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Observation of two-dimensional lattice vector solitons
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We demonstrate the formation of fundamental and dipolelike vector solitons in an optically induced two-
dimensional photonic lattice. Such vector solitons are realized by mutual trapping of two beams in the lattice.
Our theoretical results are in good agreement with experimental observations. © 2004 Optical Society of
America
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Discrete solitons (DSs) and intrinsic localized states in
periodic structures have attracted considerable inter-
est in optics,1,2 not only because of their potential appli-
cations but also because such phenomena also exist in a
variety of other discrete nonlinear systems. Recently,
a series of experiments demonstrated the formation of
DSs in fabricated semiconductor waveguide arrays3,4

and in optically induced photonic lattices.5 –9 Several
exciting theoretical predictions about DSs were made
as well, including discrete vortex solitons10,11 and dis-
crete vector solitons.12 –14 Among such self-localized
states, discrete vector solitons make up an important
family. Although vector solitons have been realized
previously in continuum nonlinear systems, they were
observed only recently in a discrete system of one-
dimensional AlGaAs waveguide arrays.15

In this Letter we report the experimental observa-
tion and numerical modeling of two-dimensional (2D)
discrete vector solitons in an optically induced photonic
lattice. We demonstrate that two mutually incoher-
ent beams can lock into a fundamental vector soliton
while propagating along the same lattice site, although
each beam alone would experience discrete diffraction
under the same conditions. When the two beams are
launched in parallel into two neighboring lattice sites,
they can also form a localized state akin to a dipole
vector soliton.

The experiments were performed in a biased photo-
refractive crystal illuminated by a laser beam (l �
488 nm) passing through a rotating diffuser and an
amplitude mask as shown in Fig. 1. The photorefrac-
tive crystal (SBN:60, 5 mm 3 5 mm 3 8 mm) provides a
self-focusing noninstantaneous nonlinearity. The am-
plitude mask provides spatial modulation after the dif-
fuser on the otherwise uniform beam, which exhibits a
pixellike intensity pattern at the input face of the crys-
tal.16 This pixellike beam is ordinarily polarized and
is partially coherent as controlled by the rotating dif-
fuser, forming a stable and nearly invariant waveguide
lattice in the crystal. A Gaussian beam split from the
same laser output is sent into a Mach–Zehnder inter-
ferometer. The two extraordinarily polarized beams
exiting from the interferometer are combined with the
0146-9592/04/141656-03$15.00/0
lattice beam, propagating collinearly through the crys-
tal. When a piezoelectric-transducer mirror is ramped
at a fast frequency, the two beams for the vector com-
ponents are realized—each beam itself is coherent and
experiences a strong self-focusing nonlinearity but is
mutually incoherent with the other. The two compo-
nents are monitored separately with a CCD camera,
taking advantage of the noninstantaneous response of
the crystal.17 In addition, a uniform incoherent beam
is used as background illumination for f ine tuning the
nonlinearity.

Typical experimental results of a 2D discrete vector
soliton are presented in the first two rows of Fig. 2,
which were obtained with a square lattice of 20-mm
nearest-neighbor spacing. The two mutually incoher-
ent beams [Fig. 2(a), rows 1 and 2] were launched into
the same lattice site, with a combined peak intensity
approximately six times weaker than that of the lattice
beam. Discrete diffraction of each beam was observed
at a low bias f ield of 100 V�mm [Fig. 2(b)], but the two
beams formed a coupled DS pair at a high bias f ield
of 290 V�mm [Fig. 2(c)]. These intensity patterns of
each beam were taken immediately after blocking the
pairing beam. In contrast, Fig. 2(d) shows that, af-
ter the pairing beam was removed and the remain-
ing beam reached a new steady state, each beam itself

Fig. 1. Experimental setup: PBS, polarizing beam split-
ter; BS, beam splitter; PZT, piezoelectric transducer; SBN,
strontium barium niobate; V, voltage. Inset, photonic lat-
tice created by optical induction.
© 2004 Optical Society of America
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Fig. 2. Experimental and numerical results of a 2D dis-
crete vector soliton. (a) Input, (b) discrete diffraction at
low bias field, (c) mutual trapping, (d) decoupled output at
high bias f ield. Rows 1 and 2 show the two components
of the vector soliton from the experiment. Since the two
components from the simulations are the same, only the U
component is shown (row 3).

no longer formed a DS under the same conditions.
These results illustrate that the observed vector soli-
ton in Fig. 2(c) arises from mutual trapping of two
nonlinearly interacting beams in the lattice, and the
soliton structure is not possible should one of the com-
ponents be absent. As in the case of a scalar lattice
soliton,5 – 8 a vector lattice soliton requires a balance
between the waveguide coupling offered by the lat-
tice and the self-focusing nonlinearity controlled by the
combined intensity of both beams (when other experi-
mental parameters are unchanged). Thus, after re-
moving one beam, the balance cannot be maintained
and the other beam experiences only partial focusing
[Fig. 2(d)]. When the two beams were recombined, the
vector soliton was reformed in a steady state. With-
out the lattice the two beams could not form a coupled
soliton pair under these experimental conditions, al-
though such a soliton pair has been observed before in
a different nonlinear regime.17

