjoint
linearization operators, and explicitly obtain the common adjoint eigenstates for each hierarchy.
With these complete eigenstates and adjoint eigenstates available, it is now a simple matter to
develop a direct soliton perturbation theory for all the KdV, NLS and mKdV hierarchy equations.
We note that another application of these complete eigenfunctions is in the study of eigenvalue
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bifurcation of solitary waves from the edge of the continuous spectrum in a perturbed integrable
equatior?’?° Lastly, we comment that our analysis is independent of the inverse scattering
theory, even though connections to inverse scattering are still visible.

II. COMPLETE EIGENFUNCTIONS OF LINEARIZATION OPERATORS FOR THE KdV
HIERARCHY

We start by considering the eigenmodes of linearization operators for the KdV hierarchy. This
hierarchy is of the forri?

di+C(4L¢)q,=0, (2.2)
whereC(k?) is the phase velocity of the linearized equations, and the integro-differential operator
L is

Ls= L ! jwd 2.2
s 4@ T30 dy. (2.2)

Here the subscript$” in L. refers to “Schrainger,” as the associated eigenvalue problem for
the KdV hierarchy(2.1) is the Schrdinger equatioi®>! The adjoint operator of.{ is

L= L 1JX d 2.3
STage 9tz ) WY 9
Notice that

L;fx:(l-sf )x (2.9

for any functionf(x) which vanishes at infinity. Thus E@2.1) can be recast in terms of the
adjoint operatoLt ¢ as

d:+[C(4Lg)q]=0. (2.9

In this section, we require the phase velocity funct©fz) to be entire. WherC(z)= -z, Eq.
(2.1) becomes the KdV equation:

0i+ 690yt dxxx= 0. (2.6
WhenC(z)=2%, Eq.(2.1) is the fifth-order KdV hierarchy:
0t Aot 100 Gyt 20050+ szqx: 0. (2.7
Other members in this hierarchy can be obtained by choosing different functions for the phase

velocity C(z).

In the rest of this section, occasions will arise where we want to apply the opecatand
Lo to be defined in Eq(2.13] on a functiong’(x), whereg(x) is related to continuous eigen-
functions and is oscillatory at infinity. In such cases, we adopt the following convention for the
integral term involved:

fg'(y) dy=—g(x). 28

This convention echoes the fact that, when we obtain a particular KdV hierarchy equation from
(2.1, terms such ag,q’(y)dy are always evaluated asq(x) and so on. This convention
applies notably to the commutability relati¢2.20 and the factorization formule.22 when they
operate on continuous eigenfunctions. It applies to the eigenfunction re(@t®h as well. We
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emphasize that this convention is only a technical issue. It does not cause any controversy or
ambiguity in our main results expressed in Theorems 1 and 2. In fact, we could have chosen to
work with the operatok ¢ and avoid operators; (andL, ) altogether. The way to do it is to start
with the KdV hierarchy(2.5) instead of(2.1). The results of course would be the same, but the
derivations would be a little cumbersome.

We now consider soliton solutions in the KdV hierarct®:1) and linearization of(2.1)
around solitons. One can check that the soliton family

a(x,t)=27?sechk p{x— C(— 475t} (2.9

satisfies Eq(2.1), wheren is a free amplitude parameter. By rescaling the variaklasdq by #
and 72, respectively, and by denoting(»?z) as C(z), we can normalizey=1 in the soliton
solution (2.9 while keeping the evolution equatioi2.1) intact. We also adopt the coordinate
system moving with spee@(—4), i.e.,

X=x—C(—4)t, t=t. (2.10
When the bars are dropped, Eg.1) finally becomes
qi+[C(4Lg)—C(—4)]1q,=0, (2.11
where
qo(X)=2 sech x (2.12

is its normalized soliton solution.
Two operatorsl.4 andL,, will be used frequently in the rest of this section. They are defined
asLJ andLg with q(x,t) replaced bygg(x), i.e.,

L1 1 (=
Lo:_ZW_QOWL 5 Jox ) dy, (2.13
and
1 42 1 (x
LOZ_ZW_qO_FEjfxdyqoy' (214)

Naturally, L, is the adjoint operator df ; , just asLg is the adjoint operator df; . Note that

I-(T(:]Ox:_qu- (2.19

This relation will be used in the proof of Theorem 1.
We now linearize the evolution equati¢®.11) around its soliton solutio2.12). We set

q(x,t) =do(x) +a(x,t), (2.16

whereq<1. When it is substituted into Eq2.11) and higher order terms are discarded, the
linearized equation of2.11) is

Qi+ Lend=0, (2.17

where L, is the linearization operator. Here the subscrifith” is the abbreviation of “KdV
hierarchy.” We also denote the adjoint operatorlgf, as Lﬁ\h. For the KdV equationC(2)
= —z. In this case, linearization of EQR.11) around the solitoii2.12 shows that the linearization
operator is
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& d
Lkdv:O-,_X§+(GQO_4)a_X+6q0x- (2.18
Its adjoint operator is
A & d
Lkdvz_ﬁ_m%—“)&- (2.19

An important property is that,§ andL 4, are commutable, and, andLf,, are commutable, i.e.,

Lo Lkav=Lkavko - (2.20
and
LoLev= Ll o- (2.22)

These facts can be verified by direct calculations.

The first important result of this section is the following theorem which gives the simple
expressions for the linearization operatqy, and its adjoint operatdrf), for any KdV hierarchy
equation.

Theorem 1: For any KdV hierarchy equation (2.11) wherg(€} is an entire function, the
linearization operator Ly, and its adjoint operator ﬁh have the following factorizations

Lkn=M(4Lg )Lyay, (2.22
Lih=M(4Lo) Ly, (2.23

where the function Niz) is defined as

C(-4)-C(2)

M(2)= 4+7

(2.24)

Before proving this theorem, we present an example first. Let us take the fifth-order KdV equation
(2.11), whereC(z)=2z2. ThenM(z)=4—z. Straightforward calculations show that

d° FE 92 J
M (4L3)Lkdv:ﬁ + 10%% + ZOCIoXW +(—16+800,— 3093) x +4000c. (2.29

This is exactly the linearization operatbg, when one linearizes Eq2.11) directly. TheL{jh
factorization formula2.23 can be similarly verified in this special case.

