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Abstract. Stability of on- and off-site vortex solitons with unit charge in a
photorefractive optical lattice is analysed. It is shown that both types of vortex
solitons are linearly unstable in the high- and low-intensity regimes. In the high-
intensity regime, the vortex appears as a familiar ring vortex, and it suffers
oscillatory instabilities. In the low-intensity regime, the vortex suffers both
oscillatory and Vakhitov–Kolokolov instabilities. However, in the intermediate-
intensity regime, both types of vortices could be stable if the lattice intensity
is moderate, and the applied DC field is above a certain threshold value. Under
the same physical conditions, on-site vortices are more stable than off-site ones.
Increasing the DC field stabilizes both types of vortex solitons.
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1. Introduction

Vortex solitons are ubiquitous in many branches of physics such as optics [1] and Bose–Einstein
condensates [2]–[4]. In a homogeneous medium, bright vortex rings are unstable [5], and only
dark vortex solitons are possible with defocusing non-linearity [1, 6]. However, in the presence
of a periodic optical lattice, stable lattice vortices become possible due to the guiding properties
of the lattice. Indeed, recent theoretical work [7, 8] has shown that in an optical lattice with Kerr
non-linearity, both on-site vortices (vortices whose singularity is located on a lattice site) [7]
and off-site vortices (vortices whose singularity is located between sites) [8] are stable within
certain ranges of parameters. These theoretical studies are quickly followed by experiments in
photorefractive crystals, where vortex lattice solitons have been observed very recently [9, 10].
See [11, 12] for a review of other nonlinear localized states in one- and two-dimensional (2D)
periodic optical waveguides.

Stability of vortex lattice solitons in photorefractive crystals is clearly an important issue.
This question was considered in [10], where the evolution of a particular on-site lattice vortex
under random-noise perturbations was simulated. It was found that the on-site vortex was stable
to very long distances. However, we know that lattice vortices in photorefractive crystals cannot
all be stable. For instance, when the peak intensity (or power) of the vortex is high, the lattice is
effectively weak, thus the lattice vortex would become the familiar ring vortex, which is known
to be unstable (see figure 1(b)) [5]. The natural questions to ask then are: what lattice vortices
are stable? If lattice vortices are unstable, what are the sources of their instability? So far, these
questions have not been addressed comprehensively for either of the on-site and off-site lattice
vortices.

In this paper, we numerically study both the on-site and off-site vortex solitons with unit
charge and determine their stability properties in a 2D photorefractive optical lattice. We show
that these vortices are not only unstable in the high-intensity regime, but also in the low-intensity
regime. However, they can become stable in the intermediate-intensity regime if the lattice
intensity is moderate and, in addition, the applied DC bias field is above a certain threshold
value. Under the same physical conditions, on-site vortices are more stable than off-site ones,
mainly because on-site vortices have larger hump separations than off-site ones. Increasing the
DC bias field strongly stabilizes both types of vortices.

The mathematical model for light propagation in a photorefractive crystal has been known
for some time [13]. Here we make the usual paraxial assumption, and the assumption that the
photorefractive screening non-linearity acts isotropically along the two transverse directions,
both of which are justified in many experiments. If the probe beam is extraordinarily polarized,
while the lattice is ordinarily polarized, then the probe beam does not affect the linear lattice. In
this case, the governing equation for the probe beam is [13]

iUz +
1

2k1
(Uxx + Uyy) − 1

2
k0n

3
er33EscU = 0, (1)

where U is the slowly varying amplitude of the probe beam, z the distance along the direction
of the crystal, (x, y) are distances along the transverse directions, k0 = 2π/λ0 the wavenumber
of the laser in the vacuum (λ0 is the wavelength), ne the refractive index along the extraordinary
axis, k1 = k0ne, r33 the electro-optic coefficient for the extraordinary polarization, Esc is the
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space-charge field,

Esc = E0

1 + Il(x, y) + |U|2 , (2)

E0 the applied DC field, and Il the field intensity of the optical lattice. Here the intensities of
the probe beam and the lattice have been normalized with respect to the dark irradiance of the
crystal Id . The dark irradiance is the background illumination used in experiments to fine-tune
the non-linearity. Material damping of the probe beam is very weak in typical experiments since
the crystals are fairly short (up to 2 cm), hence neglected in equation (1). If the lattice is periodic
along the x and y directions (rectangular lattice), then Il can be expressed as

