
Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

New families of non-parity-time-symmetric
complex potentials with all-real spectra

Cite as: J. Math. Phys. 61, 063506 (2020); doi: 10.1063/1.5124255
Submitted: 12 August 2019 • Accepted: 30 May 2020 •
Published Online: 11 June 2020

Bijan Bagchi1 and Jianke Yang2,a)

AFFILIATIONS
1 Department of Physics, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India
2Department of Mathematics and Statistics, University of Vermont, Burlington, Vermont 05405, USA

a)Author to whom correspondence should be addressed: jxyang@uvm.edu

ABSTRACT
New families of non-parity-time-symmetric complex potentials with all-real spectra are derived by the supersymmetry method and the
pseudo-Hermiticity method. With the supersymmetry method, we find families of non-parity-time-symmetric complex partner potentials,
which share the same spectrum as base potentials with known real spectra, such as the (complex) Wadati potentials. Different from previous
supersymmetry derivations of potentials with real spectra, our derivation does not utilize discrete eigenmodes of base potentials. As a result,
our partner potentials feature explicit analytical expressions, which contain free functions. With the pseudo-Hermiticity method, we derive a
new class of non-parity-time-symmetric complex potentials with free functions and constants, whose eigenvalues appear as conjugate pairs.
This eigenvalue symmetry forces the spectrum to be all-real for a wide range of choices of these functions and constants in the potential.
Tuning these free functions and constants, phase transition can also be induced, where conjugate pairs of complex eigenvalues emerge in the
spectrum.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5124255

I. INTRODUCTION
Construction of potentials with a given spectrum in the linear Schrödinger operator has a long history in quantum mechanics.1–4 For real

potentials, the Schrödinger operator is Hermitian, and thus, its spectrum is all-real. In 1998, Bender and Boettcher5 showed that if the potential
is complex but parity-time (PT ) symmetric, i.e., V∗(−x) = V(x), then the spectrum of the Schrödinger operator can still be all-real, unless a
phase transition occurs where complex conjugate pairs of eigenvalues appear. This observation opened a new area of inquiry in the realm of
non-Hermitian quantum mechanics.6–8 Since then, real spectra in many PT -symmetric potentials have been analytically demonstrated (see,
for instance, Refs. 9–14). The concept of PT symmetry later spread to optics15 because the linear paraxial light propagation is also governed
by the Schrödinger equation, where the real part of the potential is the refractive index, and the imaginary part of the potential describes
the gain and loss in the medium. In the optical setting, PT symmetry means that the refractive index is an even function in space, while
the gain-loss profile is an odd function in space. In addition to optics, PT symmetry has been introduced in other physical areas such as
Bose–Einstein condensation.16 More importantly, many experimental observations and emerging applications of PT symmetry have been
reported.17–22 For a review on this subject, see Refs. 23–27.

Generalization of PT -symmetric potentials with real spectra is clearly an important issue. One would wonder, what non-PT -symmetric
complex potentials could still admit all-real spectra. Progress on this question has been made by three main methods. The first one is the
supersymmetry (SUSY) method. SUSY was originally developed to find real partner potentials, which share the same spectrum as the base
real potential.1,4,28 This technique starts with the factorization of a Schrödinger operator with a base potential into the product of two first-
order operators. Switching the order of these two operators gives another Schrödinger operator with a partner potential, which shares the
same spectrum as the base potential (except possibly a single discrete eigenvalue). Combining this idea of SUSY with the fact that the factor-
ization of a Schrödinger operator is not unique,29–32 parametric families of non-PT -symmetric complex potentials with all-real spectra can
be constructed.33–35 Note that in all such constructions in the past, an eigenmode of the base potential was always utilized. The second method
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is based on pseudo-Hermiticity.36 An operator is said to be pseudo-Hermitian if it is related to its Hermitian through a similarity trans-
formation. As an example, all PT -symmetric operators are pseudo-Hermitian. For a pseudo-Hermitian operator, its complex eigenvalues
always appear as conjugate pairs. This conjugate-pair eigenvalue symmetry does not guarantee an all-real spectrum, but in many cases, it does
force the spectrum to be all-real, as we have seen in many PT -symmetric potentials. If certain conditions on the similarity transformation
are further satisfied, then the spectrum will be all-real.37 Using ideas of pseudo-Hermiticity, wide classes of non-PT -symmetric potentials
with all-real spectra were identified.38–40 The third method is based on the connection between the Schrödinger eigenvalue problem and the
Zakharov–Shabat eigenvalue problem if the potential of the Schrödinger operator is of the form V(x) = u2(x) + iu′(x), where u(x) is a real
function,13,41 and the prime represents the derivative. This form of the potential is sometimes referred to as the Wadati potential. Then, utiliz-
ing available information on the Zakharov–Shabat eigenvalue problem and the soliton theory, all-real spectrum for the potential of the above
form could be established if u(x) is a N-soliton solution of the modified Korteweg-de Vries equation,13 or any single-humped localized real
function.41,42 If such u(x) is not even, then the resulting complex potential V(x) would be non-PT -symmetric. A review on these various
methods can be found in Ref. 43.