Proof: It suffices to prove this theorem f@(z) as a power functionC(z)=2", wheren is
any positive integer, as any entire function can be expanded into a power series. In this case, Eq.
(2.12) becomes

Gi+[(4L5)"= (—4)"1q,=0, (2.26

and

M(z)=—i21 2 (=41 (2.27)

When Eq.(2.16 is substituted into the operatot.4 , linearization of 4. is

Downloaded 07 May 2001 to 132.198.203.101. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



J. Math. Phys., Vol. 41, No. 9, September 2000 Eigenfunctions of linearized integrable equations 6619
4L;=4Lg—4a+2<~qXJ dy+0(g?). (2.28
X
Thus, linearization of (47)" is
n
(4L5)"=(4Lg)"+ 2, (4Lg)' ™"
i=1

—4ﬁ+2ﬁxe‘dy (4L5)"'+0(G?). (2.29

When this equation is utilized, we find the linearization operatgy of the evolution equation
(2.26) to be

(ALg)" 'gex.  (2.30

_ A < S Y
Lifi=[(4L3)"= (4" . + 2, (4Lg)| 1[—4q+2qxf dy
= X
Recalling Eqs(2.15, (2.18 and(2.27), the above equation becomes
: &
L= 2, <4L3>'-1<—4>”-'[<4L5+4)a—x—4q0xﬁ—2qoax}
n
=2, (4L6)""H(=4)" [~ Ty (6o~ 4)T— 6o,d]

= —;l (4L H =4 Ly G=M(4Lg )Ly (2.31)

Thus the factorization formulé2.22 is proved. To provel_{jh factorization formula(2.23, we
recall the fact that, for any two operatoPsandQ, (PQ)”=Q”P”, where the superscriptA”
represents the adjoint operator. Singgis the adjoint operator df; , thus from Eq.(2.31), we
have

Lih= =2, (=" 'Li(4Lo) (232

But Ly and L{jdv are commutabl¢see Eq.(2.21)]. So

n

Lﬁh:—; (4Lo) Y= 4" ILE,=M(4Lo)LEy, - (2.33

This proves the.}}, factorization formula2.23.

Remark:The only piece of information we used to prove thg, factorization formulg2.22
is the simple relatiori2.15 for gy, and the only information we used to prove lt@] factoriza-
tion formula(2.23 is (2.22 and the commutability relation between operatiogsand Lﬁdv.

Theorem 1 is an elegant and important result of this section. It relates the linearization
operatord.,, and L’,jh of an arbitrary KdV hierarchy equation to the integro-differential operators
Ly, Lo, and the KdV linearization operatotsg, and L@dv- Another important fact, which we
will establish later, is thaty (Lg) andLg, (Lﬁd\,) share the same complete set of eigenstates.
This fact, together with the factorization formulés22 and(2.23), will immediately result in the
samecomplete set of eigenstates fog, and L{jh of all KdV hierarchy equations.

We first write down the complete sets of eigenfunctionsLfgy, and Lﬁdv, which have been
worked out beforé®?%?5The complete eigenfunctions and generalized eigenfunctiohgpfre
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1 ; 2 2 i ikx
\P(x,k)=m[|k(k +4)—4(k?+ 2)tanhx— 8ik tant? x+ 8 tank x]e'*,  (2.34

¥, (x)=secl xtanhx, W¥,(x)=sech x(1—xtanhx), (2.35

where
Ly = —ik(k?+4)W, (2.36
Liw?1=0, Lyag¥o=—8Vy, (2.37)

and —oo<k< in (2.34 and(2.36. We note that the discrete statés and¥V, are obtained by
taking variations to the free amplitude and position parameters in a KdV soliton. Eigenstates for
the adjoint operatok iy, are

d(x,k)= (k+12 )2[k —4ik tanhx— 4 tanff x]e ™', (2.39
®,(x)=secx, ®,(x)=tanhx+xsecHx, (2.39
where
Lia® = —ik(k*+4)®, (2.40
Liaw®1=0, Ligy®2=—8Py, (2.47)

and —cc<k<o in (2.38 and(2.40 as well.
The nonzero inner products between eigenstates and their adjoint eigenstates are

(\P(x,k),(b(x,k’)>=277ika35(k—k’) (2.42
and
(W1(X),®o(x))=(Wa(x),P1(x)) =1, (2.43

whereag=(k—2i)/(k+2i). Here the inner products between taectop functions f(x) and
g(x) are defined as

(100.900)= [ 1007900 dx (2.4

and the superscriptT” represents the transverse of a vector or matrix. The closure relation is
2

f Taz«Ir(x KD (x! kdk+2qf X)®;(x") = 8(x—x). (2.45

A critical fact is that the above eigenstated f, and L{jdv arealsothe eigenstates df; andL,
respectively. More specifically, we have

+ _ k2 + _ + _

and
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k2
LO(I):ZCI), Loq)l:_q)l, LO(DZZ_(I)Z_]-' (24D

These results can be proved in several different ways. One way is to verify them directly by
substituting the eigenstaté®.34), (2.35), (2.39, and(2.39 into Egs.(2.46 and (2.47). A better
way is to recall the crucial fact that] (Lo) andLgq, (L) are commutable. Thus

Liavkg W(x,K)=Lg Ly ¥ (x,K) = —ik(K?+4)Lg W(x,k). (2.48

This shows that § ¥ is an eigenstate df ., with eigenvalue—ik(k?>+4). But we know from
(2.36 that the only eigenstate df,q, with eigenvalue—ik(k?+4) is ¥(x,k). Thus Ly ¥
=\"V, where\ is a constant. In other word¥,(x,k) is also an eigenstate hﬁ . By taking the
limit x—o0, we can easily find that the eigenvalhe= k?/4. Other relations if2.46 and(2.47)
can be proved similarly.

