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3,c)

In this paper, a general integrable coupled nonlinear Schrodinger system is inves-
tigated. In this system, the coefficients of the self-phase modulation, cross-phase
modulation, and four-wave mixing terms are more general while still maintaining
integrability. The N-soliton solutions in this system are obtained by the Riemann—
Hilbert method. The collision dynamics between two solitons is also analyzed. It is
shown that this collision exhibits some new phenomena (such as soliton reflection)
which have not been seen before in integrable systems. In addition, the recursion
operator and conservation laws for this system are also derived. © 2010 American
Institute of Physics. [doi:10.1063/1.3290736]

I. INTRODUCTION

The nonlinear Schrodinger (NLS) equation has been widely recognized as a ubiquitous math-
ematical model for describing the evolution of a slowly varying wave packet in a general nonlin-
ear wave system; thus, it plays an important role in a wide range of physical subjects such as
nonlinear optics,l’ water waves,” and plasma physics. The discovery of integrability of this equa-
tion by Zakharov and Shabat in 1971 (Ref. 4) has made a big impact on the studies of all these
areas. In certain physical situations, two or more wave packets of different carrier frequencies
appear simultaneously, and their interactions are then governed by the coupled NLS equations.
Examples include nonlinear light propagation in a birefringent optical fiber or a wavelength-
division-multiplexed system,l’z’5 the evolution of two surface wave packets in deep water,” the
interaction of Bloch-wave packets in a periodic system,7 spinor Bose—Einstein condensates,*’ and
so on. On the integrability of these coupled systems, Manakov'® showed first that if the coupling
is only through cross-phase modulation (XPM), and the XPM coefficient is equal to the self-phase
modulation (SPM) coefficient, then this system (now called the Manakov system) is integrable.
Multisoliton solutions in the Manakov system have also been extensively investigated by the
inverse scattering method and the Hirota method,'®™" and an interesting phenomenon of polariza-
tion rotation after collision has been found. Later studies revealed that when the XPM coefficient
is opposite of the SPM coefficient, the system is still integ.grable.mf16 The two- and three-soliton
solutions in this model were obtained by the Hirota method in Ref. 17, and a phenomenon of
energy redistribution between solitons after collision was reported. More general forms of inte-
grable coupled NLS equations were also mentioned in Refs. 14 and 16, but multisoliton solutions
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in such systems have not been examined yet. Given the importance of the general coupled NLS
equations for various physical problems, these equations deserve careful and detailed investiga-
tions.

In this paper, we consider the general coupled NLS system (GCNLSS) of the form

ip;+ Do+ 2(alp|* + clg|* + bpg* + b*qp*)p =0,

iq,+ q. + 2(alp|* + clq* + bpg”™ + b*qp*)q =0, (1)

where a and c are real constants, b is a complex constant, and “*” denotes complex conjugation.
Physically, a and ¢ terms describe the SPM and XPM effects, and b and b* terms describe the
four-wave mixing effects. When a=c and b=0, this system reduces to the Manakov system.10
When a=—c and b=0, this system reduces to the case considered in Refs. 15 and 17. In this paper,
we allow constants a, b, and ¢ to be arbitrary, so Eq. (1) is much more general and may be used
to describe a wider variety of physical processes. Equation (1) is still integrable for arbitrary a, b,
and ¢ values. Its Lax pair is

in 0 p
¢x =1 0 i q ¢, (23)
ry 1, —Ik

—2iN>—ipr, —ipry ip,—2p\

¢, = —iqry - 2iN* —igr, iq.—2\q ®, (2b)
—iri = 2Nr|  —iry —2N\ry ipry+iqry + 2iN?

where ri=—ap™—bq", r,=—b*p*—cq”, \ is a spectral parameter, and ¢(x,z,\) is a vector or a
matrix function. It is noted that Eq. (1) is more general than the integrable two-component NLS
equations discussed in Ref. 16 [see Eq. (3) there].

In this paper, the general integrable coupled NLS system (1) will be carefully analyzed. First,
we will derive its N-soliton solutions by the Riemann—Hilbert method. Using these exact solutions,
we will examine the collision dynamics between two solitons and relate the after-collision soliton
parameters with the precollision ones. From these analytical formulas and selective solution plots,
we will show that the soliton collision in this general system exhibits some new phenomena (such
as soliton reflection) which have not been seen in integrable systems. In addition, we will derive
the recursion operator for this system. As a result, the whole hierarchy associated with this system
will be obtained. Lastly, the infinite conservation laws of this system are also derived. These
results significantly enhance our understanding of the integrable properties of this GCNLSS.

