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Abstract
An explanation is given for previous numerical results which suggest a certain
bifurcation of ‘vector solitons’ from scalar (single-component) solitary waves
in coupled nonlinear Schrödinger (CNLS) systems. The bifurcation in question
is nonlocal in the sense that the vector soliton does not have a small-amplitude
component, but instead approaches a solitary wave of one component with
two infinitely far-separated waves in the other component. Yet, it is argued
that this highly nonlocal event can be predicted from a purely local analysis
of the central solitary wave alone. Specifically, the linearization around the
central wave should contain asymptotics which grow at precisely the speed
of the other-component solitary waves on the two wings. This approximate
argument is supported by both a detailed analysis based on matched asymptotic
expansions, and numerical experiments on two example systems. The first is
the usual CNLS system involving an arbitrary ratio between the self-phase and
cross-phase-modulation terms, and the second is a CNLS system with saturable
nonlinearity that has recently been demonstrated to support stable multi-peaked
solitary waves. The asymptotic analysis further reveals that when the curves
which define the proposed criterion for scalar nonlocal bifurcations intersect
with boundaries of certain local bifurcations, the nonlocal bifurcation could
turn from scalar to nonscalar at the intersection. This phenomenon is observed
in the first example. Lastly, we have also selectively tested the linear stability of
several solitary waves just born out of scalar nonlocal bifurcations. We found
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that they are linearly unstable. However, they can lead to stable solitary waves
through parameter continuation.

Mathematics Subject Classification: 35Q55, 74J35, 37Gxx

1. Introduction

Solitary waves play an important role in the solution dynamics of nonlinear evolution equations.
If the solitary waves are stable, they often emerge as final states in an initial-value problem.
Even if these waves are unstable, the mere existence of such waves has important implications
for solution evolutions. In recent years, it has been discovered that complicated solitary waves
could bifurcate from simple solitary waves.

Local bifurcations of ‘wave and daughter waves’ (‘vector solitons’) from single-
component waves (‘scalar solitons’) have been studied in various forms of coupled nonlinear
Schrödinger (CNLS) systems [4–6, 11, 15, 14]. The bifurcation is local, in that the bifurcated
solitary wave is infinitesimally close to the original solitary wave (as a graph) at the point of
bifurcation. The condition for such a local bifurcation to occur is based on the linearization
around the single-component pulse having a solution with purely decaying asymptotics at
infinity (see sections 2 and 3).

Nonlocal bifurcations are where the bifurcated solitary wave is not infinitesimally close
to the original wave at the point of bifurcation. These have been reported numerically in the
usual CNLS equations (the generalized Manakov system, involving an arbitrary ratio between
the self-phase and cross-phase studied in section 3, henceforth referred to as the CNLS system)
[5, 15, 16], and in second- and third-harmonic generation systems [6, 20, 18]. If the bifurcated
wave looks like several vector solitons glued together, then nonlocal bifurcation has also been
treated analytically by an asymptotic tail-matching method [16] (see section 4 for application
of this method in the context of this paper). General mechanisms have also been identified
that lead to such vector nonlocal bifurcations in classes of CNLS systems, such as eigenvalue
degeneracy or the existence of a local bifurcation [16, 20, 19]. The linear stability of these
multiple-pulsed vector solitons for the CNLS system has been studied in [17], and it has been
shown that such states are linearly unstable. However, if the bifurcated wave is glued together
by scalar (i.e. single-component) solitary waves, no analysis has been performed to our best
knowledge. In this paper, we focus on this scalar nonlocal bifurcation. We will show that it is
closely related to local bifurcations, and can be treated on the same footing.

The criterion we propose for a scalar nonlocal bifurcation (in section 2) is that the solution
of the linearized equation around the central single-component pulse should have only purely
growing asymptotics instead of purely decaying asymptotics at infinity. In the following
sections, we test this criterion against two example systems. The first, in section 3, is the
CNLS system. The second, in section 5, is a CNLS system with saturable nonlinearity. In
both cases, good agreement is obtained between our bifurcation condition and the numerics.
Near the bifurcation point, we have also developed a detailed asymptotic analysis based on the
above-mentioned tail-matching method, which is performed for the CNLS system in section 4.
This analysis produces an explicit formula for the spacing between scalar solitons being pieced
together, and this formula agrees well with the numerics. An extension of that analytical
theory to more general CNLS systems, such as our second example studied in section 5 is
straightforward, and will be omitted in this paper. Lastly, we discover in the course of our
asymptotic analysis that if the curve which defines our proposed criterion for scalar nonlocal
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bifurcations intersects with boundaries of certain local bifurcations, the nonlocal bifurcation
may turn from scalar to nonscalar at the intersection. This phenomenon indeed occurs in the
CNLS system. We have also studied the linear stability of solitary waves just born out of
scalar nonlocal bifurcations. The results suggest that these waves are always linearly unstable.
However, they can lead to stable solitary waves through parameter continuation in the second
model.

2. A geometric argument

Consider a general system of ordinary differential equations (ODEs) of the form

uxx − u + f1(u, v)u = 0, (2.1)

vxx − ω2v + f2(u, v)v = 0, (2.2)

where 0 < ω < 1. It is assumed that f1 and f2 are smooth nonlinear functions of their
arguments which vanish as (u, v) → (0, 0) and may well depend on other system parameters.
Moreover, they are such that the problem with u ≡ 0 or with v ≡ 0, which are both invariant
subspaces within the four-dimensional phase space of the ODE system (2.1) and (2.2), contain
even homoclinic solutions:

(u(x), v(x)) = (uh(x), 0), uh(−x) = uh(x), u → 0 as x → ±∞, (2.3)

(u(x), v(x)) = (0, vh(x)), vh(−x) = vh(x), v → 0 as x → ±∞. (2.4)

In what follows we shall use the terms ‘pulse’ ‘homoclinic to the origin’, ‘solitary wave’ and
‘soliton’ entirely synonymously. We shall refer to the invariant subspace homoclinic solutions
(2.3) and (2.4) as scalar u- and v-pulses, respectively. These scalar solitons are contrasted
with vector solitons which are homoclinic solutions that have nonzero u- and v-components.
Note that all homoclinic solutions to the origin are generic, i.e. they persist under parameter
perturbation, since the system is both reversible and Hamiltonian [3].

Now consider the linearization of (2.1) and (2.2) around the u-pulse:

uxx = u +

{
∂

∂u
f1[uh(x), 0]uh(x) + f1[uh(x), 0]

}
u, (2.5)

vxx = ω2v + f2[uh(x), 0)]v. (2.6)

Note that the linear equations decouple. So let us look at the specific class of solutions to this
linear problem which have u = 0. Now we have to simply solve the second equation, (2.6).
The general asymptotics of such solutions satisfy

v → c±
1 e−ωx + c±

2 eωx + o(e−ω|x|) as |x| → ±∞ (2.7)

for some constants c±
1 and c±

2 . Note that we are able to write the o(·)-term by the assumption
that 0 < ω < 1 so that the asymptotics of f2(u(x), 0) decay more rapidly than exp(−ω|x|).

Consider even solutions (2.7) of (2.6), hence c+
i = c−

i := ci , i = 1, 2. This defines a
unique solution (up to scale) for the linear initial-value problem (2.6) for x � 0. Now, suppose
that at a particular value of ω, this solution had a particular tail asymptotics (2.7) with c2 = 0
(see figure 1(b)). Then the solution to the linear problem would be localized. Going back
to the fully nonlinear problem, by standard bifurcation theory results, we have satisfied the
necessary condition for the local bifurcation of a wave and daughter wave consisting of the
mother u-pulse and a small-amplitude v-component. The vanishing of c2 is a codimension-
one condition, and hence local bifurcations will lie on lines in a parameter plane. As already



2168 A R Champneys and J Yang

v  =0x

u  =0x

uh

h xv

x

v  =0

u  =0

hu

hv

v

v=0(a) (b)

u

u=0

v=0

x

v
u

u=0

Figure 1. Sketch figure defining (a) scalar nonlocal and (b) local bifurcations. In each case the
top panel depicts schematically the invariant planes {u ≡ 0} and {v ≡ 0} and the solution of the
linearized problem around uh. The lower two panels depict the corresponding bifurcated vector
solitons in phase space and as graphs.

mentioned in the introduction, the existence of such bifurcations in CNLS systems have been
established by a number of authors.