The third way of proving2.46) and(2.47) is probably the most stimulating. This proof makes
use of the important relationship between eigenfuncti@34), (2.35, (2.38), and(2.39 of the
KdV linearization operators and squared eigenstates of the @oger equation with a soliton
potential (2.12):

Uxx+(§2+%(x))v=0- (2.49

Using conventional notation, we define the eigenstaies{) and ¢(x,) of (2.49 as

p—e'  x—o, (2.50
d)—)e*igx, X— — 0, (2.5

Then it is easy to check that

{+i tanhx i2x
(X, )= 7 © (2.52
and
{—itanhx .

¢(X-§)=Te e (2.53

For real values of, Egs.(2.52 and(2.53 give the continuous eigenstates of the Sdimger
operator. Whert =i, they produce the same discrete eigenstate

1= b1 =13 Sechx. (2.54

It can be directly verified that eigensta{@s34), (2.35, (2.38), and(2.39 of the KdV linearization
operators are related to the the squared eigenstates of thedBgjaooperator as follows:

2
L) osa
P PR R
qfl(x)=—2&—xl, Wz(x)=—(|axl§§+%) N (2.56
D (x,k) = p?(x,k/2), (2.57
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2
By(x)=42, <1>2<x)=2(i‘9—

it +¢2|| -1 (2.59

=i

Now we need to recall the fact that squared eigenstates of thedehen equation are eigenstates
of the integro-differential operatots; andL,. Specifically, we have

Logp?= {297, (2.59
a¢p? ap?
Lopo=—2, Lo—r =(——+2|¢2) , (2.60
0P1 1 0757 - al -
Lo (42)x=(42) (2.61)
1921ﬂ2 &2¢2 -
2\ 2 + ]
Lo (¢Dx=—(¥Dx, Lo Zox g_i—[ amx+2l(¢2)x] ~ (2.62

Proof of Eq.(2.59 for general potentiadj(x,t) can be found in Ref. 30. By taking=i in (2.59,

the first equation if2.60 can be obtained. By taking the derivative of E8.59 with respect to
£, and then taking =i, the second equation i2.59 is proved. Equation§.61) and(2.62 can
be derived similarly. We note that ER.61) is valid for general potentia(x,t), not just the
soliton potential2.12). We also remind the reader that in £8.61), the conventiori2.8) has been
applied. When all the relatior(.55—(2.58 and(2.59—(2.62 are utilized, Eqs(2.46) and(2.47)

are proved again.

Now since the eigenstates bfg, (L{jdv) are also the eigenstateslof (L), theL,;, and L{jh
factorization formulag2.22) and(2.23 quickly show that the eigenstates of the KdV linearization
operatorL 4y, (Lﬁdv) are also the eigenstates of the linearization operalms(Lﬁh) of all KdVv
hierarchy equations. This is the major result of this section. We summarize it in the following
theorem.

Theorem 2: The linearization operators |, of all KdV hierarchy equations (2.11) expanded
around the soliton (2.12) share the same complete sejgfdigenstates (2.34) and (2.35), and
the adjoint linearization operators{ih of all KdV hierarchy equations (2.11) share the same
complete set of @dv—eigenstates (2.38) and (2.39). Furthermore

LinW (x,K) =ik{C(k?)—C(—4)}¥(x,k), (2.63
LinW1(X)=0, LinWy(x)=—8M(—4)¥(x), (2.64
L@ (x,k) =ik{C(k?) — C(—4)}®(x,k), (2.65
Len®1(X)=0, Li®(x)=—8M(—4)D(x). (2.6

The proof of this theorem follows readily from the factorization formula2 and(2.23), the
L.y and Lfdv eigenfunction relation§2.36), (2.37), (2.40, and(2.41), andL, andL, eigenfunc-
tion relations(2.46) and (2.47). With the results of Theorem 2, one can now develop a direct
soliton perturbation theory for any KdV hierarchy equafidfy®-?°

An interesting fact which was not appreciated in the past is that, for any constatfitthe
linearly independent solutions to the linearization operator equation

Lypu(X)=Au(x) (2.67)
are given by the functiof’ (x,k) [see Eq.(2.34)], where

A =ik{C(K?)—C(-4)}, (2.69
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andk is allowed to be a complex number. This fact follows directly from Theorem 2. To see this,
we takeC(z) as a power functionC(z) =z", wheren is a positive integer. Notice that operator
Lvh, as well as Eq(2.67), is (2n+1)-th order. Thus Eq(2.67) should have (8+1) linearly
independent solutions. But E(R.68 has exactly (B+1) roots, and each rodt would give one
solutionW (x,k) for (2.67). Thus we do get (2+ 1) solutions altogether foi2.67), all of which

are in the same form¥ (x,k) with just differentk values. Ifk is real, ¥(x,k) is bounded at
infinity, and is thus an eigenfunction of operatqy,. If k is truly complex, then the corresponding

W (x,k) solution becomes unbounded. Thus we see that, for the integrable KdV hierarchy, the
linearization operator equatn(ﬁ 67) is also completely solvable. Similar facts go to the adjoint
operator equatlon_khu AU, where all its solutions are given b¥(x, k) with )\—|k[C(k2)
—C(—4)]. These facts are additional manifestations of magic associated with integrable equa-
tions.

In the next two sections, we will derive similar results for the NLS and mKdV hierarchies.
More specifically, we will show that the linearization operators of all Nlb$<dV) hierarchy
equations share the same complete sets of eigenfunctions. In each case, we will present the
common eigenfunctions explicitly, work out their inner products, and relate them to squared
eigenstates of the associated eigenvalue problem.