Il. THE RIEMANN-HILBERT FORMULATION

In this section, we present the scattering and inverse scattering methods for Eq. (1) using the
Riemann—Hilbert formulation.'®'*?® These results will lay the ground for us to derive the
N-soliton solutions in Sec. III.

Let us consider Eq. (1) for the localized solutions, i.e., we assume that potentials p and ¢
decay to zero sufficiently fast as x,r— * . In the Riemann—Hilbert formulation, we treat ¢ in Eq.
(2) as a fundamental matrix of the two linear equations. From (2), we note that when x,7r— %o,
one has ¢:e‘i"Ax+2i"2A’, where A=diag(—1,-1,1). This motivates us to introduce the variable
transformation

d) — Je—i}\Ax+2i)\2At, (3)

where J is (x,7)-independent at infinity. Inserting (3) into (2), we get

J.=—iN[AJ]+QJ, (4a)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



023510-3 Integrable properties of coupled NLS equations J. Math. Phys. 51, 023510 (2010)

J,=2iN[AJ]+ VI, (4b)
with
0 0 p —ipry —ipr, ipy
0=10 0 ¢q|, V==2N0Q+|—-igr, —igqr, iq,
ry r O —irlx —irzx iprl+iq}"2

Here [A,J]=AJ-JA is the commutator, tr(Q)=tr(V)=0, and

0'=-BOB™', (5)
where T represents the Hermitian of a matrix, and
a b* 0
B=|b ¢ O
0 0 1

In the scattering problem, we first introduce matrix Jost solutions J.(x,\) of (4a) with the
asymptotic condition

J.—1 when x— * oo, (6)

where / is a 3 X3 unit matrix. Here, the subscript in J. refers to which end of the x-axis the
boundary conditions are set. Then, due to tr(Q)=0 and Abel’s formula, we have det(J..)=1 for all
x. Next we denote E=¢"™\*, Since W=J,E and ® =J_E are both solutions of (2a), they must be
linearly related, i.e.,

JE=J,ESO\), \eR, (7)

where

St S12 813
SN ={s21 s s3], AeR
$31 S32 933

is the scattering matrix and R is the set of real numbers. Notice that det(S(\))=1 since det(J)
=1. In addition, (®, V) satisfies the spectral equation (2a), i.e.,

b+ iNA D= 0. (8)

If we treat the Q¢ term in the above equation as an inhomogeneous term and notice that the
solution to the homogeneous equation on its left hand side is E, then using the method of variation
in parameters as well as the boundary condition (6), we can turn (8) into Volterra integral equa-
tions for (@, V). These equations can be cast in terms of J. as

X

J_(\x) =1+ f MO (N,y)eM O dy, (9a)

—00

J\x) =1~ f eMOIQ(y)IL (N, y)eM I dy. (9b)
X

Thus, J. allows analytical continuations off the real axis A € R as long as the integrals on their
right hand sides converge. We can easily see that the integral equation for the third column of J_
contains only the exponential factor ¢**~) which decays when \ is in the upper half plane C,, and
the integral equation for the first two columns of J, contains only the exponential factor 0=

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



023510-4 Wang, Zhang, and Yang J. Math. Phys. 51, 023510 (2010)

which also decays when M\ is in the upper half plane C,. Thus, these three columns can be
analytically continued to the upper half plane N e C,. Similarly, we find that the first two columns
of J_ and the third column of J, can be analytically continued to the lower half plane N\ e C_. If we
express (@, W) as a collection of columns

(I)=[¢17¢2’¢3]’ \I,=[¢17¢2’¢3]7

then the Jost solutions

P*=[,, p3le™ = J,H, + J_H, (10)

are analytic in N\ € C,, and the Jost solutions [, ¢,, ¢;]e™* are analytic in \ € C_. Here, H,
=diag(0,0,1), H,=diag(l,1,0). In addition, from the Volterra integral equation (9), we find that

P*(x,\) =1 as N\ € C, — o,

[¢1’¢2’ lr//?)]ei)\Ax_) I as N\ e C_ — 0,

Next we construct the analytic counterpart of P* in the C_. Note that the adjoint equation of
(4a) reads as

K.=-i\[A,K]-KQ. (11)
The inverse matrices J;l solve this adjoint equation. If we express ®~! and W~! as a collection of
rows,
2 o
D= gy [ W= |
b U
then by similar techniques as used above, we can show that adjoint Jost solutions
h
P =™ g | =HoJ [+ HJ! (12)
&3

are analytic for A € C_. In the same way, we see that

P (x,\) —1 as A e C_— o0,

Now we have constructed two matrix functions P* and P~, which are analytic in C, and C_,
respectively. On the real line, they are related by