Suppose instead that we find a solution at some parameter value that satisfies c1 = 0. Note
that this describes a pure exponentially growing solution to leading order as x → ±∞. See
figure 1(a). However, consider the nonlinear implications of this within the four-dimensional
phase space {(u, u′, v, v′) : u = u′ = 0} of the ODEs (2.1) and (2.2). We have found an
initial condition for an even solution that is an infinitesimal perturbation of uh(0), and which
is attracted as x → ∞ towards the invariant plane V := {(u, u′, v, v′) : u = u′ = 0}.
Moreover, this rate of attraction is faster (∼exp(x)) than the exponential contraction or
expansion with that plane (∼exp(±ωx)) near the origin. Hence, the condition that 0 < ω < 1
ensures that the invariant plane V is normally hyperbolic. Using standard results for normally
hyperbolic manifolds, the eventual behaviour of this perturbed trajectory is governed by its
behaviour on V . The fact c1 = 0 implies that the trajectory is attracted onto the local unstable
manifold within V . But the local unstable manifold on V is precisely the piece of trajectory that
forms the v-pulse solution vh. Also, since we are talking about an infinitesimal perturbation to
the underlying pulse uh, the time taken to be attracted to vh in this way is arbitrarily long. Hence,
we have the scalar nonlocal bifurcation of two vh pulses ‘at ±∞’ as depicted in figure 1(a).

The above is only a plausible argument, but it is highly appealing from an intuitive point
of view. In section 4, we will develop an in-depth asymptotic theory for this scalar nonlocal
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bifurcation in the CNLS equations. The results of that theory fully support the above intuitive
argument.

Before proceeding to the examples, let us make a few short remarks here.

(a) First, note the need to assume that 0 < ω < 1. This was required in order to make the
u = 0 invariant plane normally hyperbolic, or equivalently to assume that the asymptotic
attraction onto this plane was o(e−ωx). If this condition is violated, then there is no sense
in which the perturbed trajectory converges only to the unstable manifold within V and
hence the argument fails.

(b) Second, it is interesting to note that our analysis suggests that local and scalar nonlocal
bifurcations can be treated on an equal footing. One requires that c1 vanishes, the other that
c2 vanishes. It is perfectly possible to imagine a scenario where, as a parameter is varied,
the even solution v(x) to the linear problem (2.6) generates extra internal oscillations. If
it does so in a smooth way, then it is clear that it must pass repeatedly through successive
zeros of c1 and c2. Hence, one would find each scalar nonlocal bifurcation sandwiched
between two successive local bifurcations.

(c) In fact, in the above it is not quite enough to assume that c1 vanishes for a scalar nonlocal
bifurcation. We must have that c2 has the correct sign to attach to the component of the
unstable manifold of the nonlinear equation that contains the pure v-pulse. In all the
examples below, the pure-v equation is odd and hence both vh and −vh are solutions.
Thus, either sign of c2 will lead to a scalar nonlocal bifurcation.

(d) Finally, in systems with odd nonlinearity, the above arguments can be repeated to find
antisymmetric scalar nonlocal bifurcations where the two daughter waves at infinity are
vh and −vh.

We now turn to two examples to test the validity of this approximate reasoning.

3. Example 1: the CNLS equations

The usual CNLS equations may be written in dimensionless form as

iUt + Uxx + (|U |2 + β|V |2)U = 0, (3.1)

iVt + Vxx + (|V |2 + β|U |2)V = 0. (3.2)

They have been used to describe the interaction between wave packets in dispersive
conservative media, and also the interaction between orthogonally polarized components in
nonlinear optical fibres (see [15, 5] and references therein). Looking for steady solutions of
the form

U = eiω2
1 t u(x), V = eiω2

2 t v(x),

and performing scaling so that ω1 = 1 and ω2 = ω, we arrive at the following set of ODEs:

uxx − u + (u2 + βv2)u = 0, (3.3)

vxx − ω2v + (v2 + βu2)v = 0. (3.4)

Here, β is a real and positive cross-phase-modulational coefficient, and ω(�0) is a propagation
constant parameter. It is noted that if [u(x; ω), v(x; ω)] is a solution, then another solution at
propagation constant 1/ω can be obtained via the transformation [15][

1

ω
v

( x

ω
; ω

)
,

1

ω
u

( x

ω
; ω

)]
. (3.5)

Thus, in this paper, we restrict ω such that 0 � ω � 1.
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We note that when β = 1, the partial differential equations (PDEs) (3.1) and (3.2) are called
the Manakov system, which is integrable [8]. In this case, all solitary waves of the ODE system
(3.3) and (3.4) have closed-form analytical expressions [2]. When β = 0, the PDEs are two
copies of the single NLS equation which is also integrable [21]. The solitary waves for β = 0
are simply sech pulses. When β �= 0 or 1, the structure of solitary waves in this system is much
more complicated. This structure was partially unravelled in [4, 1, 2, 5, 15, 16]. It is known
that local bifurcations occur along curves in the (β, ω)-plane that are given by closed-form
expressions (see below). These local bifurcations are where wave and daughter-wave structures
are born. In other words, at local bifurcations, a small and localized v-component develops
from a pure u-pulse. It was also observed numerically that scalar nonlocal bifurcations, such
as those described in this paper, occur. That is, passing through the bifurcation is a single-
component pulse, for which v is zero everywhere, and u is given by a sech function. Bifurcating
from this is a solution for which the u-component remains about the same, but the v-component
suddenly develops two pulses which are far-separated from the central u-pulse. These v-pulses
can be symmetrically or antisymmetrically distributed. Their sizes jump from zero to a certain
finite size across the bifurcation. In this section, we analytically determine the boundaries of
these scalar nonlocal bifurcations through the criterion developed in section 2 and compare
them with direct numerical results.

3.1. Local and scalar nonlocal bifurcations

First, we recall the results for local bifurcations in this system [4, 14, 15], assuming that a small
v-component bifurcates from a pure u-pulse. Thus, at the bifurcation point, the v-component
is infinitesimally small. Thus the u-component is simply governed by the equation

uxx − u + u3 = 0, (3.6)

whose homoclinic solution is

u(x) =
√

2 sech x. (3.7)

According to standard results, a necessary condition of a local bifurcation of a homoclinic
solution with a small-amplitude v-component from the u-pulse (3.7) is that there is a nontrivial
localized solution to the linearized problem of the v-component. This takes the form of a linear
Schrödinger equation:

vxx − ω2v + 2β sech2xv = 0, (3.8)

and for local bifurcation we require

v → 0 as |x| → ±∞.