[II. COMPLETE EIGENFUNCTIONS OF LINEARIZATION OPERATORS FOR THE NLS

HIERARCHY
The integrable equations associated with the Zakharov—Shabat eigenvalue problem can be
written as®
1o o
i —w(2L = 3.1
_qj w(2L)) (3.1
where the integro-differential operatbt is
X
. &—er dyq Zerdyr
Ly = > (3.2
—ZqJ dyq ——+2qJ dyr

and (k) is the dispersion relation of the linearization equation inrtf@mponent. The adjoint
operator ofL] is

. ———2qf dyr —2qf dyq
LZZE - P w . (33)
ZrJX dyr a_x+2er dyq

For the NLS hierarchyw(k) must be an even function &, andg= —r*. In this section, we
require w(k) to be an entire function dk. Thenw(k) can be expanded into a Taylor series of
even powers ok. Thus, we can rewrite the NLS hierarck3.1) as

I
I{ QJ Q(L) (3.9

where the operator

Lr=4L)2, (3.5
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or specifically,

(92 X X X X
W—4qr—2rxf dyq+2rf dyaq, 2rxf dyr+ 2rf dyry
I:+:_ — —o0 — 00 —o0
X X 92 X X '
2qxf_ocdyq+2qf_mdyqy &—Xz—4qr—2qxﬁ‘ dyr+2qﬁ dyry
(3.6

Q(2) is an entire function, and=—r*. The adjoint operatot of L * is 4L2, i.e.,

2

& o o0 o] o0
— —4qr+ 2qxf dyr—2qf dyr 2qxf dyq+2qf dyaqy
~ (2 X X y X X
L=- 5
o) <) (9 o) o0
erj dyr+2rJ dyry —2—4qr+2er dyq—ZrJ dyaq,
X X aX X X
(3.7
When((z) =z, Eq. (3.4 becomes the NLS equation
ir 41+ 2|r|?r=0. (3.9
WhenQ(z) =22, Eq.(3.4) gives the fourth-order NLS hierarchy equation:
i = [Vt 671200 5+ 2| P |2r ot 2025 — 211 ,r ¥ +6|r|*r]=0. (3.9

Higher order NLS hierarchy equations can be obtained similarly.

The NLS hierarchy(3.4) allows soliton solutions whose amplitude and velocities are free
parameters, just like the NLS equation. We can normalize the velocity to be zero by a Galilean
transformation, and amplitude to be 1 by a rescaling of variables. Then the normalized soliton
simply becomes

r| [sechxe "1
[q} = —sechx eiQ(l)t}- (3.10
With a change of variables
Tere 0D g=qd-t (3.11)
and the bars dropped, the NLS hierar¢By4) becomes
1 ory R r
i +[Q(—-1)—-Q(L")]| ,|=0, (3.12
—Qt q
and
ro=—Qo=Sechx (3.13

is its soliton solution. We define operatots and L, asL*™ and L with (r,q) replaced by
(ro,90), Then one can verify that

)
o

=—F°}. (3.14

I:g Jdo

This relation will be used to prove Theorem 3.
Next, we linearize the NLS hierarch$.12 around its soliton(3.13. We write
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r}_ r0+7} (3.15
al [9—4) '
whereT,§<1. When(3.15 is substituted into the NLS hierarch.12), linearization of this
equation is
[ et o a6
i~ ~ =0, )
aj, "4

whereL ,;, is the linearization operator, and the subscripth” is abbreviation for “NLS hierar-
chy.” The adjoint operator ok ,;, will be denoted askﬁh. For the NLS equation()(z)=z. Then
linearization of Eq«(3.12 shows that

2

J
2~ 1+asechx 2 secfix
Lnis= P . (3.19
—2seck x — —+1—4secRx
dx
Its adjoint operatot.f, s is
Laes=Lws- (3.19

We introduce the Pauli spin matrices

0 1 1 0
g1= 1 0 ’ 03— 0 _1 y (319)
which we will use below. Then
Laisos=oslas. (3.20

aslLy sos is a self-adjoint operator.
Similar to the KdV hierarchy, here we also have the important propert;LmagtandlA_g are
commutable, andly, s andL, are commutable, i.e.,

Laslg =LoLns. (3.21)

and
LatsCo=LoLALs- (3.22

In addition, the following factorization theorem far,;,, and Lﬁh holds.
Theorem 3: For any NLS hierarchy equation (3.12) wheflz) is an entire function, the
linearization operator L., and its adjoint operator ﬁh have the following factorizations

Lan=M(Lg)Lncs, (3.23
LA =M(Lo)LRs, (3.24

where the function Ni) is defined as

Q(2)-Q(-1)

M(Z) z+1

(3.29
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Proof: Recall that an entire function can be expanded into a power series. Thus it suffices to

prove the above theorem fdvl(z)=2z", wheren is a positive integer. In this case, the NLS
hierarchy(3.12 becomes
[ Iy
[
— Q¢

andM(z)=="_,7%(—1)""'. We first derive the linearization of operatdr {)". Substituting
Eg. (3.195 into (3.6), we find that

(3.26

(=D () o=

Lt=L§+F+O(F274,5°), (3.27

where the operatofF contains all terms which are first order Thand §. Even though the
expression forF can be readily obtained, it is not really needed in this proof. FromLthe
linearization(3.27), we then find linearization ofl(*)" as

(L= (Lo)”+2 Lo) " tALe)" ' +0r2Ta,5). (3.28

When the above equation af@l15 are substituted into the NLS hierarct8:26), we find that the
linearization operatok ,,, as defined in Eq(3.16) is

hé}=[(—1)“ (L )n](Ts[ } Z Lo) " *ALg)"™ '[q} (3.29
= 0

Recalling the relatiorf3.14), we can simplify Eq(3.29 as

oAl o0

This equation holds for any positive integersofWhenn=1, the NLS hierarchy3.26 becomes
the NLS equation, ant¥(z) =1. Thus Eq.(3.30 leads to the relation

- T ro
Lyl

Of course, this relation can also be checked directly when one derives the specific expression for
F from the linearization of *, and substitutes it into the above equation. Finally, when&§J)

is inserted into Eq(3.30), thelL,, factorization formula3.23 is then proved. To prove tHeﬁh
factorization formula3.24), we note thaf_o is the adjoint operator dig . Thus, from(3.23, we
immediately have

r
th'q

=—M(E3>[<E3+1>os

]. (3.31)

L =
NLS| g

th_LNLSM(I:O)- (3.32

But IZO and LQLS are commutablésee Eq.3.22)], thus formula(3.24) is obtained.