Despite this progress, construction of wider classes of non-PT -symmetric complex potentials with all-real spectra is still an impor-
tant endeavor since such potentials are significant in diverse physical fields as already noted. In this article, we construct new families
of non-PT -symmetric complex potentials with all-real spectra by a combination of SUSY and the pseudo-Hermiticity method. Differ-
ent from previous SUSY derivations of complex potentials, our treatment does not utilize eigenmodes of base potentials. As a result,
our new potentials feature explicit analytical expressions, which contain free functions. With the pseudo-Hermiticity method, we derive
a new class of non-PT -symmetric complex potentials with free functions and constants, whose eigenvalues appear as conjugate pairs.
This eigenvalue symmetry constrains the spectrum to be all-real for a wide range of choices of these functions and constants in the
potential. Tuning these free functions and constants, phase transition can also be induced, where conjugate pairs of complex eigen-
values emerge in the spectrum. Numerical examples of these new non-PT -symmetric complex potentials and their spectra are also
illustrated.

II. EXPLICIT NON-PT-SYMMETRIC POTENTIALS WITH REAL SPECTRA BY SUSY
In this section, we construct non-PT -symmetric potentials with real spectra by the SUSY method. Our main result is the following.

Proposition 1. The two potentials
V0 = h′(x) − h2(x) (1)

and

V = −h′(x) − h2(x) + 2
d2

dx2 ln[c + ∫
x

0
e2∫ ξ

0 h(η)dηdξ] (2)

are partner potentials, which are related by

−∂xx − V0 = (−∂x + W)(∂x + W), (3)
−∂xx − V = (∂x + W)(−∂x + W), (4)

where h(x) is an arbitrary complex function, c is an arbitrary complex constant, and

W(x) = h(x) −
d

dx
ln[c + ∫

x

0
e2∫ ξ

0 h(η)dηdξ]. (5)

Remark 1. Since V0 and V above are partner potentials related through (3) and (4), if ψ(x) is a discrete eigenfunction of V0 with
eigenvalue λ, then (∂x + W)ψ(x) would be a discrete eigenfunction of V with the same eigenvalue λ if (∂x + W)ψ(x) is localized and not a
zero function. Likewise, if ϕ(x) is a discrete eigenfunction of V with eigenvalue ω, then (−∂x + W)ϕ(x) would be a discrete eigenfunction of
V0 with the same eigenvalue ω if (−∂x + W)ϕ(x) is localized and not a zero function. In generic cases, this means that the two potentials V0
and V share exactly the same spectrum, as examples in later texts will illustrate. This also means that generically, if V0 admits an exceptional
point in the spectrum (by colliding two real eigenvalues for instance), then its partner potential V would admit this same exceptional point
as well.