This equation can be solved exactly [7], as we now explain. With the variable transformation

v = sechsxψ, ξ = sinh2 x, (3.9)

where

s =
√

1 + 8β − 1

2
, (3.10)

the Schrödinger equation (3.8) becomes

ξ(1 + ξ)φxx +
[
(1 − s)ξ + 1

2

]
φx + 1

4 (s2 − ω2)φ = 0, (3.11)

which is a hyper-geometric equation. Its even and odd solutions are

φ1 = F
(

1
2ω − 1

2 s, − 1
2ω − 1

2 s, 1
2 , −ξ

)
, (3.12)

φ2 =
√

ξF
(

1
2ω − 1

2 s + 1
2 , − 1

2ω − 1
2 s + 1

2 , 3
2 , −ξ

)
, (3.13)
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where F is the hyper-geometric function. In order for the solution v1 = sechsxφ1 to decay to
zero as x goes to infinity, one must have

1
2ω − 1

2 s = −n1, (3.14)

where n1 is a non-negative integer, and n1 < 1
2 s. Then, the v1 solution is

v1 = sechsx

n1∑
k=0

(−n1)k(−(1/2)ω − (1/2)s)k(−ξ)k

(1/2)kk!
, (3.15)

which decays to zero as ξ−ω/2 (i.e. e−ωx). In the solution (3.15), (a)k is defined as

(a)k ≡
{

a(a + 1)(a + 2) . . . (a + k − 1), k > 0,

1, k = 0.
(3.16)

In order for solution v2 = sechsxφ2 to decay to zero as x goes to infinity, one must have
1
2ω − 1

2 s + 1
2 = −n2, (3.17)

where n2 is a non-negative integer, and n2 < 1
2 (s − 1). Then, the v2 solution is

v2 = sechsx sinh x

n2∑
k=0

(−n2)k(−(1/2)ω − (1/2)s + 1/2)k(−ξ)k

(3/2)kk!
, (3.18)

which also decays to zero as ξ−ω/2 (i.e. e−ωx).
When conditions (3.14) and (3.17) are combined, we find that the boundaries for local

bifurcations are

ω = ωLB
n (β) = s − n, (3.19)

where s is given by (3.10), n is a non-negative integer, and n < s. The first boundary (n = 0)

exists for any β � 0; the second boundary (n = 1) exists only for β � 1; the third boundary
(n = 2) exists only for β � 3, etc. The first three boundaries ωLB

0,1,2 are plotted in figure 2 as
dashed lines for illustration. Note from the above construction that even n corresponds to the
existence of symmetric bifurcating waves (even in both u and v) whereas odd n corresponds
to antisymmetric bifurcation (even in u, odd in v).

Now, how can we define the scalar nonlocal bifurcations? It can be noted that on the above
local bifurcation boundaries, the appropriate solution v1 or v2 has the following asymptotic
behaviour:

v(x) → sgnn(x)(cn eω|x| + dn e−ω|x| + o(eω|x|)), as |x| → ∞, (3.20)

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

β

ω

n=0 n=1 n=2

n=0 n=1 n=2

Figure 2. Local and scalar nonlocal bifurcation boundaries in the CNLS system (3.3) and (3.4).
Scalar nonlocal bifurcation boundaries are solid lines, and are given by equation (3.29) (with
n = 0) and (3.22) (with n = 1, 2). Local bifurcation boundaries are dashed lines, and are given by
equation (3.19).
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where cn = 0, and dn is a nonzero constant. In other words, this v solution is localized.
Condition cn = 0 in the asymptotics (3.20) is the condition for local bifurcations in this
problem.

Now, following the arguments laid out in section 2, a scalar nonlocal bifurcation occurs
when the v-component of the linearized equation around the u-pulse satisfies conditions at
infinity that it has a purely growing component. That is, scalar nonlocal bifurcations occur
when one of the v1 and v2 solutions of the Schrödinger equation (3.8) has the following
asymptotic behaviour:

v(x) → sgnj (x)(α eω|x| + γ e−ω|x| + o(e−ω|x|)) as |x| → ∞, (3.21)

with γ = 0 but some nonzero α, and j = 0 or 1 is an integer indicating the symmetry of the
v solution. Now, a remarkable thing happens. Because it is easy to see using the solutions
of equation (3.8) obtained above, that condition γ = 0 in the asymptotic equation (3.21) is
exactly satisfied on the boundary curves,

ω = ωNLB
n (β) := n − s, 0 < n − s < 1, (3.22)

where n is a non-negative integer and s(β) was defined in equation (3.10). In fact, on these
boundaries, the function v has an unbounded solution,

v̂1 = sechsx

n1∑
k=0

(−n1)k((1/2)ω − (1/2)s)k(−ξ)k

(1/2)kk!
, (3.23)

when n = 2n1 is even, and an unbounded solution,

v̂2 = sechsx sinh x

n2∑
k=0

(−n2)k((1/2)ω − (1/2)s + 1/2)k(−ξ)k

(3/2)kk!
, (3.24)

when n = 2n2 + 1 is odd. The asymptotic behaviours of these solutions are

v̂(x) → sgnn(x)(gn eω|x| + hn e(ω−2)|x|), |x| → ∞, (3.25)

where

gn =




2s((1/2)ω − (1/2)s)n1

4n1(1/2)n1

, n = 2n1,

2s−1((1/2)ω − (1/2)s + 1/2)n2

4n2(3/2)n2

, n = 2n2 + 1,

(3.26)

and hn is another constant which can be easily calculated. When ω < 1, the second term in
(3.25) decays faster than e−ω|x|. Thus, the coefficient γ in the asymptotics (3.21) is zero on
these boundaries.

The boundary curve for scalar nonlocal bifurcations (3.22) can be written alternatively as

β = βNLB
n (ω) = 1

8 {(2n − 2ω + 1)2 − 1}. (3.27)

These boundaries are plotted in figure 2 as solid lines for comparison with boundaries of local
bifurcations (dashed lines), which are given according to (3.19) by

β = βLB
n (ω) = 1

8 {(2n + 2ω + 1)2 − 1}. (3.28)

Hence, by construction, the curves of nonlocal bifurcations simply represent the continuation
of local bifurcation curves through ω = 0 (and mapped back up via ω → −ω, since only ω2

appears in the equations). In particular, at the singular value ω = 0 we have that ωNLB
n = ωLB

n .
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Lastly, we note that the first scalar nonlocal bifurcation curve on the left of figure 2 needs
a little special treatment. In fact, this solid curve is given by equation

ω =
{

−s, − 1
8 � β � 0 and ω � 1

2 ,

1
2 [1 +

√
1 + 8β], − 1

8 � β � 0 and ω � 1
2 .

(3.29)

In other words, the lower branch of this curve is as given in equation (3.22) with n = 0, but its
upper branch is given by a different function. It can be shown that on this upper branch, the
solution of the Schrödinger equation (3.8) also has the asymptotics (3.21) with γ = j = 0.
This curve is the only scalar nonlocal bifurcation boundary whose functional form is partially
different from (3.22).

3.2. Numerical results

So we have found curves on which our proposed condition for scalar nonlocal bifurcations
derived in section 2 is satisfied. It remains to be seen what happens to the fully nonlinear
equations for this example along such curves. In section 4 we shall consider this problem via
asymptotic analysis. In this section we turn to numerical methods.

First, let us demonstrate further properties of the structure of solutions to the linearized
problem (3.8) by computation of its even and odd solutions as the parameters vary. Figure 3
depicts solutions of the constrained linear boundary value problems:

vx(0) = 0,

∫ X

0
v(x)2 dx = const., (3.30)

and

v(0) = 0,

∫ X

0
v(x)2 dx = const., (3.31)

for even and odd solutions, respectively. Here X is a large positive constant. At the right-hand
boundary point we can distinguish between solution components that decay with exponential
rate e−ωx and those which grow with rate eωx by considering the corresponding eigenvectors
in the (v, v′)-plane. Hence, we can define boundary functions

w1 = vx(X) + ωv(X), w2 = vx(X) − ωv(X), (3.32)

so that a zero of w1 defines a solution with no exponentially growing component whereas
zeros of w2 define solutions with no component that decays like e−ωx . Hence, according to
the above definitions, w1 = 0 can be used as a numerical test function for local bifurcations
and w2 = 0 as a test function for scalar nonlocal bifurcations.