P (x,N)P*(x,\) =G(x,\), \eR, (13)

where

1 0 S13
G(x,\)=E(H,+H,S)(H, +S'H,)E"' =E 0 1 sy |[ET (14)
521532531522 S31S12—S11832 |
Equation (13) is just a matrix Riemann—Hilbert problem. The asymptotics
P (x,\) > as \— (15)

provides the canonical normalization condition for this Riemann—-Hilbert problem.
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The solution to the Riemann-Hilbert problem (13) will not be unique unless the zeros of
det(P*) and det(P~) in the upper and lower half of the \ plane are also specified, and the kernel
structures of P~ at these zeros are provided. From the definitions of P~ as well as the scattering
relations between J* and J~, we see that

det P*(x,\) = s35(\),  det P-(x,\) = §33(), (16)

where §33=(571)33=5,1520—5252,. Suppose that s5; has zeros {\, € C,,1 =k=N}, and §4; has zeros
{X, e C_,1=k=N}. For simplicity, we assume that all zeros {(\;,\,),k=1,...,N} are simple
zeros of (s33,83;), which is the generic case. In this case, each of ker P*(\;) and ker P=(\,)
contains only a single column vector v, and a row vector 0, respectively,

Pt(\Jv, =0, 6, P"(\)=0, 1=k=N. (17)

If the Riemann—Hilbert problem (13) with the normalization condition (15) and zero structure
(17) can be solved, then one can readily reconstruct the potential Q as follows. Notice that P* is
the solution of the spectral problem (4a). Thus, if we expand P* at large \ as

1
PH(x,\) =1+ pr(x) +O(\3), N—o, (18)
and inserting this expansion into (4a), then by comparing O(1) terms, we find that

0 0 -2iP;
Q:l[A,PT]= O 0 —2iP23 . (19)
2iPy, 2iPy, 0

Thus, the potentials p and g can be reconstructed as

p=—2iP]3, q=—2iP23, (20)
where P7=(P;;).

The symmetry property (5) of the potential Q gives rise to symmetry properties in the scat-
tering matrix as well as in the Jost functions. Taking the Hermitian of the spectral equation (4a),
we have

(L) == iNAJL]+TLQ" (21)
Right-multiplying this equation by B and using (5) yields

(J&.B),=—iN[A.JLB] - J.BQ. (22)
This equation shows that J T:B is also a fundamental matrix of the adjoint equation (11). Recalling
that J3' satisfies (11) as well, we see that J%. B must be linearly related to J2', i.e., JLB=CJ7,
where C is x-independent. Using the large-x boundary conditions of /., we find that C=B. So we
find that J. satisfies the involution property
J.=BI'B".

From this property as well as definitions (10) and (12) for P*, we can see that the analytic solution
P~ satisfies the involution property

(PH'(\*)=BP"(M\)B7!. (23)

Then, in view of the relation J_E=J ES, we see that § satisfies the involution property
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STN) =BS~'(\B7!. (24)

Due to this involution property, we have the symmetry relation

VW (25)
for the zeros of s33(N\) and $33(N). To obtain the symmetry properties for the eigenvectors v, and
U, we take the Hermitian of the first equation in (17). Upon the use of the involution properties
(23) and (25), we get

viBP~(A;) =0. (26)

Then, comparing it with the second equation in (17), we see that eigenvectors (v;,0;) satisfy the
involution property

ﬁk= U]‘:B (27)

To obtain soliton solutions, we set G=1 in (13). The solutions to this special Riemann—Hilbert
problem have been derived from Refs. 19, 21, and 22 and the result is

P\ =1+ EM (28)
Jk=1 N =Ny

where the matrix M is given by
ﬁjvk
Mjk = ( * ) .
N =N

The zeros A\, and Xk are time independent. To find the spatial and temporal evolutions for vectors
vi(x,1), we take the x-derivative to the equation P*v,=0. By using (4a), one gets

P+()\k,x)( + l)\kAUk) 0 (29)
thus
dv .
Ek =- l)\kAUk. (30)

The time dependence of v, can be found in a similar way. Combining these results, we get

. 2
vk(x,t) — e—z)\kAx+21)\kszk0’ (3 la)

N o *2
ﬁk(x’ l‘) — ﬁkoez)\kAx—ka AZB, (31b)

where (vy,0,) are now constants.

lll. THE N-SOLITON SOLUTIONS AND THEIR DYNAMICS

The N-soliton solutions in Eq. (1) are obtained from the analytical function P* in (28) together
with the potential reconstruction formula (20), and these solutions are