Remark 2. Compared to previous constructions of complex potentials by the SUSY method, a distinctive feature of our result in
Proposition 1 is that our potential V(x) in (2) does not utilize discrete eigenmodes of the base potential V0(x). It only uses the function
h(x), which appears in the expression of the base potential. The advantage of this is that, for a given function h(x), the V(x) expression (2) is
completely explicit. If the spectrum of V0(x) in (1) is known, then the spectrum of this explicit potential V(x) will be known as well for an
arbitrary complex constant c. For instance, if h(x) is chosen as an arbitrary real function, then the potential V(x) from (2) with any complex
constant c, which is non-PT -symmetric in general, would have all-real spectrum since the spectrum of the corresponding real base potential
V0(x) is all-real. A more important thing is, recent progress shows that, for wide choices of complex functions h(x), the spectrum of the
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complex base potential (1) is all-real as well. Examples include the case where h(x) = ig(x), with g(x) being an arbitrary real function (the
so-called Wadati potential),13,38,39,41 and the case where h(x) is an arbitrary PT -symmetric function.40 For these choices of the h(x) function,
we would be able to explicitly construct their partner potentials V(x) from (2), which feature all-real spectra.

Remark 3. If we let h(x) = ig(x), with g(x) being a generally complex function satisfying the asymptotics of g(x)→ ∓k0 as x → ±∞ and
k0 being a non-zero real constant, then the potential V0(x) in Eq. (1), i.e., V0 = g2(x) + ig′(x), would admit a spectral singularity,44 and the
associated wavefunction at this spectral singularity is ψ(x) = exp[−i ∫

x
0 g(ξ)dξ], which features outgoing plane wave asymptotics as x → ±∞.

However, our new potential V(x) in Eq. (2) would not inherit this spectral singularity from its partner potential V0, in general, because
the transformed wavefunction (∂x + W)ψ(x) for the new potential V(x) generically would not exhibit outgoing plane wave asymptotics as
x → ±∞.

Proof of Proposition 1. For the base potential V0 in (1), the Schrödinger operator can be factorized as

− ∂xx − V0 = (−∂x + h)(∂x + h). (6)

It is important to realize that this factorization is not unique.29–32 Indeed, it is easy to check that this same Schrödinger operator can also be
factorized as

− ∂xx − V0 = (−∂x + W)(∂x + W), (7)

where W(x) is related to h(x) by Eq. (5). This W(x) can also be derived judiciously by equating the right sides of the above two factorizations,
which results in

W′
−W2

= h′ − h2. (8)

This is a Riccati equation for W(x). Employing the variable transformation W = h + w−1, the equation for w reduces to a linear equation
w′ + 2hw = −1. Solving this w(x) equation and putting results together, the W(x) formula (5) would be derived.

Based on the second factorization (7), we construct the partner potential V(x) through

− ∂xx − V = (∂x + W)(−∂x + W), (9)

FIG. 1. Spectra of the base and partner potentials V0(x) and V(x) with choices of h(x) and c given in Eq. (11). (a) Profile of V0. (b) Profile of V . (c) Spectrum of V0. (d)
Spectrum of V . The solid blue and dashed red lines in (a) and (b) represent the real and imaginary parts of the potential respectively.
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i.e., V = −W′
−W2. Inserting the W(x) formula (5) and simplifying, the expression (2) for V(x) would be obtained. This finishes the Proof of

Proposition 1.
Next, we use three examples to illustrate the applications of Proposition 1. Notation-wise, an eigenvalue λ of a potential V(x) is

defined by
[∂xx + V(x)]ψ(x) = λψ(x). (10)

Example 1. In our first example, we choose h(x) to be a PT -symmetric function. The reason for it is that when h(x) is PT -symmetric,
the spectrum of the base potential (1) features conjugate-pair eigenvalue symmetry; hence, its spectrum is often all-real.40 As a result, the
spectrum of the non-PT -symmetric partner potential (2) would also be all-real for an arbitrary complex constant c. To be concrete, we
choose h(x) and c to be the following PT -symmetric function and constant:

h(x) = sech2x + i sechx tanh x, c = 3e2i. (11)