Specifically figure 3 depicts the results of a numerical continuation of even and odd
solutions to (3.8), satisfying (3.30) and (3.31), respectively, for fixed ω as β is increased
from zero. It can be seen that an alternating sequence of zeros of functions w1 and w2

occurs as β increases. At the values of each of the zeros we plot the mode shape v(x).
Note that each successive pair of zeros corresponds to the function gaining an extra internal
zero. The particular computation was carried out with X = 10. For this value, it was found that
the β-values of the depicted zeros of w1 and w2 correspond to those of the analytic formulae
(3.27) and (3.28) to within five decimal places. Increasing X resulted in more accuracy, but
an increase in the singularity of the boundary-value problem close to each zero of w1.

For this example, we have analytic formulae for the conditions defining local and scalar
nonlocal bifurcations. Hence these computational results can be interpreted as developing
numerical confidence in our method of detecting them in situations where analytic formulae
do not exist (as in section 5). Also, they provide geometrical insight. Thinking of the phase
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Figure 3. Curves of (a) w1(β) and (b) w2(β) for the linearization (3.8) of the CNLS example,
computed for ω = 0.5 using and interval x ∈ [0, 10]. Solid lines represent asymmetric solutions
and dashed lines symmetric ones. The inserts depict solutions of the linearized equations at the first
three zeros of w1, both symmetric and antisymmetric, which define local bifurcations; and of w2
which define the necessary conditions for scalar nonlocal bifurcations according to our geometric
theory.

space (v, vx), the conditions for local and scalar nonlocal bifurcations are that the solution
for large x should lie in one of the two eigendirections. By continuous dependence on initial
condition results, we have that if there are a succession of local bifurcations with increasing
number of internal zeros upon increasing a parameter, then the solution at ‘time’ X must
rotate in the phase plane. In so doing, we cannot avoid having a scalar nonlocal bifurcation
sandwiched between each two successive local bifurcations, see figure 4.

Next, let us numerically investigate actual solitary wave bifurcations near the proposed
scalar nonlocal bifurcation curve (3.22). First, we consider those curves with n = 1 and 2.
The scalar nonlocal bifurcations near these curves have been numerically explored in [15].
The results are reproduced in figures 5 and 6. In each figure, solitary waves at three different
locations of the parameter plane are shown: one is close to the local bifurcation curve (3.19)
(dashed line), another one is in the interior, and the third is close to the theoretical scalar
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Figure 4. Sketch figure illustrating the large-x asymptotics of even solutions to (3.8) as the
parameter β varies for fixed 0 < ω < 1. The solution to the boundary value problem (3.30) is
depicted up to x = X. Between the two β-values (a) and (c) at which condition w1 = 0 for
local bifurcations occur, there is a β-value (b) for which w2 = 0. Panel (d) sketches the locus of
boundary points (v(X), vx(X)) as a function of β.

nonlocal bifurcation boundary (3.22). Displays of these solitary waves are meant to show the
reader how solitary waves continuously deform from wave and daughter wave structures as
system parameters β and ω vary. As we can see, in both cases, scalar nonlocal bifurcations
indeed occur on the theoretical curves (3.22) (see panel (c) in both figures). In addition, the
numerical bifurcation boundaries (circles) fall precisely on the theoretical curves. So, for these
cases, our theory is fully supported by numerics. We have also found similar agreement for
the case n = 0 in the nonlocal bifurcation boundary (3.22).

However, the n = 3 case is more complicated. The bifurcation for this case is shown
in figure 7. The solid line in the parameter plane (upper left panel) is the theoretical curve
(3.22) for scalar nonlocal bifurcations. Circles are numerically detected nonlocal bifurcation
boundaries. Notice that the numerical boundary falls onto the theoretical curve (3.22) only in
the lower part. There, the nonlocal bifurcation is indeed scalar, consistent with the geometric
argument of section 2. This can be confirmed in figure 7(e). But in the upper and middle
parts, the numerical boundary deviates from the theoretical curve (3.22). The reason turns out
to be that, in these parts, the actual nonlocal bifurcation is not scalar. Indeed, an inspection
of figures 7(c) and (d) shows that the bifurcated solitary waves in these parts are not scalar
NLS solitons pieced together. Rather, they are true vector solitons pieced together. Thus, our
analysis for scalar nonlocal bifurcations does not apply here. We note that near the upper part of
the numerical boundary, the centre of the bifurcated wave is a wave and daughter wave structure
with n = 1 (see equation (3.19)), and it is flanked by two single-hump vector solitons on the
two sides. This piecing together of different vector solitons as a nonlocal consequence of local
bifurcation has been analytically studied earlier in [16]. It was shown there that the boundary
for this type of nonscalar nonlocal bifurcation is precisely the boundary of local bifurcations
(3.19) (here with n = 1). This is indeed the case. When the local bifurcation boundary (3.19)
for n = 1 is plotted as a dashed curve there, it agrees with the numerical boundary (circles)
very well. The bifurcation in the middle part of the parameter region is also nonscalar. It is
clear from figure 7(d) that this bifurcation is somewhere in between the nonscalar bifurcation
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Figure 5. Solitary waves in the parameter region (upper left figure) bounded by the scalar nonlocal
bifurcation boundary (3.22) (——) and local bifurcation boundary (3.19) (- - - -) with n = 1.
Circles represent the numerical scalar nonlocal bifurcation boundary for n = 1 obtained in [15].
Solitary waves at stars marked by the letters ‘a, b, c’ in the parameter region are shown with
corresponding letters in the title.

of figure 7(c) and the scalar bifurcation of figure 7(e). In fact, it is appropriate to consider this
middle part of the bifurcation boundary as a transition between the nonscalar bifurcation in
the upper part and the scalar bifurcation in the lower part.

Numerical searching has revealed that there is no scalar nonlocal bifurcation observed
along the branch corresponding to (3.22) with n = 3 above the point at which the nonscalar
bifurcations start. Thus, the condition (3.22) can at best be a necessary condition for scalar
nonlocal bifurcations. Why does the bifurcation deviate from scalar here, and where exactly
does this deviation begin? These questions could not be answered by the approximate
geometric argument in section 2. However, an answer will be revealed in a matched asymptotic
analysis in the next section. We will show that the deviation starts where the curve (3.22) with
n = 3 intersects the local bifurcation boundary ω = 1/s of v-pulses.

4. Matched asymptotic theory for scalar nonlocal bifurcations in the CNLS equations

To theoretically explain the scalar nonlocal bifurcation results in the previous section, an
analytical theory will now be constructed. This theory has three objectives. The first one is to
prove that the boundaries of scalar nonlocal bifurcations are indeed given by the condition that
the solution of the linear Schrödinger equation (3.8) has only the purely growing component,
i.e. equation (3.22). The second objective is to obtain an analytical formula for the spacing
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Figure 6. Solitary waves in the parameter region bounded by the scalar nonlocal bifurcation
boundary (3.22) (——) and local bifurcation boundary (3.19) (- - - -) with n = 2. Circles represent
the numerical scalar nonlocal bifurcation boundary for n = 2 obtained in [15].

between the v-pulses and the central u-pulse when the parameters are close to the boundary of
scalar nonlocal bifurcations. The third objective is to determine when nonlocal bifurcations
can deviate from scalar to nonscalar. The technique we will use is similar to the tail-
matching method as developed in [16] for the construction of multi-pulse trains, but important
modifications need to be made. Throughout this analysis, we require ω < 1 as above.

Suppose the ODE system (3.3) and (3.4) allows a solution where the u-component is
symmetric and has a dominant pulse in the centre (at x = 0), while the v-component is
symmetric or antisymmetric and has two dominant pulses on the two sides of the u-pulse
(at x = ±	). Our main assumption is that the v-pulses are well-separated from the central
u-pulse, i.e. 	 	 1. Then, we can divide the solution into three regions: (I) the left v-pulse
region centred at x = −	; (II) the central u-pulse region centred at x = 0; and (III) the right
v-pulse region centred at x = 	. Below, we will determine the solutions in each of these
three regions. Note that midway between regions II and I or III, both the u and v solutions
are very small. Thus they are approximately governed by the linear parts of equations (3.3)
and (3.4); hence, these solutions are linear combinations of purely exponentially growing and
purely exponentially decaying functions to leading order. If these tail asymptotics from two
adjacent regions can match each other, then a solitary wave can be found. This is the essence
of the tail-matching method.

