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Abstract
We propose a phenomenological time-dependent partial differential equation model to
investigate the dynamical behaviors of certain parity-time ( ) symmetric lasers during the
nonlinear stage of their operations. This model incorporates physical effects such as the
refractive index distribution, dispersion, material loss, nonlinear gain saturation and self-phase
modulation. We show that when the loss is weak, multiple stable steady states and time-periodic
states of light exist above the lasing threshold, rendering the laser multi-mode. However, when
the loss is strong, only a single stable steady state of broken  symmetry exists for a wide
range of the gain amplitude, rendering the laser single-mode. These theoretical results
corroborate the previous experimental results, and reveal the important role the loss plays in
maintaining the single-mode operation of  lasers.
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1. Introduction

Parity-time ( ) symmetry was first introduced as a non-
Hermitian generalization of quantum mechanics in 1998,
where it was reported that a class of complex potentials
possessing the  symmetry could also feature all-real
spectra [1]. This concept later spread to optics, where a
judicious balancing of gain and loss constitutes a  -sym-
metric system [2–6]. Properties of  systems have been
extensively studied in the past ten years (see [7, 8] for
reviews). More importantly, applications of  symmetry
have started to emerge [9–12]. Of particular interest is a 
microring laser [11, 12]. By intentionally introducing loss into
the laser cavity, it was shown that these lasers are capable of
single-mode operations. These operations were explained
using a linear coupled-mode ordinary differential equation
(ODE) model. However, it is well known that lasing is an
inherent nonlinear process. In order to investigate the non-
linear stage of these  lasers, certain nonlinear coupled-
mode ODE models were used [13, 14]. But such ODE models
did not account for the effects of refractive-index distribu-
tions, dispersion, nonlinear self-phase modulation, and
sometimes nonlinear modal interactions. In [14], a steady-

state ab initio laser theory was also employed, but a dynamic
(time-dependent) model would be more desirable since only a
dynamical model could address the question of stability of
steady-state laser states.

The  lasers of [11, 12] utilized microrings as laser
cavities. It is also possible to realize  lasers using tradi-
tional semiconductor cavities comprising twin stripes, one
with gain and the other with loss [15, 16]. A study of non-
linear behaviors in such semiconductor  lasers is also
desirable.

In this article, we propose a phenomenological time-
dependent partial differential equation (PDE) model to
investigate the dynamical behavior of  lasers during their
nonlinear stage of operation. This model incorporates the
physical effects such as the refractive index distribution,
dispersion, spatially-modulated linear loss, spatially-modu-
lated nonlinear saturable gain, and nonlinear self-phase
modulation. Even though this PDE model is more elaborate
than the previous coupled-mode ODE models, it is still simple
enough for theoretical analysis. Using this model, we show
that when the loss is weak, multiple stable steady states and
time-periodic states of light exist above the lasing threshold,
rendering the laser multi-mode. However, when the loss is
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strong, only a single stable steady state of broken  sym-
metry exists for a wide range of the gain amplitude, rendering
the laser single-mode. These theoretical results qualitatively
agree with the experimental results in [11, 12], and they show
that the loss plays a critical role in maintaining the single-
mode operation of  lasers.

2. A phenomenological PDE model

Lasing is a complicated process, and its accurate modeling is
difficult or impossible. Thus, phenomenological laser mod-
eling is often necessary [15]. For instance, one of the cele-
brated phenomenological models for mode-locked lasers is
the Haus master equation [17], which played an important
role in the theoretical understanding of passive mode-locked
pulse lasers.

For  lasers, the physical effects such as the spatial
refractive index distribution, spatial material loss profile and
nonlinear gain saturation are clearly very important. Another
important physical effect is dispersion/diffraction, which has
been included in the modeling of other semiconductor lasers
[16]. In addition, we believe self-phase modulation also plays
a significant role. With these factors in mind, we propose the
following phenomenological PDE model
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where Ψ is a complex envelope function of the light’s
electromagnetic field, t and x are the time and space variables,
V x n x xi= + G( ) ( ) ( ) is the complex potential whose real
part n(x) describes the refractive-index distribution and the
imaginary part xG( ) represents the linear (material) loss, σ is
the coefficient of nonlinear self-phase modulation, G(x) is the
spatially-modulated linear gain, which is saturable at high
intensities. All variables have been normalized.