The resulting base and partner potentials (1) and (2) are displayed in Figs. 1(a) and 1(b), respectively. Note that both potentials are
non-PT -symmetric. The spectra of these two potentials are displayed in Figs. 1(c) and 1(d). Not surprisingly, the spectrum of V0 is all-
real. Then, based on Proposition 1, V and V0 share the same real spectrum, as Fig. 1(d) confirms. Note that these spectra do not contain any
discrete real eigenvalues. This is a general property of the base potential (1) when h(x) is a localized PT -symmetric function.40

Example 2. In our second example, we choose h(x) = ig(x), where g(x) is an arbitrary real function. This choice leads to V0 = g2(x)
+ ig′(x), which is the so-called Wadati potential.13 This potential is generally non-PT -symmetric, but its spectrum is often all-real.13,38,39,41,43

As a consequence, the spectrum of its partner potential (2) is also all-real. To be concrete, we choose h(x) and c as

h(x) = i[sech2(x + 1) + 1.5sech2(x − 1)], c = 2ei tanh(1). (12)

The resulting base and partner potentials are displayed in Figs. 2(a) and 2(b), followed by their spectra in Figs. 2(c) and 2(d), respectively. In
this case, the spectrum of V0 is all-real with one discrete eigenvalue. The spectrum of the non-PT -symmetric partner potential V is the same
as that for V0, as Fig. 2(d) confirms.

FIG. 2. Spectra of the base and partner potentials V0(x) and V(x) with choices of h(x) and c given in Eq. (12). (a) Profile of V0. (b) Profile of V . (c) Spectrum of V0. (d)
Spectrum of V .
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FIG. 3. Spectra of the base and partner potentials V0(x) and V(x) with choices of h(x) and c given in Eq. (13). (a) Profile of V0. (b) Profile of V . (c) Spectrum of V0. (d)
Spectrum of V .

Example 3. In our third example, we choose h(x) to be an arbitrary real function. In this case, the base potential V0 is real; thus its
spectrum is all-real. Proposition 1 then indicates that the spectrum of the partner potential V(x) would be all-real as well. To illustrate, we
choose h(x) and c as

h(x) = x e−x2/2, c = (5 + i)e2. (13)

The resulting potentials V0 and V and their spectra are displayed in Fig. 3. In this case, the spectrum of V0 is all-real with no discrete
eigenvalue. The spectrum of the non-PT -symmetric partner potential V is the same as that for V0, as Fig. 3(d) confirms.

III. A FAMILY OF PARITY-INDUCED NON-PT-SYMMETRIC POTENTIALS BY THE PSEUDO-HERMITICITY METHOD
The pseudo-Hermiticity method is based on a pseudo-Hermitian-like relation36

ηL = L†η, (14)

where
L = ∂xx + V(x) (15)

is a Schrödinger operator, V(x) is a complex potential, L†
= ∂xx + V∗(x) is the Hermitian of L, the superscript “∗” represents complex conju-

gation, and η is another operator. However, unlike pseudo-Hermiticity, η is not required to be invertible here. If a complex potential satisfies
the above relation, then when the kernel of η is empty, complex eigenvalues of L would come as conjugate pairs.39 This conjugate-pair
eigenvalue symmetry often leads to all-real spectra, but phase transition can also occur,39,40 where conjugate pairs of complex eigenvalues
appear in the spectrum, just like in many PT -symmetric potentials.5,11,15 When η is chosen as a differential operator, then several families
of non-PT -symmetric potentials satisfying the above symmetry relation have been derived, with the Wadati potential as a particular exam-
ple.39 If η is chosen as a combination of the parity operator and a first-order differential operator, then the resulting family of potentials is
V = h′(x) − h2(x), where h(x) is a PT -symmetric function.43