N
p(x,l‘)=—2iP13=—2i< 2 Uj(M_l)jkljk) 5 (32)
13

Jok=1
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N
q(x,t)=—2iP23=—2i< E Uj(M_l)jkﬁk) . (33)
Jik=1 23

The negative signs in p and g can be scaled out. Thus, the general N-soliton solution in system (1)
can be written out explicitly as

N
x,t o *
|:[7( ):| =2i2 |: ]]eak_af(M_l)jk, (34)
q(x,1) k=1 LB; '
where
M= Y )\k[(aaj ap+bBay+ b a; B+ cB; Br)e (0 0) 4 o095, (35)
J

and 0k=—i)\,cx+2i)\it. Here, we have chosen vyo=[a;, B, 1]7 without loss of generality. In what
follows, we will investigate the dynamics of the one- and two-soliton solutions in this system in
more detail.

A. Single-soliton solutions

To get the single-soliton solutions, we set N=1 in formula (34). If aaja;+bBja;+b*ai B,
+¢31B1 <0, then this single soliton will have a singularity. In this paper, we require this quantity
to be always positive to avoid singular solutions. Then, denoting

. * ok EE k -2
Ni=N+ikp, aaja+bBiay+b a B +cBBi=e""1>0,

this single-soliton solution can be written as

|:p:| = rlem(Z)\lz)eoT_al SeCh(eT + 01 + 771), (36)
q

where r;=[a;, 3;]". Let us also introduce the polarization vector

u; = I‘lem = r—rl B (37)
V<rl’rl>
where the inner product (-,-) between two column vectors of length 2 here is defined as
(f1.5,) = fTBlfb (38)
with
Bl = .
b ¢
According to this inner product definition,
(I‘l,r1>=aa'>1ka1 +b,BTa1+b*aTIBI+C,BT,31, (39)
<u1’u1>= 19 (40)

and the soliton (36) will be nonsingular when (r;,r;)>0. It is noted that for the Manakov system,
B =1, thus (u;,u 1)=u11'u 1. In this case, due to Eq. (40) above, the polarization vector u; is a unit
vector (i.e., u}Lul =1); thus, its two components are less than or equal to 1 in magnitude. However,
for other (a,b,c) values, (r;,r;) can be very small. In that case, the polarization vector u; would
no longer be a unit vector, and it may have very large component values. This is a new feature of
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the GCNLSS (1), and it will have important consequences for soliton collisions in this system (see
below).
Under the above notations, we see that

0, + 0} =2\ 1p(x — 4N 10), 60— 6, = 2iN;x — 4i(N3, =\t

Thus, the single-soliton solution (36) can be rewritten as

(P.q)(x,1) =u; - 2N 15 sech[2\ 5 (x — 4N 1) + 7, Jexp{2ih x — 4i(A], = N1} (41)

Its amplitude function has the shape of a hyperbolic secant with peak amplitude of 2\ ,u,;, and its
velocity is 4\ ;. Notice that this soliton’s peak amplitude depends not only on the imaginary part
N\, of the eigenvalue A, but also on the polarization vector u;. While the eigenvalue \; does not
change when this soliton collides with another soliton, the polarization vector u; does (see below).
This means that the soliton’s amplitude can change after collision. The power of this soliton is

[’

P=| (pP+lg»dx=4xulu,. (42)

—0o0

In Sec. II, we always let the zeros \; be in the upper half plane and its conjugate in the lower half
plane, so the imaginary part A\, of \; is always positive. In the Manakov system, the polarization
vector u; is a unit vector. In that case, the soliton’s power depends only on A;,, thus does not
change after soliton collisions. However, for more general (a,b,c) values, the polarization vector
u,; is not a unit vector; thus, the power of the soliton depends on u; and can change after soliton
collisions. This means that during soliton collisions in the general system (1), the power can
transfer from one soliton to the other. More details on soliton collisions will be examined next.