Next, we use the factorization formulé3.23) and(3.24) to construct complete sets of eigen-
states forL,,, andL?, nh Of an arbitrary NLS h|erarchy equation. The complete sets of eigenstates for
the NLS linearization operatolsy s andL%, s have been worked out by Katfpby his observa-
tion that these eigenstates were related to the squared Zakharov—Shabat eigenfunctions. We re-
formulate his results as follows. For the operdtQ[s, the continuous and discrete eigenstates are

—secl x

*'k _
(tanhx+ik)? L w<k<e, (333

W(x,k)=

(k+i)?
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W (x,k) =0, (x,k), (3.39)
V¥, (x)=sechx _11}, W, (x)=sechx tanhx i , (3.35
‘If3(x)=secm(xtanhx—1)[ﬂ, T ,(X)=Xxsechx _11}, (3.39

where
LasP=(1+k)W, LysP=—(1+k3)W, (3.37)
LaesWi=Lns¥2=0, (3.38
LaesWs=—2W;, LysVa=—2Y,. (3.39

Note that these four discrete eigenstates are derived from variations of the NLS soliton with
respect to its four free parameters: phase, position, amplitude and velocity. The continuous and
discrete eigenstates for the adjoint operatgy are

1 sech x .
cID(X,k)=—(k_’_—i)2 (tanhx— ik)> gkx  _o<k<m, (3.40
D (x,k) =0, P(x,k), (3.41)
d;(x)=05¥;(x), j=1,234, (3.42

where

LALsP=(1+Kk)D, LpP=—(1+k>D, (3.43
Las®1=LRsP,=0, (3.44
Lus®s= =201, LRsPs=—2d,. (3.45

The nonzero inner products between the eigenstates and adjoint eigenstates are

(P (x,k),D(x,k"))y=—2ma?s(k—k’), (3.46
(W (x,k),D(x,k"))=2ma?s(k—k'), (3.47)
(W1, D5)=—2=(V3,0,), (3.48
(W, ®,)=2=(T,,D,). (3.49

Here the inner produg}) is as defined in Eq2.44), and
a=(k—=i)/(k+i). (3.50

The closure relation is
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1 0
0 1

6(x—x’)=£c Flaz[\l_f(x,k)CI_D(x’,k)—\If(x,k)CD(x’,k)]dk

1
+ E[\Ifz(x)cl)4(x’)+\lf4(x)cl)2(x’)—\Ifl(x)cl)s(x’)—\Ifa(x)cl)l(x’)]_

(3.5)

Commutability relationg3.21) and(3.22 between operatoiis; (Lo) andLy.s (LALs) imply
that the eigenstates afy, g (LQLS) are also eigenstates Bg (Lo). Indeed, we can show that

Lo W(x,k)=k2W(x,k), (3.52
Low(x,k)=k>W(x,k), (3.53
LoW00=-T(x), j=12, (3.54
Lo Wa(x)=—W4(x)—2W,(x), (3.59
LeW,(x)=—W,(x)—2¥(x), (3.56
and
Lo®(x,k) = k2D (x,k), (3.57
Lo®(x,K) =k2D(x,k), (3.58
Lo®;(x)=—@;(x), j=1.2, (3.59
Lo®5(x)=—D4(x)+2P,(x), (3.60
Lo®4(X)=— D 4(X) + 2D (X). (3.61)

This fact, together with thé ,, and L}, factorization formulag3.23 and (3.24), immediately
leads to the conclusion that the 5 (LQLS) eigenstates are eigenstates of linearization operators
Lo (Lﬁh) of all NLS hierarchy equations. This result is summarized in the following theorem.

Theorem 4: The linearization operators },, of all NLS hierarchy equations (3.12) expanded
around the soliton (3.13) share the same complete set,of €igenstates (3.33) to (3.36), and the
adjoint operators lﬁh of all NLS hierarchy equations share the same complete seﬁgfejgen-
states (3.40}(3.42). Furthermorg

Lon® (x,k) =[Q(K?*) — (= 1)]¥(x,k), (3.62
Lan® (x,K) = —[Q(k2) — Q(—1)]W(x,K), (3.63
Lan¥1(X,K) = Lap ¥ 2(%,k) =0, (3.64
Lon®W3(x,K)=—2M(— 1)W1, LoyW¥u(x,k)=—2M(—1)¥,, (3.6
and
LA®(x,K)=[Q(K?) — Q(—1)]d(x,K), (3.66
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Lan®(x,k) = —[Q(K?) = (= 1)]D(x,k), (3.67
LA® 1(x,K) =LA ,(x,k)=0, (3.68
Lo®@s(x,K)=—2M(—1)D;, LADL(xK)=—2M(—1)D,. (3.69

The equation$3.62—(3.69 come directly from Eqs(3.23), (3.24), (3.33—(3.36), (:140)_(3'42)'
and (3.52—(3.61). A by-product of this theorem is that, for any constantand \, the linear
equationL ,,u=\u and its adjoint equatlohnhu AU are completely solvable, and their solutions

all have the form¥(x,k) and ®(x,k), respectively(k andk are now allowed to be complex
numbers$. This is similar to the KdV hierarchy cageee the end of Sec.)ll

Lastly, we would like to draw the reader’s attention to the close relationship between eigen-
states(3.33—(3.36 and(3.40—(3.42 of linearized NLS hierarchy equatiori8.12) and squared
eigenstates of the Zakharov—Shabat eigenvalue problem with a soliton potential:

U1X+i§01:q0U2, (37@

Vox—1{vo=Tovy, (3.71

wherery andqg are given in Eq(3.13. This connection was first mentioned in Ref. 18. It is also
hinted by the result that the NLS hierarchy eigenst&833—(3.36) and (3.40—(3.42 are also
eigenstates of the integro-differential operatﬁgs andL,. Using standard notations, we define
Jost functions of Eq93.70 and(3.7)) as

(X, 0)= [m 189 x—ee, (3.72
1] .

v Mj ofe ' X, (373

d(x,{)= ml} ée‘“x, X— — 00, (3.74

d(x,0)= [Zl} [_01 e, x——o0, (3.75

2

For the soliton potential3.13), these Jost functions have the following simple expressions:

1

sechx i 1
V0= 17517 | tanhx— ZIA ” (3.7
— 1 [|tanhx+2ig| _,,,
l/l(X,g): 1+2|§ —SeChX }e § ’ (377)
_2i§+1_ — _1—2i§

An important property is that the squared eigenstates of the Zakharov—Shabat system are eigen-
functions of operatort; andL,.* Specifically,