In this section, we generalize the derivation in Ref. 43 by choosing η to be a combination of the parity operator and a second-order
differential operator. As we will see, this will produce a new family of non-PT -symmetric potentials admitting the pseudo-Hermitian relation
(14), hence opening the door for all-real spectra for a wide range of potentials in this family.
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We start by postulating η as
η = P[∂xx + a(x)∂x + b(x)], (16)

where P is the parity operator, i.e., P f (x) ≡ f (−x), and the complex functions a(x), b(x) are to be determined. Substituting this η and L, L†

into Eq. (14) and collecting terms of the same order of derivatives on the two sides, we get the following series of equations:

V(x) − V∗(−x) = 2a′, (17)

a[V(x) − V∗(−x)] = a″ + 2b′ − 2V′(x), (18)

b[V(x) − V∗(−x)] = b″ − V″(x) − aV′(x). (19)

From the first equation, we see that a′(x) = [a∗(−x)]x. Hence, we can choose a(x) such that

a∗(−x) = a(x), (20)

i.e., a(x) is PT -symmetric. When the first equation (17) is inserted into the second equation (18) and integrating once, we get

b =
1
2

(a2
− a′) + V − c1, (21)

where c1 is an integrating constant. Utilizing this b expression as well as Eq. (17), we find that Eq. (19) becomes

(a2V)
′
= (c1a2 +

1
4

(a′2 − 2a″a) + a2a′ −
1
4

a4
)
′
. (22)

By integrating this equation, we obtain an explicit expression for the potential V(x). Neglecting an overall constant c1, this potential reads

FIG. 4. Spectra of potentials (23) where a(x) and c2 are chosen as in Eq. (24). (a) Profile of V when β = 1. (b) Profile of V when β = 2. (c) Spectrum of the potential in (a).
(d) Spectrum of the potential in (b).
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V(x) = a′ −
1
4

a2 +
a′2 − 2a″a + c2

4a2 , (23)

where c2 is a constant of integration. In view that a(x) is PT -symmetric, in order for the above V(x) function to satisfy Eq. (17), c2 must be
real.

Thus, we have derived a new family of generally non-PT -symmetric potentials (23), where a(x) is an arbitrary PT -symmetric function
and c2 is an arbitrary real constant. This family of potentials satisfy the pseudo-Hermiticity relation (14), and hence, its eigenvalues appear as
complex-conjugate pairs. This conjugate-pair eigenvalue symmetry does not guarantee a real spectrum, but it does often force the spectrum
to be all-real, similar to PT -symmetric potentials. Note that the analytical form (23) for this family of potentials bears similarity to type-II
potentials derived in Ref. 39 when η was taken as a second-order differential operator without the inclusion of the parity operator. Of course,
important differences exist between these two families of potentials as well.

Next, we use an example to illustrate the spectral properties of this family of potentials. For this purpose, we choose

a(x) = sechx + iβ sechx tanhx − 2, c2 = 3, (24)

where β is a real parameter. Note that a(x) is PT -symmetric and c2 is real as required. When β = 1, the resulting potential (23) and its
spectrum are displayed in Figs. 4(a) and 4(c), respectively. It is seen that for this non-PT -symmetric potential, its spectrum is all-real with
two discrete eigenvalues. However, when β increases to 2, whose potential is plotted in Fig. 4(b), we see from Fig. 4(d) that a pair of complex
eigenvalues appear in the spectrum. In other words, phase transition has occurred.

IV. SUMMARY
Two methods, one based on the idea of SUSY and the other exploiting the pseudo-Hermiticity principle, were examined to uncover

new families of non-PT -symmetric complex potentials that support all-real spectra. The SUSY method that we explored differs from the
previous attempts in the sense that it avoids using discrete eigenmodes of base potentials. As a result, the analytic expressions of our non-PT -
symmetric partner potentials are explicit with free functions, which is an advantage when constructing such potentials for all-real spectra. With
the pseudo-Hermiticity method and a suitable choice of the connecting operator as a combination of parity and a second-order differential
operator, a class of non-PT -symmetric potentials with conjugate-pair eigenvalue symmetry were derived. Numerical examples have also
been given to illustrate the spectral properties of the potentials that we produced.

IV. DATA AVAILABILITY
The data that support the findings of this study are available within the article.
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