Il(x, y) = I0 sin2 π

D
x sin2 π

D
y, (3)

where I0 is its peak intensity and D its spacing.
Equation (1) can be non-dimensionalized. If we measure the transverse directions (x, y)

in units of D/π, the z direction in units of 2k1D
2/π2 and the applied bias field E0 in units of

π2/(k2
0n

4
eD

2r33), then equation (1) becomes

iUz + Uxx + Uyy − E0

1 + I0 sin2 x sin2 y + |U|2 U = 0. (4)

Consistent with the experiments [12], we choose physical parameters as D = 20 µm, λ0 =
0.5 µm, ne = 2.3, r33 = 280 pm V−1. Thus, in this paper, one x or y unit corresponds to 6.4 µm,
one z unit corresponds to 2.3 mm and one E0 unit corresponds to 20V mm−1 in physical units.

Lattice vortices of equation (4) are sought in the form U = u(x, y)e−iµz, where µ is the
propagation constant. The function u(x, y) satisfies the non-linear equation

uxx + uyy +

(
µ − E0

1 + I0 sin2 x sin2 y + |u|2
)

u = 0. (5)

We determined these vortices by a Fourier iteration method. The idea of this method was proposed
in [14]. A modification of this method has been used to obtain fundamental and vortex solitons
in a two-dimensional photonic lattice with Kerr non-linearity [8, 15]. Since this method has been
described in detail in [15], it will not be repeated here.

With this iteration method, we have found both on- and off-site vortex solitons with
unit charge (see also [7]–[10]). These solitons reside inside the first semi-infinite bandgap
−∞ < µ < µ1, where µ1 is the edge of the bandgap. On-site vortices have their centres
(singularities) on a lattice site, whereas off-site vortices have their centres between lattice sites.
These two types of vortices and their stability properties will be studied separately below.

We would like to make a remark here. In our numerics, the control parameter is the
propagation constant µ, and for each µ (under certain parameter regions), we could find a
vortex soliton. However, from a physical point of view, this propagation constant is not as
meaningful as the peak intensity Ip of the vortex soliton, which can be measured experimentally.
Thus when we present our results, we would use the peak intensity Ip rather than the propagation
constant µ.
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(a) (b) (c)

(d) (e) (f)

Figure 1. (a) Intensity field of the optical lattice with I0 = 2Id; (b, c, e, f)
intensity fields of off-site lattice vortices with peak intensities 12, 6, 2 and 0.5Id ,
respectively, under the applied bias field E0 = 7.5; (d) phase structure of these
vortices.

2. Off-site vortex solitons

First, we consider off-site vortex solitons with unit charge. These vortices are illustrated in figure 1
at I0 = 2Id and E0 = 7.5. We see that when the vortex’s peak intensity Ip is high, the vortex
becomes a familiar ring vortex (see figure 1(b)) since the optical lattice is relatively negligible in
this case. As Ip decreases, the vortex develops four major lobes at four adjacent lattice sites in a
square configuration (see figures 1(c) and (e)), and the vortex centre is between lattice sites. When
Ip is low, the vortex spreads over to more lattice sites and becomes less localized (see figure 1(f)).
The phase fields of all these lattice vortices, however, remain qualitatively the same as in a regular
ring vortex (see figure 1(d)). An interesting fact we found is that, for given lattice intensity and
applied bias field values, lattice vortices with Ip below a certain threshold Ip,c do not exist. In the
present case where I0 = 2Id and E0 = 7.5, this threshold value is Ip,c ≈ 0.48Id . In terms of the
propagation constant µ, we found that lattice vortices disappear when µ > µc ≈ 4.88. This fact
indicates that, unlike fundamental lattice solitons, this family of lattice vortices do not bifurcate
from infinitesimal Bloch waves at the edge of the bandgap.

As we have seen in figure 1, in the high-intensity regime, vortices in photorefractive optical
lattices approach the lattice-free ring vortices. This is different from vortices in a Kerr medium,
where they approach four singular spikes in the high-intensity limit [8]. The reason is that, in a
Kerr medium, fundamental solitons become narrower and narrower when their peak intensities
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Figure 2. (a) Power and peak-intensity diagrams of off-site lattice vortices at
I0 = 2Id and E0 = 7.5; ——, stable vortices; - - - -, unstable vortices. (b) Growth
rates of off-site vortices versus their peak intensity at two applied bias fields
E0 = 7 and 7.5.

get higher and higher. But in a photorefractive crystal where the non-linearity is saturable,
fundamental solitons flatten out when their intensities become high (see figure 1(a) of [16]).
Thus, in a photorefractive lattice, the four lobes of the vortex join together and form a ring vortex
at high intensities, whereas in a Kerr lattice, the four lobes develop into four singular spikes at
high intensities.