Downloaded 07 May 2001 to 132.198.203.101. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



6630 J. Math. Phys., Vol. 41, No. 9, September 2000 Jianke Yang

+¢%}_[¢%} A
S R AR et (3.79
ANPEG ARG
L, l//% ={ lﬂ%' Lz@_ggg. (38@

These relations hold for general potentials, not just for soliton ones.
Now it is a simple matter to recognize that eigenstd883—(3.36 and (3.40—(3.42 are
related to the squares of the Zakharov—Shabat eigens&a#$—(3.78 as follows:

43 ] - %
v(x,k)=| 2 ‘I’(Xak):{ 32} ' (389
¢1-§=k/2 _d)l {=—k/I2
% } % }
Wy(x)=2 - , (3.82
' [._‘bi (=i ._gi. =—ir
K } % | }
Wy(x)=2 - , (3.83
2 [._d’% (=il2 _Ei. (=—il2
28] Lol E 4 [E)
Wa(X)_I[ag _(ﬁ 4“:i/2Jr &g-_gi-g?i/z 2 _(ﬁ (=i _g% (=il e
o 2] ﬁ{ 3 | }
Yu(X)=i{ — - = , (3.89
! {ag._¢%-g=i/2 9 __%-ngi/z
v |
<I>(x,k)=[ %} <I>(x,k)={—§ : (3.89
'ﬂZ =ki2 2l = —x2
wi} [ ]
®5(x)=2 { - , (3.8
' [ lﬁ% ¢=ifz Eg {=—inr
1.4,
Dy(x)=—2 { - , (3.89
’ { v e L5 =—ir
(4 wi} J Pﬁ} ] [ tlfi} Pﬁ} ]
D;(x)=i{ — — +2 - , (3.89
° lag % {=il2 9 E% {=—in Z {=if2 Eg {=-irz
S ﬂ
D 4(x) = I[ﬁl[lﬂ% i ) (3.90

It has been shown by Katipthat the sets of squared Zakharov—Shabat eigenstates

[ d)%z { Eé} { real d%z} i[ ¢§2 gé i{ gé}
— 1) _¢§ ’ =41 g:ilzyaz — ¢ §:i/2, _‘1’% g:—i/zlﬁg _(bi {=—ilR

(3.91
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and
¥ m 4 9 wi} % o | v}
’ L] |1 Y oo ) )y oo 39
{|:l'0§ Eg g ed l//% {=il2 54 lp% {=il2 Eg =—il2 0§ E% [=—il2 ( 2

are each completé&Kaup's proof was actually made for general potenjial$ius, in view of the

above relationship between NLS hierarchy eigenstates and squared Zakharov—Shabat eigenstates,
the respective completeness of the NLS hierarchy eigens@&3—(3.36) and adjoint eigenstates
(3.40—(3.42 naturally follows. In fact, this is how Kadp established the completeness of the

NLS eigenstate£3.33—(3.36) in the first place. We also note that E¢3.79 and(3.80, together

with the relationg3.81)—(3.90, reproduce Eqs.3.52—(3.61) again.

IV. COMPLETE EIGENFUNCTIONS OF LINEARIZATION OPERATORS FOR THE mKdV
HIERARCHY

In this section, we extend our results above to the mKdV hierarchy. Similar to the NLS
hierarchy, the mKdV hierarchy is also a special case of the more general class of integrable
equationg3.1). It can be written as

r‘X
_q 170, (4.1

Ux

rt — +
+C(2L
_QJ 2Lz)

whereq=—r, L, is the operator defined in E¢3.2), and E(k) is the phase velocity of both

variables and must be an even function. In this section, we reQfkg to be entire. The vector

form (4.1) of the mKdV hierarchy is convenient as it then becomes a special class of the general
integrable equation§3.1), on which a wealth of information has been obtaifi@éHowever, in
applications, one usually works with only one variable, and the equation is scaler, just like the
mKdV equation. It is often awkward to work with the vector foi@.1) of this hierarchy and
translate the results into the scaler form in the end. Thus one is motivated to obtain a scaler form
for the mKdV hierarchy and work with it from the very beginning. We will do this and construct
complete eigenstates of linearization operators for the scaler mKdV hierarchy below.

We first derive the scaler form of the mKdV hierarctd1). Note thatC(k) is an even and

entire function. Thus we can Writg(ZL;’) as C(4L;’2), where C(k) is entire. Recallingq
=—r, the operator &2 becomes

A B
+2_
4L B A}’ 4.2
where operatorsl and 5 are
92 X X
A:—W—4r2—2rxf_ocdyr+2rf_xdyry, (4.3
X X
B= _erj dyr—ZrJ dyry. (4.9
One can verify that, for any positive integey
An Bn
4L %= 4,
[l 8] us

where
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A+ By=(A+B)". (4.6
Thus, if we define the operator
Lm=3(A+B), (4.7)
ie.,
1 6? X
Lfgz—zm—rz—rxﬁwdyr, (4.8

then the mKdV hierarchy4.1) simply becomes
ri+C(4L)r=0. 4.9

This equation is the scaler form of the mKdV hierarddyl). Notice that it is very similar to the
KdV hierarchy(2.1). WhenC(k) = —k, Eq. (4.9 gives the mKdV equation

Mot Pyt 6721, =0. (4.10
Other mKdV hierarchy equations can be obtained by choosing different phase velocity functions
C(k).
The rest of this section runs parallel to Secs. Il and Ill. We first note that the mKdV hierarchy

(4.9) admits a family of soliton solutions whose amplitude is a free parameter. With a scaling of
variables, we can normalize the amplitude to be 1. The normalized soliton is

r(x,t)=sech{x—C(—1)t}. (4.1
In moving coordinates,
X=x—C(—1)t, t=t, (4.12)
and with the bars dropped, the mKdV hierarddy9) becomes
rt+[C(4L,;)—C(—1)]rX=O, (4.13
and
ro(X)=sechx (4.14

is its soliton solution.
Next, we linearize the mKdV hierarchit.13 around its soliton(4.14). We set

r(x,t)=ro(x)+T(X,t), (4.15

wheref <1, and substitute it into Eq4.13). With the higher order terms hneglected, Eq4.13
becomes the linearized equation

Tit+ Ll =0, (4.1

whereL ,,, is the linearization operator. Here the subscriptlf’ refers to “mKdV hierarchy.”
Similar to the KdV and NLS hierarchy cases, we have the following factorization theorem,for
and its adjoint operatdr?, .