When the v-component is symmetric or antisymmetric, the tail-matching treatment
between regions II and III becomes the same as that between regions II and I. Thus, we
will focus only on matching between regions I and II.
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Figure 7. Different types of nonlocal bifurcations appearing near the scalar nonlocal bifurcation
curve (3.22) with n = 3 (——) in the CNLS system (3.3) and (3.4). Circles are numerically
obtained nonlocal bifurcation boundaries. The lower part of the numerical curve lies on the solid
line (3.22), and the bifurcation there is indeed scalar (see (e)). The upper part of the numerical curve
lies on the dash-dotted local bifurcation boundary (3.19) with n = 1, and the nonlocal bifurcation
there is nonscalar (see (c)). The nonlocal bifurcation in the middle part of the numerical curve is
somewhere in between scalar and nonscalar (see (d)). The dashed line in the upper left panel is the
local bifurcation curve (3.19) with n = 3. Stars are parameter values where the solitary waves are
shown.

In region I, the solution can be written as

u = ũI, v = v0 + ṽI, (4.1)
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where

v0 =
√

2ω sech[ω(x + 	)], ũI 
 1, ṽI 
 1 (4.2)

(see figures 5(c) and 6(c)). In the new coordinates,

ξ = x + 	, (4.3)

the small ũI component satisfies the linear Schrödinger equation,

ũIξξ − ũI + βv2
0(ξ)ũI = 0, (4.4)

to leading order. To obtain solitary waves, we demand that

ũI(ξ) → 0, ξ → −∞. (4.5)

At large positive ξ values, this ũI solution must match the tails of the dominant u solution

u0(x) =
√

2 sechx, (4.6)

in region II. This matching dictates that the asymptotic behaviour of ũI at large ξ values is

ũI(ξ) → 2
√

2e−	eξ , 	 	 ξ 	 1. (4.7)

The linear equation (4.4), together with the boundary conditions (4.5) and (4.7), completely
determines the ũI solution in region I.

Now we determine the small ṽI component in region I. When equation (4.1) is substituted
into (3.4), and terms of order ṽ2

I , ṽ3
I and ũ2

I ṽI dropped, we find that, to leading order, ṽI satisfies
the following equation:

ṽIξξ − ω2ṽI + 3v2
0(ξ)ṽI = −βũ2

I v0(ξ). (4.8)

We note that it is important to retain the inhomogeneous term in equation (4.8), as, otherwise,
that equation with the vanishing boundary condition at negative infinity would always produce
a localized solution which is impossible to match to the v solution in region II. The boundary
conditions for solution ṽI are

ṽI → 0, ξ → −∞, (4.9)

and

ṽI → α eωξ + γ e−ωξ − 4
√

2βω e−2	

1 − ω
e(2−ω)ξ , 	 	 ξ 	 1, (4.10)

where α and γ are constants. The last term in equation (4.10) is contributed from the
inhomogeneous term of equation (4.8). In deriving it, the asymptotic behaviours of the ũI

and v0 solutions were used (see equations (4.2) and (4.7)).
Next, we determine the solutions in region II. In this region, the solutions can be written as

u = u0 + ũII, v = ṽII, (4.11)

where u0(x) is given in equation (4.6), and ũII, ṽII 
 1 (see figures 5(c) and 6(c)). Here, we
only need to focus on the ṽII solution. This solution satisfies the equation

ṽIIxx − ω2ṽII + βu2
0(x)ṽII = 0 (4.12)

to leading order. The leading asymptotic behaviour of this solution at x 
 −1 is

ṽII → γ̄ (e−ωx + δ eωx), −	 
 x 
 −1, (4.13)

where γ̄ and δ are constants. If we only consider solitary waves with symmetric or
antisymmetric v-components, then the above ṽII solution would have the same symmetry. This
symmetry condition would uniquely determine the coefficient δ. The constant γ̄ is selected
by the condition that the tail asymptotics of the ṽII solution for x 
 −1 in region II must
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match the v solution (4.1) for ξ 	 1 in region I. This matching gives γ̄ = (2
√

2ω + γ )e−ω	.
Recall that ṽI 
 1, and thus γ 
 1. As a result, to leading order,

γ̄ = 2
√

2ω e−ω	. (4.14)

This matching also gives the relation

α = γ̄ δ e−ω	 = 2
√

2ωδ e−2ω	. (4.15)

One may wonder why the third term in the ṽI asymptotics (4.10) is not matched by ṽII

asymptotics (4.13). In fact, there is a smaller term in the ṽII solution which is proportional to
e(2−ω)x . This term arises due to the product of u2

0 and the e−ωx component in the leading ṽII

solution (4.13) (see equation (4.12)). One can check that this term will exactly match the third
term in the ṽI asymptotics (4.10). So there is no contradiction here. But this is a minor issue
which is not critical to our analysis.

Now we are in a position to derive a formula for the spacing 	 between the v-pulses and
the middle u-pulse. This formula comes from the solvability condition for the ṽI equation (4.8)
together with the boundary conditions (4.9), (4.10) and (4.15). It is noted that equation (4.8)
is self-adjoint, and it has a localized homogeneous solution v0ξ due to the spatial translation
invariance of the ODE (3.4). Calculating the integrals of products between v0ξ and the two
sides of equation (4.8) from −∞ to y, and integrating by parts, we get∫ y

−∞
−βũ2

I v0v0ξ dξ = (ṽIξ v0ξ − ṽIv0ξξ )|y−∞. (4.16)

When 	 	 y 	 1, substituting the boundary conditions (4.9), (4.10) and (4.15) into the
above equation, we find that∫ y

−∞
−βũ2

I v0v0ξ dξ → −16δω4 e−2ω	 +
32βω3 e−2	

1 − ω
e2(1−ω)y, y → ∞. (4.17)

The above equation is the leading two-term expansion for the integral on its left-hand side.
When y approaches infinity, this integral diverges. But we can separate this divergent part
from the rest of the integral. Notice that

32βω3e−2	

1 − ω
e2(1−ω)y =

∫ y

−∞
64βω3e−2	e2(1−ω)ξ dξ. (4.18)

Thus equation (4.17) can be rewritten as

β

∫ ∞

−∞

[
ũ2

I

(
v2

0

)
ξ

+ 128ω3 e−2	e2(1−ω)ξ
]

dξ = 32δω4e−2ω	. (4.19)

The integral above is no longer divergent. In fact, one can use the asymptotic relations (4.5)
and (4.7) to check that the integrand in that integral approaches zero exponentially as |x| goes
to infinity.

Equation (4.19) gives a formula for spacing 	 when the system parameters β and ω are
specified. This formula can actually be made more explicit as follows. Recall that the function
ũI is determined by equation (4.4) and boundary conditions (4.5) and (4.7). Under the notation

ũI(ξ) = 2
√

2 e−	φ(ξ), (4.20)

the function φ(ξ) is uniquely specified by the following equation and boundary conditions

φξξ − φ + βv2
0(ξ)φ = 0, (4.21)

φ(ξ) →
{

0, ξ → −∞,

eξ , ξ → ∞,
(4.22)
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where v0(ξ) is given by equations (4.2) and (4.3). Under these notations, formula (4.19)
simplifies as

e−2(1−ω)	 = 4ω4δ

βI
, (4.23)

where I is the integral

I =
∫ ∞

−∞

[
φ2

(
v2

0

)
ξ

+ 16ω3 e2(1−ω)ξ
]

dξ. (4.24)

Recall that the constant δ is defined by equations (4.12) and (4.13). To be more explicit, δ is
defined by

ψxx − ω2ψ + βu2
0(x)ψ = 0, (4.25)

and

ψ(x) → e−ωx + δ eωx, x → −∞. (4.26)

In other words, δ is the coefficient of the purely decaying component of the Schrödinger
equation (4.25) at x = −∞. The boundary condition for the function ψ at x = ∞ is provided
by the symmetry of the v-component in the solitary wave we are seeking. Since we are focusing
on symmetric and antisymmetric v-components, function ψ would have the same symmetry.
This symmetry helps to uniquely determine the δ-coefficient in the above linear problem.