This model is spatially one-dimensional (1D) for sim-
plicity. It may be applied to potential semiconductor 
lasers with the cavity comprising twin stripes with respective
gain and loss (under the mean field approximation along the
light-propagation direction) [16]. The 1D model is also rele-
vant to some 2D microring  lasers (for instance in [12]) if
the radiuses of the rings are relatively large so that the cur-
vatures of the rings can be neglected.

In this 1D model, we consider two nearby regions with
identical refractive-index and loss distributions, but the gain is
applied only to the left region. This configuration resembles
that in [12]. Corresponding to this configuration, we choose
functions in the model (2.1) as
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where f x f x f x, ,1 2 3( ) ( ) ( ) are spatial distributions of the
refractive index, linear loss and gain in each region, n ,0 g and
g are their peak values, and x0- and x0 are the center posi-
tions of the two regions. For simplicity, we select f f f, ,1 2 3 to

be the same super-Gaussian function

f x f x f x e . 2.5x
1 2 3

44= = = -( ) ( ) ( ) ( )

In addition, we select n 10 = and x0=1.5. Regarding the
nonlinear coefficient σ, we set 0.5s = , which is self-focusing
nonlinearity. Then, the remaining free parameters in our
model are the loss coefficient γ and the gain amplitude g. The
resulting profiles of n(x), xG( ) and G(x) are displayed in
figure 1. When g 2g= , the effective linear potential
V x G xi-( ) ( ) is  -symmetric; thus the model (2.1) is
 -symmetric in the linear regime. But due to gain saturation
at higher amplitudes, the nonlinear model (2.1) is non-
 -symmetric. When g 2g¹ , this model is non- -sym-
metric in both linear and nonlinear regimes.

Non- symmetry is an important feature of the non-
linear model (2.1) with gain saturation. Without gain satur-
ation, this equation can be written as a nonlinear Schrödinger
(NLS) equation with a complex linear potential. When this
linear potential is  -symmetric, the underlying  -sym-
metric NLS equation has been thoroughly investigated for a
wide variety of gain-loss profiles and spatial geometries
[2, 8, 18, 19]. One common feature of those  -symmetric
NLS equations is that their stationary localized modes (soli-
tons) exist as continuous families, akin to conservative sys-
tems. In the presence of gain saturation, however, the
nonlinear model (2.1) is non- -symmetric. In this case,
solitons exist only as isolated entities, as in typical dissipative
systems [20]. The NLS equation with a linear but non-
 -symmetric potential has also been investigated in [21],
but the gain saturation was not considered there.

3. Solution analysis

Now, we investigate solution behaviors of the model (2.1) for
a fixed loss coefficient γ and a tunable gain amplitude g.
Soliton solutions are of the form

x t x, e , 3.1ti yY = m( ) ( ) ( )

where xy ( ) is a localized function solving

V x
G x

i
1

, 3.2xx
2

2
y y s y y

y
y my+ + -

+
=( ) ∣ ∣ ( )

∣ ∣
( )

and μ is a real frequency parameter. Since equation (2.1) is
non- -symmetric, solitons exist only at isolated frequency
values. We will compute these isolated solitons by the

Figure 1. (a) Profiles of the refractive index distribution n(x) (solid
blue) and the linear loss function xG( ) (dashed red). (b) Profile of the
gain function G(x).
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squared operator method developed in [22], which yields the
soliton profile xy ( ) as well as the frequency value μ

simultaneously.
To determine the linear stability of these solitons, we

perturb them by normal modes as

x t x x x, e e e , 3.3t t ti * *y y fY = + +m l l( ) [ ( ) ˜ ( ) ˜ ( ) ] ( )

where ,y f y∣ ˜ ∣ ∣ ˜ ∣ ∣ ∣. Substituting it into equation (2.1) and
linearizing, we arrive at the eigenvalue problem
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and λ is the eigenvalue. This eigenvalue problem can be
computed by the Fourier collocation method (for the full
spectrum) or the Newton-conjugate-gradient method (for
individual discrete eigenvalues) [23]. If eigenvalues with
positive real parts exist, the soliton is linearly unstable;
otherwise it is linearly stable.