Theorem 5: For any mKdV hierarchy equation (4.13) wherdz} is an entire function, the
linearization operator L,,,, and its adjoint operator ﬁ,h expanded around the soliton (4.14) have
the following factorizations:
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Lmh=M (4L o)L miav: (4.17)

LA =M (4Lmo) LAy - (4.18
Here operator L, is defined as [, with r(x,t) replaced by p(x), i.e.,

+ 14 2 X
LmO:_ZW_rO_rOXJ’,mder’ (4.19

Lmo is the adjoint operator of [, which is

2 00
A d (4.20
mo= T 7 52 lo—ro . Yloy .

L mkav IS the linearization operator of the mKdV equatjon

3

J 2 J 2
Lmkdvzaxs+(6ro_1)&+(6ro)x, (4.21)
its adjoint operator L, is
A &3 2 J
Lmkav=~ 553 ~(6ro—1) =, (4.22

and function Mz) is defined as

C(-1)—C(2)

M(Z)E 1+z

(4.23

The proof of this theorem is very similar to those of Theorems 1 and 3 for the KdV and NLS
hierarchies, and is thus omitted here.

Also similar to the KdV and NLS hierarchies, we can verify that operatgsandL q, are
commutable, andl o andL%,, are commutable, i.e.,

L oL mkav=Lmkavbrmo:  LmoLfikav= L mkevk-mo- (4.24

This fact implies thaLmkd\,(Lfnkdv) andL ., (Lmo) share the same set of eigenfunctions. Then the
factorization formulag4.17) and(4.18) indicate that these same sets of eigenstates are then shared
by linearization operators of all mKdV hierarchy equations. The complete sets of eigenstates for
mKdV linearization operatork 4, and L{;kdv have not been reported before in the literature. But
we can obtain them from eigenstateslgf, andL o, as will be done below.

For general andq potentials in the Zakharov—Shabat eigenvalue prok@a0 and(3.71),
Eq. (3.79 holds. Whemy= —r, as is the case for the mKdV hierarct¥.1), it is easy to see that

D10 =ba(X, =), ha(X,)=—ba(X,— ). (4.25
Thus we find from(3.79 that the two relations
o #3] z[ b5 }
4l — 7 =4{ s (4.26)

and
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2 2
412 _¢;§}=4§2 _25} 4.27)
hold simultaneously. Subtracting the second equation from the first one, we get
2 2 2 2
i -
Recalling Eqs(4.2) and(4.7), the above equation leads to
Ln(¢3— 61 =%(d3— ¢1), (4.29
ie., ¢§— ¢f are eigenfunctions of operatbr!, . Similarly, we can show that
L5+ ¢3) =245+ ¢3) (4.30

for generalr andq potentials. Say?+ 3 are eigenfunctions of operatar, .
For soliton potentialsr,=—q,=sechx, the Zakharov—Shabat eigenstateg, (/,)" and
(¢1,¢,)" have been given in Eq$3.76 and(3.78. We define two sets of functions

W(x,K)=(p5— ¢2)| =;[(tanhx+ik)z—secﬁx]e‘”‘x —o<k<oo, (4.3))
N 2 1/1¢=k/2 (k+|)2 ’ y .

¥, (x)=sechxtanhx, W,(x)=sechx(1—xtanhx), (4.32

and
1 _ .
d)(x,k)z(zpf+¢§)|gzk,2=—m[(tanhx—|k)2+secf‘°rx]e'kx, —o<k<w, (4.33

O, (x)=sechx, D,(x)=xsechx. (4.349

Then from Egs(4.29 and(4.30 we see thatV(x,k) [P (x,k)] are continuous eigenfunctions of
operators. - (Lmo) With

k2
LooW(x,k)= Z\If(x,k), (4.35
k2
Lmoq)(xnk): Z(I)(X!k)l (43@
and W;(x) [®;(x)], j=1,2, are discrete eigenmodes or generalized eigenmodes (oL mo)
with
LoWi=— V1, LpoWo=— ¥+ 3%, (4.37
and
Lno®1=— 3Py, LmoPo=— 7P+ 5. (4.39

Commutability of operators gy (Laa) andL o (Lmo) indicates that the above eigenmodes of
Lo (Lmo) are also eigenstates bf,q, (Lﬁkd\,). Indeed, the set

{¥(x,k), real; Vi(x),¥,(x)} (4.39
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are all the linearly independent eigenstates and generalized eigenstates of dpgratowhere

L (X, K) =ik (k?+1)W(x,k), (4.40

Lokaw?1=0, Lykay¥2=—2V; (4.41)
and the set

{®(x,k), k real; ®(x),P,(x)} (4.42

are all the linearly independent eigenstates and generalized eigenstates of dq%;@towhere
LA ® (k) =ik(k?+1)D(x,k), (4.43
Laokav®1=0, Liya®2=—2;. (4.44
To calculate the inner products between eigenst@&9 and adjoint eigenstatdd.42, we first

recall Eqs.(3.81) and(3.86) and inner-product relations such @s46) in Sec. Ill. Explicitly, such
inner-product relations tell us that

Jf [ p3(X,K/2) Y2 (x,Kk'12) — p2(x,kI2) ya(x,k'12) ]dx= — 2 a2 s(k—k'), (4.45
and

f " BBk YA K 12)— 2%, K2 YA(x K 12)]dX=0, (4.46

wherea is given in Eq.(3.50. Adding these two equations together, and recalling E481) and
(4.33), we find the inner product betweeh(x,k) and®(x,k’) as

(P (x,k),D(x,k"))y=—27a?s(k—k"). (4.47)
Similarly, we get
(W1,D2)=(V,Py)=1, (4.48
and all other inner products are zero.