We can further determine the power and peak-intensity diagrams of these vortices versus the
propagation constant µ. Here the power is defined as P ≡ ∫ ∞

−∞
∫ ∞

−∞ |u|2 dx dy. When I0 = 2Id

and E0 = 7.5, the results are shown in figure 2(a). We see that the peak intensity is a monotone-
decreasing function of µ, but the power is monotone-decreasing only when µ < 4.85, or the
peak intensity Ip > 0.58Id . If µ > 4.85, i.e. Ip < 0.58Id , the power starts to increase with µ.
This behaviour qualitatively holds also at other I0 and E0 values. A similar finding in the Kerr
medium has been reported in [8].

Now we address the critical question of linear stability of these vortices in a photorefractive
lattice. High-intensity lattice vortices clearly should be linearly unstable because they approach
the regular ring vortex (see figure 1(b)) [5]. The instability is oscillatory (i.e. the unstable
eigenvalues are complex). At low intensities, dP/dµ > 0; hence the lattice vortices are expected
to be linearly unstable as well according to the Vakhitov–Kolokolov (VK) criterion [17]. The
VK instability is purely exponential (i.e. the unstable eigenvalues are purely real). How about
the stability behaviours of vortices at intermediate peak intensities? To answer this question,
we perturb these vortices as U = {u(x, y) + Ũ(x, y, z)}e−µz, where Ũ(x, y, z) is an infinitesimal
perturbation. When this perturbed solution is substituted into equation (1), the linearized equation
for perturbation Ũ(x, y, z) is

iŨz + Ũxx + Ũyy + µŨ − E0

(1 + |u|2 + I0 sin2 x sin2 y)2
{(1 + I0 sin2 x sin2 y)Ũ − u2Ũ∗} = 0, (6)

where the superscript ∗ represents complex conjugation. Starting from random-noise initial
conditions, we simulate this linearized equation for very long distances (hundreds of z units)
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z=0 z=20 z=40

Figure 3. Stable propagation of an intermediate-intensity off-site vortex soliton
with I0 = 2Id , E0 = 7.5 and Ip = 2Id under random-noise perturbations. Top
row: intensity; bottom row: phase.

by the pseudo-spectral method (fast Fourier transform to get Ũxx and Ũyy, and the fourth-order
Runge–Kutta method to advance in z). If the solution grows exponentially, then the underlying
vortex soliton is linearly unstable, and the growth rate can be calculated from the growing solution
(the growth rate is the real part of the most unstable eigenvalue). Otherwise, the vortex is linearly
stable. It is noted that this procedure can track down the leading instabilities of vortices if the
vortices are linearly unstable.

Following the above numerical procedure, we have systematically determined the linear
stability properties of off-site vortex solitons. At I0 = 2Id and E0 = 7.5, the growth-rate diagram
is shown in figure 2(b). We see that lattice vortices are linearly unstable when Ip > 3.01Id

and Ip < 1.13Id , consistent with our expectations. In addition, the leading instabilities are all
oscillatory, except at the low-intensity end where the VK instability can be stronger. In contrast
with vortex lattice solitons in a Kerr medium [8], the vortices here are linearly unstable not only
in the low-intensity regime, but also in the high-intensity regime.

A more important finding in figure 2(b) is that at I0 = 2Id and E0 = 7.5, vortex solitons with
intermediate intensities 1.13Id < Ip < 3.01Id are linearly stable (the growth rates are zero for
such vortices). This is an important result which is physically significant. Then a closely related
question follows: are such vortices also non-linearly stable? To answer this question, we take
a linearly stable off-site vortex soliton with peak intensity Ip = 2Id , and perturb it by random
noise. The noise has Gaussian intensity distribution in the spectral k-space with the full-width at
half-maximum (FWHM) twice as large as the soliton FWHM spectrum. The noise power is 3%
of the soliton’s. Our simulation scheme is again the pseudo-spectral method as described before.
The simulation result on the evolution of this perturbed vortex is shown in figure 3. We see that
this vortex does propagate stably even after 40 units of distance z (corresponding to over 80 mm
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z=0 z=4 z=6 z=8