The above experimental results were also observed
in our numerical simulations of the coupled 2D non-
linear wave equations with a periodic lattice potential.
The nondimensional model for propagation of two
mutually incoherent beams in a lattice can be ex-
pressed as5,6
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V are the slowly varying amplitudes of the two beams
normalized by the square root of the dark irradiance
of the crystal Id; z is the distance along the direc-
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of the photonic lattice normalized by Id; E0 is the ap-
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D is the lattice spacing; k0 � 2p�l0 is the wave num-
ber; k1 � k0ne; and ne and r33 are the unperturbed re-
fractive index and the electro-optic coefficient for the
extraordinarily polarized beam, respectively. As in
the experiment, we chose parameters as D � 20 mm,
l0 � 0.5 mm, ne � 2.3, r33 � 280 pm�V, and I0 � 3Id.
Thus in our simulation one x or y unit corresponds to
6.4 mm, one z unit corresponds to 2.3 mm, and one E0
unit corresponds to 20 V�mm in physical units. The
initial conditions for U and V are Gaussian beams cen-
tered at the same lattice site, with equal peak intensity.
Their combined intensity is 1�5 of the lattice inten-
sity, and their FWHMs are 10 mm. Numerical results
after 15 mm of propagation are shown in the bottom
row of Fig. 2, where Fig. 2(a) shows the input, Fig. 2(b)
shows the discrete diffraction at E0 � 50 V�mm, and
Figs. 2(c) and 2(d) show the coupled and decoupled
components, respectively, of a lattice vector soliton at
E0 � 140 V�mm. Since the two components are ex-
actly the same, only the U component is shown. These
results are in good agreement with our experimental
observations.

The above results suggest the existence of funda-
mental vector solitons in model Eqs. (1) and (2). We
show that this is indeed the case. In fact, because
of the rotational symmetry of the equations, a funda-
mental vector soliton can be obtained from scalar soli-
tons as U � f�x,y�cos u exp�2imz�, V � f�x, y�sin u 3

exp�2imz�, where f�x,y� is the scalar lattice soliton
satisfying

≠2f
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u is an arbitrary projection angle, and m is the propa-
gation constant. Scalar lattice solitons were studied
in Refs. 5, 6, and 11. To further understand these
solitons and their stability behaviors, we obtained
them numerically from Eq. (3) by relaxation methods.
The results at E0 � 140 V�mm are shown in Fig. 3,
where Fig. 3(a) is the lattice f ield and Figs. 3(b) and
3(c) are the scalar lattice soliton obtained with differ-
ent peak intensities. The lattice soliton is localized at
moderate intensities and spreads to more lattice sites
at low intensities. Figure 3(d) illustrates the non-
dimensional power and peak intensity diagrams versus
propagation constant m, which shows that there is a
minimal power below which lattice solitons cannot ex-
ist. Suggested by the Vakhitov and Kolokolov stability

Fig. 3. Exact solutions of scalar lattice solitons at E0 �
140 V�mm and I0 � 3Id. (a) Lattice pattern, (b) more lo-
calized soliton (with peak intensity I � Id), (c) less localized
soliton (with peak intensity I � Id�4, (d) normalized power
and intensity diagram.
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Fig. 4. Demonstration of dipolelike vector solitons in a
2D lattice. Top, experimental results. Bottom, corre-
sponding numerical results. (a) Combined input; (b) and
(c) combined output at low- and high-bias f ields, respec-
tively; (d), (e) U and V components from (c).

criterion,18 lattice solitons on the right (left) side of this
minimal-power point are linearly unstable (stable).
We have confirmed this by directly simulating the
linearized equation around scalar solitons. A similar
finding for the case of Kerr nonlinearity was reported
in Ref. 11.

When the two mutually incoherent beams are
launched in parallel into two neighboring lattice sites
rather than overlapped into one site, a dipolelike
vector soliton is observed. The experimental results
are shown in Fig. 4 (top row). The initial spacing
between the two beams is �28 mm to match the two
diagonal lattice sites [Fig. 4(a)]. At a low bias of
90 V�mm the combined pattern covers several lattice
sites at crystal output due to discrete diffraction
[Fig. 4(b)]. As the field is increased to 320 V�mm,
the two beams are trapped into mainly the two input
lattice sites, but a significant portion of the energy
remains in the two orthogonal lattice sites [Fig. 4(c)].
When each beam is viewed separately, a localized but
asymmetric pattern is observed [Figs. 4(d) and 4(e)]
in which mutual coupling between the left and the
right beams is visible. Without the lattice, mutually
incoherent soliton beams tend to attract each other at
such close proximity.

Numerically, we simulated the evolution of a dipole-
like vector soliton in Eqs. (1) and (2) corresponding
to our experiments. The results for a simulation
distance of 15 mm are shown in Fig. 4 (bottom panel),
where Fig. 4(a) is the input; Figs. 4(b) and 4(c) are the
combined output at bias fields of 50 and 140 V�mm,
respectively; and Figs. 4(d) and 4(e) are the jU j and
jV j components, respectively, of Fig. 4(c). These
results qualitatively resemble those from the experi-
ments. In particular, in addition to the satellite lobes
developed at the four sides of the main beam, which is
typical of scalar lattice solitons, there is another lobe
in each component that overlaps with the main beam
in the other component. This additional lobe (as
also seen in our experiment) is due to the nonlinear
coupling between the two components. Without the
coupling this lobe would not exist, and the DS would
have a symmetric intensity pattern. The slight
difference between intensity patterns obtained from
experiment and simulation might be attributed to
diffusion-induced self-bending effects,17 which were
not included in our model for simplicity.
On the basis of the above results, one may wonder
whether the exact solutions for dipolelike vector soli-
tons exist in the theoretical model of Eqs. (1) and (2).
As seen in Figs. 4(d) and 4(e), such solitons should
have an asymmetric intensity pattern in each compo-
nent. We searched for such solitons extensively by use
of the relaxation methods but were not able to find any.
We note, however, that the exact solutions for single-
component dipole solitons in a lattice do exist.19

In summary, we have demonstrated the formation
of 2D vector solitons in an optically induced photonic
lattice. We expect these solitons to be found in other
relevant periodic nonlinear systems.
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