3.1. The case of lower loss

First we consider the lower-loss case, where we set 0.2g = .
In this case, lasing occurs (i.e., infinitesimal light starts to
amplify) when g 2 0.4g> = . Thus, at the lasing threshold
g 2 0.4g= = , the linear system is in  -symmetric state.
Above this lasing threshold, we have found a number of
soliton branches, which are displayed in figure 2. Two of
these branches bifurcate off the zero amplitude at g=0.4. On
the higher-power branch, solitons have an approximately
symmetric profile (see ‘b’ on the lower panel) and can be said
to be in  -symmetric state; while on the lower-power
branch, solitons have a slightly asymmetric profile (see ‘a’ on
the lower panel). At g increases, the ‘a’ branch undergoes a
fold bifurcation and disappears, while the ‘b’ branch persists.
When g 0.56> , two additional soliton branches (the ‘c, d’
branches) appear through another fold bifurcation, and their
powers have a non-zero minimum threshold. On their higher-
power branch, solitons reside primarily in the gain region (see
‘d’ on the lower panel) and can be said to be in broken-
 -symmetry state [13, 14]; while on the lower-power
branch, solitons reside in both the gain and loss regions (see
‘c’ on the lower panel).

Linear stability of the soliton branches in figure 2 is also
marked in the same figure. It is seen that the two soliton
branches bifurcating from g=0.4 are stable when g is close
to 0.4, but lose stability when g is larger (the ‘a’ branch loses
stability when g 0.60> , while the ‘b’ branch loses stability

when g 0.70> ). Both losses of stability are due to Hopf
bifurcations, where a pair of complex linear-stability eigen-
values cross the imaginary axis. After the Hopf bifurcation,
the solitons become unstable. Simultaneously, stable time-
periodic bound states appear. Regarding the upper two
branches, the ‘c’ branch is always unstable, while the ‘d’
branch is stable. To corroborate these results, linear-stability
spectra for the four solitons in figure 2 (at points ‘a, b, c, d’ of
the power curve) are displayed in the four panels of figure 3
respectively. These spectra show that the two solitons at
points ‘a, b’ (with g=0.59) and the soliton at point ‘d’ are
linearly stable, because all eigenvalues lie on the left side of
the complex plane (including the imaginary axis). But the
soliton at point ‘c’ is unstable due to the presence of a real
positive eigenvalue.

Figure 2. Soliton branches versus the gain coefficient g at the lower-
loss value of 0.2g = . Upper row: power and frequency branches
(solid blue indicates stable solitons, and dashed red indicates
unstable solitons). Lower row: soliton profiles at the marked points
of the power/frequency branches. At points ‘a, b’, g 0.59;= at
points ‘c, d’, g=0.65.

Figure 3. Linear-stability spectra for the four solitons shown in
figure 2 respectively.
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Now we examine how light behaves in this lower-loss
case. For this purpose, we consider two gain amplitudes,
g=0.5 and 0.72. When g=0.5, figure 2 shows that there
are two solitons which are both stable. Numerically, we have
found that any infinitesimal initial condition would evolve
toward one of these two stable solitons. To illustrate, num-
erical simulations of equation (2.1) for two different infini-
tesimal random-noise initial conditions are displayed in
figure 4. The upper panels show that the two infinitesimal
initial conditions are attracted toward different solitons.
Amplitude evolutions and frequency spectra at the gain center
x x0= - , shown in the lower panels, confirm that the final
states are solitons on the ‘a’ and ‘b’ branches of figure 2
respectively. Since these two solitons have different fre-
quencies, this laser cavity can produce light of different fre-
quencies and is thus not a single-mode laser.