B. Collisions of two solitons

The two-soliton solution in Eq. (1) corresponds to N=2 in the general N-soliton solution (34).
This solution can also be written out explicitly. Below we examine this solution with different
velocity parameters \j; # \,;, i.e., we consider the collision between two solitons in Eq. (1).
Suppose that N; <\,y, i.e., at r=—00, soliton-1 is at the right side of soliton-2 and moves slower.
After collision, they will scatter with their polarizations, positions, and phases all changed. These
changes can be explained analytically by means of asymptotic analysis. Indeed, when t— * oo,
one can readily find that the solution (34) approaches two single solitons as

p.9)" — rfe”I(Z)\lz)egT_gl sech(6; + 6, + 77;) + rgeng(z)\zz)eﬂz—ﬁz sech(6h+ 0, + 77,), t— -
(43)
and
(p.q)" — rfe”T(Z)\lz)eeT_el sech(6] + 0, + n]) + 1'3877;(2)\22)60;_62 sech(6y + 6, + 775), 11—+,
(44)
where
6_277; - <r;’r;>’ 6_27]; = <1']-:,l']t>, k= 1,2 (45)

Here, the intermediate variables («;,a,,8,83,) in the solution (34) are related to the pre- and
after-collision soliton vectors r] and r; as

a N =\ 16 N =\
r]:{ 1] =N r;':{ 2} 2= M (46)
Bil M=\ Bl M=

and these soliton vectors (r],r;,r},ry) are inter-related as
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. )\1—)\2{ _ () )\2—)\;}
1 1 s

A a2 J 2202 (47)
A=Ay 2<1‘;,1‘;> A=Ay
N — A r,ri) N =\
ry= i{rz—r;<1 2 MM i}. (48)
A=\ (rirp) A=\
Defining the polarization vectors of these single solitons by
- +
- - Ty +_ o+ n Ty
u=rel=m——, W =rel=——m=, (49)
(1) ()

then when t— —oo,

(p.9)"— UT(Z)\lz)eaf_al sech(6] + 6, + 77) + “5(2)\22)69;_02 sech(65 + 6, + 7,), (50)
and when ¢t — +o,

(P.)" — w2\ 1) sech(6 + 6, + 7) + ul(2Ns0)e™ % sech(6 + 6>+ 718).  (51)

Inserting relations (47) and (48) into the polarization-vector expression (49), we find that the
polarization vectors of these single-soliton pre- and after collision are related by

A =\ A=A\
ut=e?= i{u]—ué’(u}',uf}- - i} (52)
)\1—)\2 )\]_)\2
A=\ N =\
-_ ¢ 2 1 + -/ = 1 1
u,=e uy —u(u,uy) —— (, 53
2 )\2_)\?{ > —up(uj,uy) )\2_)\.1} (53)
where
A=\, |2 N =ADN =N
oo | Mmho {1+—(' s 2)|<u;,u;>|2}. (54
N — A IN; = A\5

In addition, the position-shift relations are

n-m=¢ m-m=—¢ (55)
These polarization and position-shift relations are not convenient to use, however, as the right
hand sides of these relations involve the after-collision soliton polarizations u3. To overcome this

problem, we will solve uj and uj in terms of u] and u; as Manakov and Tsuchida did for the
Manakov equations.'”"? First, we rewrite Eq. (53) as

N =N\ N =N\
w = e I uy(uy)? - ———L rul, (56)
Ao -\ A=\
where (u;)*=(u])'B,, and I is the two-by-two identity matrix. Notice that
() uy = (up,up) =1, (57)

then the following identity can be easily verified:

N -] N -]
I—uj(upy - =—— py I+up(u) —— =1 (58)

)\2 - )\1 )\2 - )\1
Using this identity, we can invert Eq. (56) to obtain uj in terms of u; and u3. Then, we insert this
u} formula into (52) and (54). After straightforward simplifications, the formulas for u} and e~2¢
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in terms of u] and u, will be obtained. Summarizing these results, we find that the polarization
vectors of the two single solitons after collision are related to those before collision as

N =\ Ny — N5
uj=e’] i{u}—u%u;u»-%}, (59)
)\1—)\2 )\1_)\2
-\ N =\
uh=e 1 g v ujurug) - —— 60
2=€ VW 1(up,u3) Y (60)
where
e T N 10 PR W -
2o |22 {1——(‘ 0 2 |<uLUE>I2} : (61)
Ni— N, TRy

When B, =1, Eq. (1) reduces to the Manakov system. In this case, the inner product (38) becomes
the usual one in the complex-vector space, and formulas (59)—(61) reduce to those obtained by
Manakov and Tsuchida in Refs. 10 and 13. Note that when comparing the above formulas with
those in Refs. 10 and 13, the eigenvalue \; in our notations corresponds to —¢; in Refs. 10 and 13
because our spectral parameter N in (2a) is opposite of ¢ in Refs. 10 and 13.

It is interesting to observe that the polarization formulas (59)—(61) for the GCNLSS (1) are
very similar to those in the Manakov system.lo’13 The only difference is that one needs to define
the inner products in these formulas differently according to the system parameters (a,b,c) [see
Eq. (38)]. This fact shows that the whole family of GCNLSS (1) indeed shares many common
features and can be treated collectively together.