Figure 4. Fast break-up of a high-intensity off-site vortex soliton with I0 = 2Id ,
E0 = 7.5 and Ip = 3.5Id under random-noise perturbations. The intensity fields
at various distances are shown.

in physical units). In addition, its phase structure is maintained throughout the evolution. Our
simulations were also performed for even longer distances, and the results remained the same.
For other linearly stable lattices, we have repeated these simulations and found qualitatively
similar results. These findings indicate that linearly stable vortex solitons are also non-linearly
stable and they should be observable in experiments, as has been shown by Neshev et al [9] and
Fleischer et al [10].

When lattice vortices are linearly unstable, how does this instability develop? What final
state does it lead to? To address these issues, we first take a linearly unstable vortex soliton
with a high peak intensity Ip = 3.5Id (I0 = 2Id, E0 = 7.5), and perturb it by the random noise
as described above. The simulation result is shown in figure 4. We see that this vortex quickly
breaks up. On the other hand, if we perturb a linearly unstable vortex soliton with a low peak
intensity Ip = Id , the simulation result, plotted in figure 5, shows that this vortex takes a much
longer distance to disintegrate. The phase diagram in figure 5 (bottom row) reveals that after
the vortex breaks up, the right two spots become an out-of-phase dipole soliton with π phase
difference, whereas the left two spots dim out or disappear altogether. These evolution results
are consistent with the linear stability results in figure 2(b). In that figure, we see that the
growth rates are quite large for unstable vortices with high peak intensities, whereas the growth
rates are quite small for unstable vortices with low peak intensities. Thus unstable vortices
with high intensities should break up much faster than vortices with low intensities, as seen in
figures 4 and 5. Notice that since the growth rates of low-intensity vortices are quite small, they
may be observed in experiments despite their instability. Indeed, the crystals used in experiments
are typically short (under 20 mm), which may not be enough for weak instabilities to fully
develop.

How does the applied DC field (voltage) affect the stability properties of vortex solitons?
For this purpose, we lower the E0 value from 7.5 to 7 (while keeping I0 = 2Id), and obtained the
growth-rate diagram of vortices, which is also plotted in figure 2(b). At this lower E0 value, we
see that the stability region of vortex solitons shrinks by over a half. In other words, increasing
the applied DC field significantly stabilizes vortex solitons. Physically, this can be understood
as follows. The lattice-induced waveguide potential in equation (4) is E0/(1 + I0 sin2 x sin2 y).
At a fixed lattice intensity I0, if the applied DC field E0 increases, this potential depth increases.
Thus vortex solitons are more stabilized. A similar finding has been reported before for the Kerr
medium [8].
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z=0 z=12 z=20 z=24

Figure 5. Slow break-up of a low-intensity off-site vortex soliton with I0 = 2Id ,
E0 = 7.5 and Ip = Id under random-noise perturbations. Top row: intensity;
bottom row: phase.

The effect of the lattice intensity on the stability of vortex solitons is a little more subtle.
If the lattice intensity is very low, then the lattice can be considered absent. Obviously, the
vortex solitons then become the familiar ring vortices which are known to be always unstable
[5]. A less obvious fact is that if the lattice intensity is too high, vortices are always unstable as
well. To demonstrate this phenomenon, we have systematically determined the linear stabilities
of lattice vortices at various lattice intensity and vortex peak-intensity values at a fixed bias
field E0 = 7.5. The region of stable vortex solitons is presented in figure 6. We see that if the
lattice intensity I0 < 0.9Id or I0 > 4.1Id , vortex solitons are all linearly unstable no matter what
their peak intensities are. Stable vortices (with intermediate peak intensities) appear only in
the intermediate lattice-intensity region 0.9Id < I0 < 4.1Id . In experiments on vortex solitons
[9, 10], the lattice was always kept at an intermediate-intensity level (I0 ≈ 3Id), which is
consistent with our finding above. For fundamental lattice solitons, we have checked that stable
solutions exist at all lattice-intensity levels.Thus, the effects of the lattice intensity on fundamental
lattice solitons and on vortex solitons are different.