At the higher gain amplitude g=0.72 (which is above
the Hopf bifurcation point of the ‘b’ branch in figure 2), the
only stable soliton is on the ‘d’ branch. But a stable time-
periodic bound state also exists due to this Hopf bifurcation
(this time-periodic state can be directly computed by a
numerical method developed in [24]). In this case, we have
found numerically that all infinitesimal initial conditions are
attracted toward that time-periodic bound state, see figure 5
(upper left panel). This temporal periodicity indicates that the
output of light has multiple frequencies, as is evidenced in the
lower right panel of figure 5. Thus, this laser is not single-
mode either. For some finite-amplitude initial conditions,
though, light can evolve toward the stable soliton on the ‘d’
branch, see the upper right panel of figure 5.

3.2. The case of higher loss

Next we consider the higher-loss case, where we set 0.5g = .
In this case, lasing occurs when g 0.66> . At this lasing
threshold, the linear system is in broken  -symmetry state.

Above this threshold, soliton branches versus the gain
amplitude g are displayed in figure 6. It is seen that a branch
of stable solitons bifurcates from the zero amplitude at the
lasing threshold, and it loses stability when g 3.1> . These
solitons reside primarily in the gain region and thus have
broken  -symmetry (see the lower left panel). Meanwhile,
two branches of unstable solitons appear through a fold
bifurcation when g 2.36> , and these solitons reside in both
the gain and loss regions (see the lower right panel). To
corroborate the stability results of these soliton branches,
linear-stability spectra for the three solitons in figure 6 (at
points ‘a, b, c’ of the power curve) are displayed in the three
panels of figure 7 respectively. These spectra show that the

Figure 4. Evolutions of equation (2.1) for two different infinitesimal
random-noise initial conditions when 0.2g = and g=0.5. The
lower panels show the amplitude evolutions and frequency spectra at
the gain center x 1.5= - .

Figure 5. Evolutions of equation (2.1) for two different initial
conditions when 0.2g = and g=0.72 (the initial condition is
infinitesimal in the upper left panel and has finite amplitude in the
upper right panel). The lower panels show the amplitude evolution
and frequency spectrum at the gain center x 1.5= - for the upper
left panel.

Figure 6. Soliton branches versus the gain coefficient g at the higher-
loss value of 0.5g = . Upper row: power and frequency branches
(solid blue for stable solitons and dashed red for unstable solitons).
Lower row: soliton profiles at the marked points of the power/
frequency branches. At point ‘a’, g=2; at points ‘b, c’, g=3.
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soliton at point ‘a’ is stable, but the solitons at points ‘b, c’ are
unstable due to complex eigenvalues.

The striking feature in this case is that, over a wide gain
interval of g0.66 3.1< < , there is a single stable soliton, and
no other stable coherent states (such as time-periodic states)
exist. Our numerical simulations show that on this wide gain
interval, all infinitesimal initial conditions evolve toward this
single stable soliton (see figure 8), thus the laser is in single-
mode operation.

By comparing the lower-loss operation in figures 2–5 and
higher-loss operation in figures 6–8, we see that when the loss
is weak, multiple stable solitons and time-periodic bound
states exist above the lasing threshold, rendering the laser
multi-mode. However, a strong loss can eliminate those
multiple stable solitons and time-periodic states, leaving the
system with a single stable soliton of broken  symmetry
and thus rendering the laser single-mode. These results qua-
litatively agree with the experimental results in [11, 12], and
they reveal that the loss is instrumental in maintaining the
single-mode operation of  lasers.

4. Comparison with an ODE model

Some of the solution behaviors in the PDE model for the
configuration of figure 1 can be understood from a simpler
coupled-mode ODE model,

t
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where 1F and 2F are the amplitudes of the supermodes in the
gain (left) and loss (right) regions of the laser cavity

respectively, α is the linear material loss in both regions, and
β is the linear growth rate of the saturable gain. The parameter
values are normalized with respect to the coupling constant
between the gain and loss regions. Similar but different ODE
models have been used in [13, 14] to study various  -laser
configurations.