Relations (59)—(61) show that in the soliton collisions in Eq. (1), polarization vectors of
individual solitons will change in the generic case. Since a soliton’s amplitude and power depend
on its polarization vector (see above), the amplitudes and powers of the two solitons will generi-
cally change after collision. The only two exceptions occur when (uj,u;)=0 and when u; is
proportional to uj [in the latter case, Eq. (1) degenerates to a single NLS equation]. In these two
special cases, the polarization vectors of the two solitons do not change (except a phase shift), thus
both the amplitudes and powers of these solitons remain the same after collision. Similar phenom-
enon has also been reported in the Manakov system before.'’ However, the special case of
(uj,u3)=0 is not always possible in the GCNLSS (1) if one does not allow singularities in
individual solitons. Let us take a=c=0 and b=1 as an example. Denoting the precollision soliton
vectors (ry,r;) in Eq. (43) as r;=(g;.h)’, then the condition (uj,u;)=0 is equivalent to
(r],r3)=0, ie.,

gihy+hig,=0. (62)

If we multiply this equation by g,g5 and take its real part, we get

21> Re(g5h,) + |go|* Re(g h}) = 0. (63)

On the other hand, in order for the two precollision solitons to be nonsingular, we must have
(rp,rp)>0 (k=1,2), ie.,

Re(g,h}) >0, Re(g,hy) > 0. (64)

Obviously, the two equations (63) and (64) contradict with each other, meaning that for nonsin-
gular solitons, the polarization-preserving collision of (uj,u;)=0 cannot happen when a=c=0 and
b=1. In this system, except the degenerate case of u;, being proportional to uj, the two solitons
always change their polarizations after collision.
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FIG. 1. (Color online) Soliton collision in Eq. (65) with parameter values (66) in the solution (34). This collision is
equivalent to that in the NLS equation.

C. Examples of soliton collisions

Now we use some examples to demonstrate various collision scenarios in Eq. (1). Since
collisions in the Manakov system (a=c=1, b=0) and a focusing-defocusing coupled system (a
=-c=1, b=0) have been examined in previous Works,“HS’17 we will focus on a different system
with a=c=0 and b=1 below, i.e.,

ip+ P+ 2(pg" +qpT)p =0,

iq,+ gy +2(pg" + qp*)q =0. (65)

In this system, only four-wave mixing terms are present, but not SPM and XPM terms. In all our
examples, we will specify \;, Ny, a;, B;, @, and 3, in the solution (34). The polarization vectors
u}, u,, uj, and uj can be readily obtained from the various formulas presented above.

1. Soliton transmission

In our first example, we take

N=—02+i, MN=02+05i, a;=2+2i, Bi=1, m=-a;, Br=—B  (66)

in the solution (34), and this collision is displayed in Fig. 1. In this case, the two solitons pass
through each other, and their polarizations do not change. The reason for this is that u; can be
found to be proportional to u7, thus this collision degenerates to that of two solitons in the NLS
equation.

2. Soliton reflection (1)

In our second example, we take

)\1:—0.2+i, )\220.2+i, a1:2+2i, Blzl, ) =— «y, B2:_1+024l, (67)

and this collision is displayed in Fig. 2. At t=—, the left soliton has much more power than the
right one. After collision when this left soliton passes to the right, its power has diminished
dramatically. At the same time, when the initial right soliton passes to the left after collision, its
power has increased dramatically. Thus a lot of power has transferred from one soliton to the other
during this collision (a similar phenomenon was also reported for a=—c and »=0 in Ref. 17).
Certainly, the polarization vectors of the two solitons have changed a lot after collision as well,
which directly induced this power redistribution. When comparing this collision with the soliton
transmission in Fig. 1, we can see that these two collisions are very different. Here, the collision
visually looks like the initial two solitons are bounced back by the collision; thus, we can call this
collision soliton reflection. In this reflection, the two solitons do not come together and coalesce.
Rather, they stay apart from each other during the whole reflection process. To the best of our
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FIG. 2. (Color online) Soliton reflection in Eq. (65) with parameter values (67) in the solution (34).

knowledge, this soliton reflection has not been reported before in integrable systems. It is noted
that in certain nonintegrable systems, reflections of solitary waves after collisions have been
reported.23 However, those reflections are due to entirely different reasons (by some kind of
resonance mechanism), and they only appear in nonintegrable systems. In addition, in those
reflections, the two solitary waves first pass through each other, then turn around and pass each
other again, and then escape. That differs from the reflection here in Fig. 2 where the two solitons
visually never pass each other.