When the applied bias field E0 decreases, the stability region in figure 6 should shrink
(see figure 2(b)). This is true indeed. At the lower value E0 = 7, the stability region is also
plotted in figure 6, which is much smaller than that at E0 = 7.5. The stability region would
shrink even further as E0 continues to decrease. At a critical bias field E0c ≈ 6.8, the stability
region disappears. In other words, when E0 < E0c, all vortex solitons are unstable no matter
what the lattice- and vortex-intensity values are. For experiments, this implies that to observe
vortex solitons, the applied DC field should be kept above a certain threshold value.
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Figure 6. Stability boundaries of off-site vortex solitons in the (Ip, I0) plane at
two applied bias fields E0 = 7 and 7.5. Vortices inside the boundary are linearly
stable.

3. On-site vortex solitons

In this section, we study on-site vortex solitons. These vortices are illustrated in figure 7 at
I0 = 1.5Id and E0 = 5.5. Their power and intensity diagrams are plotted in figure 8(a). Generally
speaking, behaviours of these vortices are qualitatively similar to off-site vortices (see figures 1
and 2(a)). The main differences are (i) the centres of these on-site vortices are at a lattice site;
and (ii) the four lobes of these vortices have larger separations than those of off-site vortices
(their separations are

√
2 of those in off-site vortices). Since these on-site vortices have larger

lobe separations, they are expected to be more stable than off-site lattices. This is indeed the case
(see below).

To determine the stability properties of on-site vortex solitons, we have repeated the above
numerical procedure, with only off-site vortices replaced by on-site vortices. The growth-rate
diagrams at I0 = 1.5Id and two applied bias fields E0 = 5.3 and 5.5 are plotted in figure 8(b).
This figure is similar to figure 2(b). In other words, high- and low-intensity on-site vortices are
also linearly unstable, whereas intermediate-intensity on-site vortices can be linearly stable.
However, we should notice that even at this lower bias field E0 = 5.5, the stability region
of on-site vortices is already wider than that of off-site vortices at E0 = 7.5. We know from
figures 2(b), 6 and 7(b) that higher bias field stabilizes vortex solitons. Thus, under the same
physical conditions (i.e. voltage and the lattice), on-site vortices are much more stable than off-site
ones. This fact is further compounded in figure 9, where we have shown the stability boundaries
of on-site vortices in the (Ip, I0) space at two applied bias fields E0 = 5.3 and 5.5. Clearly, the
stability domain of on-site vortices at the lower bias field E0 = 5.5 is already much bigger than
that of off-site vortices at the higher bias field E0 = 7. Similar to off-site vortices, there is also a
critical applied bias field value E0c ≈ 5.2, below which on-site vortices are all linearly unstable
irrespective of what the lattice and vortex intensities are. Again, this critical value is lower
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(a) (b) (c)

(d) (e) (f)

Figure 7. (a) Intensity field of the optical lattice with I0 = 1.5Id; (b, c, e, f)
intensity fields of on-site lattice vortices with peak intensities 10, 5.5, 2 and
0.55Id , respectively, under the applied bias field E0 = 5.5; (d) phase structure
of these vortices.
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Figure 8. (a) Power and peak-intensity diagrams of on-site lattice vortices
at I0 = 1.5Id and E0 = 5.5; ——, stable vortices; - - - -, unstable vortices.
(b) Growth rates of on-site vortices versus their peak intensity at two applied
bias fields E0 = 5.3 and 5.5.
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Figure 9. Stability boundaries of on-site lattice vortex solitons in the (Ip, I0)

plane at two applied bias fields E0 = 5.3 and 5.5. Vortices inside the boundary
are linearly stable.

than that for off-site vortices, another sign that on-site vortices are generally more stable.
Note that when E0 > E0c, even though stable on-site vortices exist, they have to be in the
intermediate-intensity regime. In addition, the lattice intensity has to be in the intermediate
value range too, similar to off-site vortices. Non-linear evolution of stable and unstable on-
site vortex solitons under random-noise perturbations is qualitatively similar to that of off-site
vortices (see figures 3–5), and will not be repeated here.

4. Summary

In summary, we have carried out a numerical stability analysis for both the on- and off-site
lattice vortices with unit charge in a 2D photorefractive optical lattice. We have shown that
high- and low-intensity lattice vortices of both types suffer oscillatory and VK instabilities, but
intermediate-intensity vortices can be stable if the lattice intensity is moderate, and the applied
DC field is above a certain threshold value. Under the same physical conditions, on-site vortices
are more stable than off-site ones. Higher bias field stabilizes lattice vortices.
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