Steady states of the above ODE model are of the form
t e t

1,2
i

1,2fF = w( ) , where ω is a real frequency parameter, and
,1 2f f are amplitude constants. Substituting this steady state

into the ODE model, we find the following solutions,
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The two solutions (4.3) exist only when the loss is weak
( 1a < ). They have identical amplitudes but different fre-
quencies. In each solution, the modal amplitudes in the gain
and loss regions are the same ( 1 2f f=∣ ∣ ∣ ∣), and are thus in
 -symmetric state. They bifurcate out from the zero
amplitude at the lasing threshold 2b a= , where the linear
counterpart of the ODE model is  -symmetric. The other
solution (4.4) exists for all loss values of α. In this solution,
the modal amplitudes in the gain and loss regions are dif-
ferent, and are thus in broken- -symmetry state. This
solution bifurcates out from the zero amplitude at

1b a a= + . To illustrate these solutions, we choose two
loss values of 0.5a = (lower loss) and 1.5a = (higher loss),
where the power values 1

2
2

2f f+∣ ∣ ∣ ∣ of these solution bran-
ches versus the gain parameter β are displayed in figures 9(a),
(b) respectively. Linear stability of these steady states has also
been determined and marked on the figure. At lower loss, the
two  -symmetric solutions (4.3) are both stable, rendering
the laser multi-mode; and the broken- -symmetry solution
is unstable (see figure 9(a)). Our numerics shows that these
two stable solutions (4.3) attract all infinitesimal initial con-
ditions. At higher loss (see figure 9(b)), the sole broken-
 -symmetry solution (4.4) is stable and attracts all infini-
tesimal initial conditions.

When comparing these ODE-model results with those
PDE ones, we can see that at lower loss, the solid blue
branch of two  -symmetric steady states in figure 9(a) is
the counterpart of the two solid blue branches bifurcating

Figure 7. Linear-stability spectra for the three solitons shown in
figure 6 respectively.

Figure 8. Evolution of equation (2.1) for an infinitesimal random-
noise initial condition with 0.5g = and g=2. The right panel
shows the frequency spectrum at the gain center x 1.5= - .

Figure 9. Power curves of steady states versus gain parameter β in
the ODE model. (a) 0.5a = (lower loss); (b) 1.5a = (higher loss).
Solid blue: stable states; dashed red: unstable states.
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from g=0.4 in figure 2 (upper left panel), and the dashed
red branch of broken- -symmetry states in figure 9(a) is
the counterpart of the dashed red branch bifurcating from the
zero power (at g 0.58» ) in figure 2. At higher loss, the solid
blue branch of broken- -symmetry states in figure 9(b) is
the counterpart of the solid blue branch bifurcating from the
zero power in figure 6. Notice that at lower powers, solitons
and their stability behaviors in the PDE model agree with
their ODE counterparts. However, at higher powers, the
PDE and ODE results show large differences. In particular,
the ODE model fails to predict the new soliton branches
from fold bifurcations at high powers, the Hopf bifurcations
of soliton branches, and time-periodic bound states after
Hopf bifurcations. The reason is that this ODE model
implicitly assumes a fixed supermode profile in each of the
gain and loss regions (only their amplitudes 1,2F are allowed
to change with time). This assumption is reasonable for the
PDE solutions at low powers, where the solutions are close
to linear modes. However, at higher powers, the field pro-
files of PDE solutions will differ significantly from linear
modes due to nonlinear self-focusing and other physical
effects. In addition, the field profiles of PDE solutions can
also oscillate with time (such as in time-periodic bound
states, see figure 5), where multiple frequencies (modes) are
mixed. In such cases, the ODE model cannot be expected to
give good predictions, and a dynamic PDE model will
become necessary, as is done in this article.

5. Summary

In summary, we have proposed a phenomenological time-
dependent PDE model to investigate the dynamical behavior
of certain  lasers during the nonlinear stage of their
operations. We have shown that when the loss is weak,
multiple stable steady states and time-periodic states of light
exist above the lasing threshold, rendering the laser multi-
mode. However, when the loss is strong, only a single stable
steady state of broken  symmetry exists for a wide range
of the gain amplitude, rendering the laser single-mode. Our
results indicate that a significant amount of material loss is
important for rendering the single-mode operation of 
lasers. These results qualitatively agree with the experimental
results on  lasers, which suggests that this PDE model
may be useful for their theoretical predictions.
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