3. Soliton reflection (Il)

In our third example, we take

)\1=—0.2+i, )\2=0.2+i, a1=2+2i, B1=1, a)=—0ay, B2=—1—0.3i. (68)

These parameters are the same as those in Fig. 2, except that 3, is slightly different. This collision
is displayed in Fig. 3. This collision is a little similar to that in Fig. 2 and is another example of
soliton reflections. Its main difference from Fig. 2 is that the ¢ component here has much less
power than the p component (in Fig. 2, the powers in the p and ¢ components were comparable).
However, even in this case, soliton reflection can still occur.

4. Soliton reflection (lll)

In our last example, we take

N =-02+i, MN=02+05i, a,=2+2i, Bi=1, ay=—a;, Br=—055. (69)

These parameters are the same as those in Fig. 1, except that B, differs a little. This collision is
displayed in Fig. 4. In this collision, when the initial left soliton (which is higher and broader)
passes to the right after collision, its width does not change, but its intensity has dropped signifi-

FIG. 3. (Color online) Soliton reflection in Eq. (65) with parameter values (68) in the solution (34).
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-1 5 0 5 10 ° -1 5 0 5 10 °

FIG. 4. (Color online) Soliton reflection in Eq. (65) with parameter values (69) in the solution (34).

cantly. Meanwhile, when the initial right soliton (which is lower and narrower) passes to the left
after collision, its width does not change, but its intensity has gained significantly. Thus, a lot of
energy transfer has taken place between these two solitons of different widths during the collision
as well. Visually, this collision looks like the initial left soliton (with much more power) is
bounced back by the collision with the other soliton (with much less power). Meanwhile, it has
become narrower and taller. This collision is also quite distinctive and not often seen in integrable
systems.

IV. THE RECURSION OPERATOR AND CONSERVATION LAWS

In this section, we derive the recursion operator and the infinite integrable hierarchy associ-
ated with the spectral problem (2a). In addition, we will derive the infinite conservation laws for
this integrable hierarchy. The spectral problem (2a) is a third order system with two potential
functions p and ¢q. Since our derivation of the recursion operator and conservation laws can be
trivially extended to any higher-order system of the type (2a), we will work with this general
higher-order spectral problem instead. Of course, the recursion operator and infinite conservation
laws for Eq. (1) can be pulled out of these general results very trivially.

We consider the following generalized Zakharov—Shabat spectral problem and the related time
evolution equation:

~ (M, q”
¢x - M¢v M= r —iN s (703)
A BT
b =No, N=<C D), (70b)

where ¢=(¢,, b, ..., b,.1)7, q and r are row vectors q=(¢,.4¢s, ....q,), ¥=(r{,r3,...,r,), N is a
spectral parameter, 7, is the nth order identity matrix, A is an nth order matrix, B and C are both
n-component row vectors, and D a scalar variable.

We first derive the recursion operator and the infinite hierarchy for the above integrable
system. The method we will use is a modification of that was originally developed in Ref. 24 for
the Zakharov—Shabat spectral problem4 (see also Refs. 25-27). The zero curvature equation

M,-N,+[M,N]=0 (71)

yields
0=-A,+q’'C-B"r, (72a)
0=q,- B, +2i\B+Dq-qA”, (72b)
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0=r,—C,—2INC+rA-Dr, (72¢)
0=-D,+rB"—(Cq. (724)
From (72a) and (72d), we get
A=dYq"C-B"r) +A,, (73a)
D=g'(rB"-Cq") + D, (73b)

with constant matrix A, and scalar D, and then rewrite (72b) and (72c) into
-B -B\ (Dyl,-A{ 0 -
(q>=2i)\< >+L( )+< om0 )( q), (74)
r/, C C 0 Dyol,—Ay/\ r

—0+qd - rT+qa'r" qi'-q"+qd'(-)q
L= 1 \T 1 .7 1T 1 )
-rd (+)r+rd v’ I-rd q -—-rd -q

where

(75)

d=0d/dx, ' =39 '=1. Here, we have made use of “dot” so that L looks a little bit more clearly.
When L acts on a variable, these dots are the places where the variable enters the operation. We
note that a special case of this recursion operator, for the vector NLS equations of the Manakov
type, has been given in Ref. 28.