Formula (4.23) is the key result of this section. It explicitly gives the expression for the
spacing 	 in solitary waves bifurcating from scalar nonlocal bifurcations. Several observations
quickly follow from this formula. First, solitary waves from scalar nonlocal bifurcations exist
only when parameters δ and I have the same sign. Second, when δ = 0, 	 goes to infinity.
Thus, this is a boundary of scalar nonlocal bifurcations. This condition is precisely the one
proposed in section 2. For the CNLS system, δ = 0 on the curves (3.22). One may notice
from formula (4.23) that 	 also goes to infinity when I = ∞. However, I = ∞ does not
correspond to a boundary of scalar nonlocal bifurcations. The reason is as follows. For the
CNLS system, I = ∞ on the local bifurcation boundaries of pure v-pulses:

ω = 1

s − n
, (4.27)

where n is an integer and 0 � n < s. This is because on these boundaries, the solution φ of
equation (4.21) which satisfies the zero boundary condition at ξ = −∞ (see equation (4.22)) is
always localized. Thus, in order for it to satisfy the boundary condition (4.22) at ξ = ∞, φ must
be infinitely large. Hence, I = ∞. The above fact applies to the solution ũI of equation (4.4)
as well: on the local bifurcation boundary (4.27), solution ũI satisfying boundary conditions
(4.5) and (4.7) is infinitely large. When this happens, our original assumption ũI 
 1 for
scalar nonlocal bifurcations breaks down. Hence, if there is a nonlocal bifurcation here at all,
it would not be scalar: the pulses on the two wings would be true vector solitons. Thus, I = ∞
does not give a boundary of scalar nonlocal bifurcations. Consequently, a scalar nonlocal
bifurcation boundary is given entirely by the condition δ = 0, which is our previous condition.
An interesting and subtle issue is: what if curves δ = 0 and I = ∞ intersect? As we have
discussed above, when I = ∞, the nonlocal bifurcation (if there is one) becomes nonscalar.
Thus at the locus of I = ∞ and δ = 0, the nonlocal bifurcation could turn from scalar to
nonscalar. Then the bifurcation boundary would deviate from the scalar bifurcation curve
δ = 0 at the intersection. This phenomenon could, and does, happen. In fact, figure 7 gives a
good example. Let us reproduce the scalar bifurcation curve of figure 7 (i.e. (3.22) with n = 3)
and the true bifurcation boundary in figure 8 (solid line and circles). On top of it, we plot the
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local bifurcation curve (4.27) of v-pulses with n = 0 (dashed line). We see that the intersection
between these two curves is precisely where bifurcation turns from scalar to nonscalar; thus,
deviation between the numerical bifurcation boundary and the scalar bifurcation boundary
starts there. This example and the matched asymptotic analysis above tell us that the previous
condition for scalar nonlocal bifurcations is a necessary but not sufficient condition. When
local bifurcation curves of v-pulses intersect with these necessary-condition curves, nonscalar
bifurcations could start; thus, scalar bifurcations on part of the necessary-condition curves will
not materialize.

The analytical expressions for δ and I may be possible to obtain, as the linear Schrödinger
equations (4.21) and (4.25) can be solved using hyper-geometric functions (see [7] and
section 3). But such expressions would be very complex. For practical purposes, it is preferable
to determine them numerically. For illustration purposes, we select ω = 0.6, and show the
numerical values of these quantities in figure 9 at various β-values ranging from −1 to 7.
In figure 9(a), the integral I is shown. This integral is independent of the symmetry of the v

solution. In figures 9(b) and (c), the coefficients δ for antisymmetric and symmetric v solutions,
respectively, are shown. This figure is helpful in revealing on which side of the scalar nonlocal
bifurcation boundary solitary waves can be expected. For instance, at ω = 0.6, δ = 0 when
β = 0.28 and the v(x) component is antisymmetric. On the left-hand side of this β-value, δ > 0
and I > 0; thus, solitary waves with symmetric u-component and antisymmetric v-component
can be expected. But on the right-hand side of this β-value, δ < 0 and I > 0, therefore, no
such waves can be found. These predictions completely agree with the numerics shown in
the previous section. Similar agreement is found near other scalar nonlocal bifurcation curves
as well.

As ω → ωNLB
n (β), δ → 0; thus, 	 → ∞ according to formula (4.23). Below,

we derive the asymptotic formula for 	 when ω → ωNLB
n (β), or equivalently, β → βNLB

n (ω)

(see equation (3.27)). The latter limit will be adopted in the following derivation as it is a little
more convenient.

When β → βNLB
n (ω), the integral I approaches a finite constant value I (ω, βNLB

n ), while
δ goes to zero. Obviously, the asymptotic formula for 	 crucially depends on the asymptotic
formula of δ. We determine the asymptotic formula for δ by regular perturbation methods

2 4 6 8 10
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Figure 8. Intersection between the dashed curve ω = 1/s (see equation (3.10)) defining local
bifurcations of daughter-u solutions from v-pulses (with n = 0) and the solid curve defining
the necessary condition (3.22) for scalar nonlocal bifurcations (with n = 3). Circles show the
numerical results for nonlocal bifurcations reproduced from figure 7.
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Figure 9. Parameter values δ and I at ω = 0.6 and various β-values: (a) the integral I values;
(b) coefficient δ for antisymmetric v-components; (c) δ for symmetric v-components.

below. Equation (4.25) can be rewritten as

ψxx − ω2ψ + βNLB
n u2

0ψ = −εu2
0ψ, (4.28)

where ε = β − βNLB
n . When ε = 0, this equation has an unbounded solution:

ψn0(x) =




1

gn

v̂1(x), n = 2n1,

− 1

gn

v̂2(x), n = 2n2 + 1,

(4.29)

where functions v̂1,2(x) and constant gn are given by equations (3.23), (3.24) and (3.26). The
asymptotic behaviour of this solution is:

ψn0(x) → e−ωx + o(eωx), x → −∞ (4.30)

(see equation (3.25)). When ε is small, the solution ψ can be expanded into a regular
perturbation series

ψ(x, β, ω) = ψn0(x, βNLB
n , ω) + εψn1(x, βNLB

n , ω) + O(ε2). (4.31)

When this expansion is substituted into equation (4.25), at order ε, we find that the function
ψn1 satisfies the equation

ψn1xx − ω2ψn1 + βNLB
n u2

0ψn1 = −u2
0ψn0. (4.32)
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Recalling that the boundary conditions for ψ(x) and ψn0(x) are given by equations (4.26)
and (4.30), the boundary condition for the function ψn1 is

ψn1(x) → δ

ε
eωx, x → −∞. (4.33)

The linear operator on the left-hand side of equation (4.32) is self-adjoint. In addition, ψn0(x)

is a homogeneous solution. Calculating the inner product between ψn0 and the inhomogeneous
term of equation (4.32), we readily find that∫ ∞

−∞
u2

0ψ
2
n0 dx = (ψn0xψn1 − ψn0ψn1x)|∞−∞. (4.34)

Substituting the boundary conditions (4.30) and (4.33) into the above relation, we find that for
both ψ(x) symmetric and antisymmetric, the constant δ is given by the asymptotic formula