Next, we show that each of the two sé#s39 and (4.42 is complete. In Sec. lll, we have
known that thely, 5 eigenstates

2 oY)
1 1
[_qszz} , dzz} ,k real; sechkx 1 ,sechx tanhx 1l
Pl e L= 41 {=—ki2
1 1
sechx(x tanhx—1) 1]X sechx _1H (4.49

is complete. Here¢,,¢,)" and (¢,,¢,)" are given in Eq(3.79. Recalling Eq.(4.25, we see
that the set4.49 with (¢3,— ¢3) -, replaced by ¢2,— ¢3)]_, is also complete. Thus, for
any functionf (x) in L, functional space, we can expand the vector fundti),f(x)]" into this
complete set and get
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4

1
_1}, (450

f(x)
f(x)

- b5 b1
:f cl(k)[_ 22} +c2(k)[_ 12} dk+ a; sechx
- 1 {=ki2 b2 {=kI2

1
+ a, sechx tanhx| , |+ a3 sechx(x tanhx — 1){ 1|t aax sechx

1
1

wherec,(K),c,(K),aj,1<j<4 are constants. Adding the two components of B0 together,
we get

1 0
f(x)ziﬁ [C1(K) = Ca(K) (35— $2) ;=2 Ak + @ SECIX tanhx+ azsechx(x tanhx—1).
(4.52)

In view of the definitions(4.31)—(4.34), Eq. (4.51) means that the sé#1.39 is complete. Simi-
larly, the completeness of the $dt42) can also be proved. The closure relation for these two sets
is then

= 1
—f 522 VOGP (X K) Akt W (0D o(x') + Wo(x)Dy(X ) = 8(x—X). (452

With the complete sets of eigenstatéds3]) to (4.34) for L gy and Lfnkdv obtained, then from the
factorization formulasg(4.17 and (4.18 and eigenfunction relation&4.35—(4.38 and (4.40),
(4.41), (4.43, and(4.44), the following theorem naturally follows.

Theorem 6: The linearization operators Ly, of all mKdV hierarchy equations (4.13) ex-
panded around the soliton (4.14) share the same complete sef,f €igenstates (4.31) and
(4.32), and the adjoint linearization operators’;Lr of all mKdV hierarchy equations share the
same complete set oﬁkdv eigenstates (4.33) and (4.34). Furthermore

L (x,K)=—ik{C(k?)—C(—1)}¥(x,k), (4.53
Lni®1(X)=0, Lypn¥o(x)=—2M(—1)¥(x), (4.54
LA D (x,k) = —ik{C(k?) — C(—1)}®(x,k), (4.55
LA®@1(X)=0, LA ®,(x)=—2M(—1)D(x). (4.56)

Obviously, Theorem 6 is the counterpart of Theorems 2 and 4. A by-product of this theorem is that
the linear equatioh ,,u=\u and its adjoint equatiohﬁhiz \u are completely solvable, and all
their solutions are given by (x,k) and®(x,k), respectivelywith k andk complex in general

V. CONCLUDING REMARKS

In this article, we constructed complete sets of eigenfunctions for linearized KdV, NLS and
mKdV hierarchy equations expanded around single-soliton solutions. We showed that all equa-
tions within the same integrable hierarchy share samecomplete sets of eigenfunctions. Fur-
thermore, these eigenstates are intimately connected to the squared eigenstates of the associated
eigenvalue problem. We then explicitly obtained these eigenstates, derived their inner products,
and established their closure relations. Even though our analysis is just for the KdV, NLS and
mKdV hierarchies, it is quite obvious that similar results should hold for other integrable hierar-
chies as well.

The value of this work, as we see it, is that it allows one to develop a direct soliton pertur-
bation theory for all equations in the same integrable hierarchy. As we mentioned in the Intro-
duction, the direct soliton perturbation theory has a simplistic appeal, and its key component is the
complete set of eigenfunctions for the linearized integrable equation expanded around solitons. In
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the literature, this theory was developed only for the sine-Gordon, Benjamin—Ono, KdV and NLS
equation&®~22(it was also developed for the nonintegrable cubic-quintic NLS equatibnt that

theory was not complete Based on our results in this article, however, one can now readily
develop direct soliton perturbation theories for the mKdV equation and all higher order KdV, NLS
and mKdV hierarchy equations. From a physical point of view, at the moment, only the lowest
order hierarchy equations such as the KdV and NLS equations found most physical applications.
However, higher order hierarchy equations do become relevant in certain situations. One example
is the fifth-order KdV hierarchy equation, which arises in shallow water w&v& perturbation
theories for higher order equations are in order. As physical systems become more complex, and
their studies get more quantitative, we expect more applications of soliton perturbation theory on
higher order hierarchy equations in the coming years. In some cases, such perturbation theories on
higher order equations prove to be very beneficial, as they reveal interesting soliton dynamics
which is totally absent in the perturbed lowest order hierarchy equations. The comprehensive
study of embedded-soliton dynamics in the perturbed fifth-order KdV hierarchy equation is one
good examplé?

We would like to point out that the key results of this article actually were already hinted by
the inverse-scattering-based soliton perturbation theory, which was developed in thé’té*18s.
those works, the soliton perturbation theory was developed for a large class of integrable equations
associated with the Zakharov—Shabat eigenvalue problem. For all those equations, the expansion
basis for the potentials was the same squared eigenstates of the Zakharov—Shabat system. The
main contribution of this article is that we have shown those squared eigenstates also solve the
linearized equations of an entire hierarchy expanded around soliton solutions, thus they are also
the expansion basis in the direct soliton perturbation theory. This connection indicates that the
direct soliton perturbation theory and inverse-scattering soliton perturbation theory are intimately
related.

Lastly, we note that the eigenfunctions we constructed in this article are only for integrable
equations linearized around single-soliton solutions. However, these results can be extended to
linearization around any time-dependent solution such as a multi-soliton solution. In this general
case, the elegant factorization results of linearization operators for the single-solitofsease
Theorems 1, 3 and)&re no longer valid. But we can still show that the squared eigenstates of the
eigenvalue problem also solve the linearized equation, thus they still form the complete set of
eigenfunctions for the linearization operator around any time-dependent solution. This fact then
allows one to develop a direct multi-soliton perturbation theory for a large class of integrable
equations including the KdV, NLS and mKdV hierarchies. We will report these results in a future
article.
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