To derive evolution equations, we expand

(_ 5 ) => (_ b ) (= 2i\)" (76)

C/ a\g

and take Ag=—Dyl,=i(—-2i\)""'\I,. It then follows from (74) that
-b,
(1) =)
r/y Cm

b . -b,._;
( m—j)=L< m_'/_l> (j:o,l,...,m_la)9

Cin—j Cm—j-1

()=
Cq r '
Thus, we obtain the hierarchy
(2] =(79) =, 77)
r/, r

where we have substituted —it for r.
The first two nontrivial equations in the hierarchy (77) are (m=2,3)

i(q) =(— qxx+2q(qr7))’ 78)

r oo — 21‘(qu>
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i<q> _(qu—3q&qf)—3qxrq5) 79
r/; Foox — 31‘((]1’1) - 3rx(qu) .
In their Lax pairs,
2N, +q'r -2\Niq-q,
N2=—i( +d 2q qT), (80)
—2Nir+r, -2\ —qr
v .<— 4N3I, - 2niq v + q'r, — q'r - 4N’q + 2\iq, + q,. - 2q(qr) ) 31)
=—7 .
} —4Nr = 2Nir + 1 - 2r(qr!) 4N+ 2Niqr! — qr!l + q T
We note that Eq. (78) admits the reduction
v’ =wq", (82)
where W is a nonsingular n X n Hermite matrix, i.e.,
W=Ww', det(W) # 0. (83)
In the special case of n=2, if we denote
a b 5
W=-1{ . , aceR, ac-|bf*+#0, (84)
b" ¢
then the reduction in (78) is
g+ qjt 2¢]j(a|611 >+ clga|* + bqig>+b*q192) =0 (j=1,2), (85)

which is just the GCNLSS (1).

Equation (79) also admits the reduction (82). If we take W as the identity matrix, and
=(q,,q)), then Eq. (79) becomes the Sasa—Satsuma equation for the variable q,.” Further equa-
tions can be derived by taking other reductions and higher equations in the hierarchy (77).

Finally, we derive the infinite conserved quantities for the hierarchy (77). Our method will be
an extension of that originally used in Ref. 30 for the Ablowitz—Kaup—Newell-Segur hierarchy.24
We rewrite (70a) as

¢j,x:_i)\¢j+qj¢n+l (j: 1,2, ,n), (863)
brare= 20 b+ N (86b)
j=1
By introducing
_b
;= (j=1.2,....n), (87)

n+1

from (86), we get the coupled Riccati equations

n

wj’x=—2i)\wj+qj—wj2 riw; (j=1,2,...,n). (88)
i=1

To solve these Riccati equations, we expand {w;} into power series in (2i\)~",
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0= 2w, 2INF (j=1.2,...,n). (89a)
k=1

When this expansion is inserted into the Riccati equation (88), by comparing terms of the same
order in (2i\)~!, we get

Wj1=4gj, Wj2=={(jx, (89b)
n k-1
wj»k+l == wj,k,x - E riz wi,swj,k—s (k = 1,2’ .. ) (89C)
=1 s=1
for j=1,2,...,n. To get conservation laws, we take out the last components of (70a) and (70b)

and then divide them by ¢, ;. This yields
(In ¢p1),= 2 riw;+ i\,
j=1

n

(In ¢,,1), = E Ciw;j+D,
j=1

where C; is the jth component of the vector C in the evolution equation (70b). Next, noting that
\,=0 and making use of the commutating relationship (In ¢,;),=(n ¢,, ), we get

(E rjwj) = (2 Cjwj+D> . (90)
J=1 t X

j=1

Then, inserting the expansion (89) of w; as well as the expressions of C and D into the above
equation, an infinite number of local conservation laws would be obtained. The conserved densi-
ties in these conservation laws are

n

pi= 2 rwy (k=12,..). (91)
j=1

V. SUMMARY

In this paper, we have analyzed the general integrable coupled NLS system. In this system, the
coefficients of the SPM, XPM, and four-wave mixing terms are more general while still main-
taining integrability. This general system contains the Manakov equations as a special case. Using
the Riemann—Hilbert method, we obtained the general N-soliton formula for the entire system. The
collision dynamics between two solitons has also been analyzed. It was shown that this collision
exhibits some new phenomena (such as soliton reflection), which are rarely seen in integrable
systems. In addition, the unified formulas relating the soliton polarizations before and after colli-
sions have been derived. These formulas generalize those obtained before for the Manakov sys-
tem. We have further derived the recursion operator and the whole hierarchy associated with this
system. It was found that the Sasa—Satsuma equation belongs to this hierarchy. Finally, the infinite
number of conservation laws for this system was also obtained. Since the coupled NLS equations
arise in a wide variety of physical subjects such as nonlinear optics, water waves, and Bose—
Einstein condensates, the results in this paper should prove helpful to the studies of those physical
problems.
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