δ = β − βNLB
n

4ω

∫ ∞

−∞
u2

0ψ
2
n0 dx + O

((
β − βNLB

n

)2)
. (4.35)

We have compared this formula with the numerical values of δ as displayed in figures 9(b)
and (c). The slope

∫ ∞
−∞ u2

0ψ
2
n0 dx/4ω predicted by this formula is in excellent agreement with

the numerical slope at β = βNLB
n . When this formula is substituted into equation (4.23), we

finally obtain the leading two-term asymptotic expansion for the spacing function 	 as

	 = 1

2(ω − 1)

{
ln

(
β − βNLB

n

)
+ ln K + O

(
β − βNLB

n

)}
, (4.36)

where the constant K is

K = Kn(ω) = ω3

βNLB
n I (ω, βNLB

n )

∫ ∞

−∞
u2

0ψ
2
n0 dx. (4.37)

Next, we make quantitative comparisons between the spacing formula (4.23), its leading two-
term expansion (4.36) and numerics near the scalar nonlocal bifurcation boundaries (3.22) with
n = 1 and 2 at ω = 0.6 and various β-values (see figure 2). We remind the reader that ω = 1−s

is a boundary for antisymmetric v-components, and ω = 2 − s is a boundary for symmetric
v-components. At ω = 0.6, the boundary point is at βNLB

1 = 0.28 for the former case, and is at
βNLB

2 = 1.68 for the latter case. The analytical spacings from formula (4.23) and its two-term
asymptotic expansion (4.36) are shown as dashed and dash-dotted lines in figures 10(a) and (b)
for these two cases, respectively. We have also numerically determined the spacings between
the v-pulses and the central u-pulse in the exact solitary waves. These numerical values are
shown as solid lines in figures 10(a) and (b). We see that, when the separation 	 is large, the
formula (4.23) and its asymptotic form (4.36) agree with the numerical values perfectly.

5. Example 2: saturable nonlinearity

As a second example we take the CNLS system studied by Ostrovskaya and Kivshar [11]:

iUt + Uxx + U
|U |2 + |V |2

1 + s(|U |2 + |V |2) = 0, (5.1)

iVt + Vxx + V
|U |2 + |V |2

1 + s(|U |2 + |V |2) = 0. (5.2)

This dimensionless model arises after scaling of the model for the incoherent interaction
between two linearly polarized optical beams in a biased photorefractive medium. Here,
s (0 < s < 1) is an effective saturation parameter, representing the photorefractive effects.
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Figure 10. Comparison between the analytical formula (4.23), its leading two-term asymptotic
expansion (4.36) and numerical values for spacing 	 at ω = 0.6 and various β-values:
(a) comparison near the scalar nonlocal bifurcation boundary (3.22) with n = 1; (b) comparison
near the scalar nonlocal bifurcation boundary (3.22) with n = 2.

This system is significant because it was shown in [10] that multi-humped stationary pulses
may be stable solutions, a result that explains the experimental observations of [9]. In the limit
s → 0, this system reduces to the Manakov equations.

The solitons in this system are of the form

U(x, t) = eit u(x), V (x, t) = eiω2t v(x), (5.3)

where u and v are real functions satisfying the following ODEs:

uxx − u + u
u2 + v2

1 + s(u2 + v2)
= 0, (5.4)

vxx − ω2v + v
u2 + v2

1 + s(u2 + v2)
= 0. (5.5)

Looking for single-component pulses (u = 0, or v = 0) we obtain simple planar equations,
which can be shown by phase plane techniques to possess symmetric homoclinic orbits ±uh,
±vh. Unlike the previous example, we know of no closed-form expressions for these solutions
other than at s = 0. So we turn straight away to numerical methods. Once again we restrict
to 0 < ω < 1 and look for local and scalar nonlocal bifurcations from the pulse uh. Figure 11
shows the analogue of figure 2 for this example where the bifurcation boundaries were obtained
by numerically imposing the boundary conditions for local bifurcation and for scalar nonlocal
bifurcation on the linearized equation

vxx − ω2v +
u2

h(x)v

1 + su2
h(x)

= 0. (5.6)

Figure 12 depicts the corresponding graphs of w1(s) and w2(s) for fixed ω = 0.5, where w1

and w2 were defined in (3.32). Note that we have qualitatively the same structure as in figure 3
in that the mode shapes v(x) gain increasingly many internal zeros as the parameter increases
to some limit. Moreover, between each pair of local bifurcations of a given symmetry type
there is a scalar nonlocal bifurcation, and vice versa. Here, it would seem that the limit s → 1
plays the same qualitative role as β → ∞ in the previous model, and we conjecture that there
are infinitely many local and scalar nonlocal bifurcations as we approach this limit. This is
borne out by the results in figure 11 which show that the curves in the (s, ω)-plane defined by
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Figure 11. Curves of local (- - - -) and scalar nonlocal (——) bifurcations from the pure u-pulse
uh of (5.4), (5.5) obtained by numerically solving the linearized equation (5.6) and requiring the
solution to have purely decaying or growing asymptotics at infinity: (a) the v-component is even;
(b) the v-component is odd. Only the first three curves of each type are presented.

zeros of w1 = 0 and w2 = 0 become increasingly steep as s → 1. It would be fair to conjecture
from the numerics that all curves (apart from the first symmetric scalar nonlocal bifurcation)
approach the point (ω, s) = (1, 1). There are some numerical difficulties in computing the
nonlocal bifurcation curves up to this point, because the pulse uh becomes infinitely broad as
s → 1, and hence the solution v(x) of the linearized problem which grows exponentially at
infinity must be continually rescaled to avoid the solution becoming arbitrarily large.

Now the presence of local bifurcations has been found before in this system; see figure 1
in [11] where local bifurcations are found via zeros of a certain integral as a function of ω for
several different values of s. Here we have presented a simple procedure for automatically
detecting these local bifurcations as a function of all system parameters. As far as we know
these curves of local bifurcations are not given by closed-form analytic expressions as they
were in the previous example.

The question remains whether the curves which have been putatively called scalar nonlocal
bifurcations really represent that for the full equations. Figure 13 depicts numerical solutions
of the fully coupled nonlinear equations for fixed ω = 0.5 in a parameter region between
the second local and first scalar nonlocal symmetric bifurcations. A one-parameter family
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Figure 12. Curves of (a) w1(s) and (b) w2(s) defining, respectively, local and scalar nonlocal
bifurcations according to the theory, for the model (5.4), (5.5) at ω = 0.5. Dashed lines correspond
to modes with even symmetry and solid lines to odd-symmetric modes. The labelled zeros of each
function correspond to mode shapes for v(x) that are qualitatively similar (i.e. having the same
structure of zeros) as the corresponding panels of figure 3.

of vector solitons is computed which are born at the local bifurcation. It is found that the
solution branch terminates at the value s ≈ 0.8055 which agrees to four decimal places with
the scalar nonlocal bifurcation boundary determined from our geometric argument of section 2.
Inspection of solitary waves close to this boundary indicates that a scalar nonlocal bifurcation
indeed occurs here. Note from figure 13(c) that the separation varies logarithmically with the
variation of the parameter away from the nonlocal bifurcation boundary, as in the first example
(see equation (4.36)).

Finally, figure 14 indicates the results of a series of similar one-parameter continuations
(for either fixed s or fixed ω) starting from the same curve of local bifurcations. Observe
the agreement between the termination of these branches and the theoretical scalar nonlocal
bifurcation boundary. Indeed, in each run the final orbit was found to be a pure u-pulse
flanked symmetrically by two v-pulses, qualitatively the same as in figure 13. Similar results
starting from each of the local bifurcation boundaries computed in figure 11 have found that
the bifurcated branches all continue smoothly up to the theoretical scalar nonlocal bifurcation
curves. Thus, in this second example, the proposed condition for scalar nonlocal bifurcations
and numerics show complete and global agreement. We note that no deviation of the sort in
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Figure 13. (a) The v-component of vector solitons in (5.4), (5.5) for ω = 0.5 and s =
0.9075(≈sLB), 0.9, 0.85, 0.81, 0.8055(≈sNLB). The inset depicts the u-component of the vector
soliton at sLB (larger peak) and sNLB (smaller peak). In (b) the separation between the two maxima
of |v| is plotted as a function of s, and (c) plots the same data on a logarithmic scale where the
more precise value sNLB = 0.8053134 is used.

figure 7 of the first example occurs here because scalar nonlocal bifurcation boundaries do not
intersect with local bifurcation boundaries of v-pulses now. In fact, no local bifurcations of
daughter u solutions from pure v-pulses occur for s < 1. This is because, unlike in the CNLS
example where the transformation ω → 1/ω mapped back curves into the domain of interest
(0 < β < ∞), here this transformation takes curves into the region s > 1.

6. Linear instability of solitary waves arising from nonlocal bifurcations

An important question about solitary waves generated by scalar nonlocal bifurcations is their
linear stability. These waves are multi-humped by construction. The common wisdom is
that multi-hump solitary waves in conservative systems are linearly unstable (for instance, see
[17]). However, this is not always the case, as stable multi-hump solitary waves in the saturable
CNLS model (5.1), (5.2) have been reported [10]. A comprehensive stability analysis of these
solitary waves is quite involved and lies outside the scope of the present paper. However, in
this section, we will selectively test the linear stability of a few such solitary waves as discussed
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Figure 14. A scalar nonlocal bifurcation boundary for the system (5.4), (5.5). The stars represent
scalar nonlocal bifurcation boundaries that were obtained by solving the full nonlinear equations.
The solid line was obtained from the condition w2 = 0 for the linearized equation (5.6). The
dashed line is a similarly obtained curve of local bifurcations from which these particular vector
solitons are born.

above. These results are suggestive of the linear stability behaviour of solitary waves born out
of scalar nonlocal bifurcations as a whole.

Our strategy for testing the linear stability is by numerically simulating the linearized
equations of the two models (3.1), (3.2) and (5.1), (5.2) expanded around solitary waves. For
both models, we perturb solitary waves as

U(x, t) = eit {u(x) + εψ(x, t)}, V (x, t) = eiω2t {v(x) + εφ(x, t)}, (6.1)

where (u, v) is a solitary wave, ε 
 1, and (ψ, φ) are perturbation functions. Substituting
this perturbed solution into each model and dropping terms which are order ε2 and higher, the
linearized equations for ψ and φ will be obtained. Then, we simulate this linearized system
for a long time, starting with a random noise. If the solutions ψ and φ grow exponentially,
then the solitary wave (u, v) is linearly unstable.

First, we consider the CNLS model (3.1), (3.2). Its nonlocal bifurcation boundary is shown
in figure 2. At (β, ω) = (0.29, 0.6), which is close to the nonlocal bifurcation boundary with
n = 1, the solitary wave born out of this nonlocal bifurcation is displayed in figure 15(a) (see
also figure 5). Numerical simulation of the linearized equation around this solitary wave shows
that there is a purely exponentially growing unstable eigenmode. The unstable eigenfunction
is displayed in figure 15(b). The unstable eigenvalue is 0.083 (purely real). Thus, this solitary
wave is linearly unstable. At (β, ω) = (1.6, 0.6) which is close to the nonlocal bifurcation
boundary with n = 2 (see figure 2), another solitary wave is born and displayed in figure 15(c).
We have found that this wave is also linearly unstable. The unstable eigenfunction is shown
in figure 15(d), and the unstable eigenvalue is 0.13 (purely real).

Next, we consider the saturable model (5.1), (5.2). As shown in figure 13, at (s, ω) =
(0.81, 0.5), there is a solitary wave born out of a nonlocal bifurcation. This solitary wave
is reproduced in figure 16(a). By simulating the linearized system, we have found that this
solitary wave is linearly unstable as well. The unstable eigenfunction is shown in figure 16(b),
and the unstable eigenvalue is 0.090 (purely real).
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Figure 15. Linear instability of two solitary waves born out of scalar nonlocal bifurcations in the
system (3.1), (3.2): (a) and (b) the solitary wave and its unstable eigenmode at (β, ω) = (0.29, 0.6);
(c) and (d) the solitary wave and its unstable eigenmode at (β, ω) = (1.6, 0.6).

–20 –10 0 10 20

–1

2

3

4

5(a)

u

v

x
–20 –10 0 10 20

–0.5

0

0.5

1
(b)

x

Re(ψ)

Im(ψ)

Im(φ)

Re(φ)

so
lit

ar
y 

w
av

e

un
st

ab
le

 e
ig

en
m

od
e

0

1

Figure 16. Linear instability of solitary waves born out of scalar nonlocal bifurcations in the system
(5.1), (5.2): (a) the solitary wave at (s, ω) = (0.81, 0.5); (b) the unstable eigenmode.

From these selective numerical testings, we have reason to believe that solitary waves
which are just born out of scalar nonlocal bifurcations in the two models (3.1), (3.2) and (5.1),
(5.2) are linearly unstable in general. This belief is consistent with a previously established
fact that solitary waves born out of vector nonlocal bifurcations are linearly unstable [17].
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However, when these solitary waves have moved far away from the boundaries of nonlocal
bifurcations, instability may disappear, and the solitary waves may become stable. In fact,
we have found that in the saturable model (5.1), (5.2), when solitary waves of figure 13(a)
move to the local bifurcation boundary s = sLB, they indeed become linearly stable (a similar
phenomenon has been reported in [10]). But in the CNLS model (3.1), (3.2), solitary waves
remain unstable when they move to the boundaries of local bifurcations [12, 13].

7. Discussion

In this paper we have described by numerical computation, plausible argument and detailed
asymptotic analysis a new kind of bifurcation of solitary waves for CNLS systems. Our
geometric argument suggests that this so-called scalar nonlocal bifurcation occurs when the
linearization of the nonlinear system around a scalar pulse has purely growing asymptotics
at infinity. Our matched asymptotic analysis confirms this condition. It further reveals
that when this scalar nonlocal bifurcation boundary intersects with certain local bifurcation
boundaries, the actual nonlocal bifurcation can turn from scalar to nonscalar at the intersection.
All these theoretical results are fully supported by our numerics on two CNLS systems (3.3),
(3.4) and (5.4), (5.5). Our direct numerical simulations suggest that solitary waves which are
just born from scalar nonlocal bifurcations are linearly unstable, but they can lead to stable
solitary waves by parameter continuation.

It remains an open problem to fully unfold the codimension-two nonlocal bifurcation that
occurs when the scalar nonlocal bifurcation boundary intersects the local-bifurcation boundary.
In particular, it remains unknown whether a scalar nonlocal bifurcation continues to occur on
the upper portion of the solid curve in figure 8 (upper left panel). We have found that the wave
that starts from the local bifurcation with n = 3 does not end there, but this does not exclude the
possibility of other branches of vector solitons terminating on this possible nonlocal bifurcation
boundary. Preliminary numerical searching has not revealed any candidate branches, but a
more careful study is required.

Finally, we should mention that the ideas in this paper were originally motivated by the
observation of what was termed a ‘jump’ bifurcation in [6]. There, a nonlocal bifurcation
occurs where a pure-v pulse bifurcates at infinity from a vector soliton. The model in question
is for a third-harmonic generation system where the symmetry is such that pure u solutions
do not exist. At present it is not clear whether a simple criterion like the one in this paper can
be applied. One could conjecture that the jump bifurcation occurs when linearization around
the central vector soliton has precisely the growing exponential asymptotics in its tail of the
pure-v pulse. But this conjecture requires careful numerical and analytical confirmations.
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