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Dipole solitons in optically induced two-dimensional
photonic lattices
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Dipole solitons in a two-dimensional optically induced photonic lattice are theoretically predicted and experi-
mentally demonstrated for the first time to our knowledge. It is shown that such dipole solitons are stable
and robust under appropriate conditions. Our experimental results are in good agreement with theoretical
predictions. © 2004 Optical Society of America
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Recently, self-trapping of light in periodic photonic
lattices has aroused much interest because of its novel
physics, light-routing applications, and connections to
photonic crystals.1,2 So far, scalar or vector lattice
solitons as well as vortex lattice solitons have been
studied both theoretically and experimentally.3 – 12

In this Letter we predict theoretically and demon-
strate experimentally, for the f irst time to our
knowledge, the existence of dipole solitons in a two-
dimensional (2D) optically induced photonic lattice.
These solitons are out of phase (OOP) between their
two humps. In the absence of a photonic lattice
these solitons cannot exist because of the repulsive
force between the humps. However, in the presence
of a lattice, the lattice could trap the two humps
against repulsion, leading to the formation of dipole
solitons. Our stability analysis shows that these
solitons are stable in the intermediate-intensity
regime. In addition, increasing the applied dc voltage
further stabilizes these solitons. Experimentally, we
observed these solitons in the regime of a high bias
field and found that they are stable and robust under
appropriate conditions. These novel types of lattice
dipole soliton are expected to arise in other periodic
nonlinear systems.

A nondimensional theoretical model for light propa-
gation in a linear photorefractive lattice is5
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where U is the slowly varying amplitude of the probe
beam normalized by the dark irradiance of crystal
Id, and Il � I0 sin2��x 1 y��
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square-lattice intensity function (in units of Id) that
closely resembles the lattice in our experiments. Here
I0 is the lattice peak intensity, z is the propagation
distance (in units of 2k1D2�p2), �x, y� are transverse
distances (in units of D�p), E0 is the applied dc f ield
[in units of p2��k2
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2r33�], D is the lattice spacing,
k0 � 2p�l0 is the wave number (l0 is the wave-
length), k1 � k0ne, ne is the unperturbed refractive
index, and r33 is the electro-optic coefficient of the
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crystal for an extraordinarily polarized light beam.
Consistent with our experiment, we chose lattice inten-
sity I0 � 3Id, lattice spacing D � 20 mm, l0 � 0.5 mm,
ne � 2.3, and r33 � 280 pm�V. Thus in this Letter
one x or y unit corresponds to 6.4 mm, one z unit
corresponds to 2.3 mm, and one E0 unit corresponds
to 20 V�mm in physical units.

Dipole solitons in Eq. (1) are sought in the form
of U � u�x, y�exp�2imz�, where u is a real-valued
function and m is the propagation constant. Solution
u is determined by an iteration method. These
solitons have two peaks located in the two adjacent
diagonal lattice sites, and these peaks are OOP. We
found such dipole solitons in a large region of the
parameter �E0, m� space. For instance, at E0 � 6
these solitons exist when 1.455 , m , 3.51 or equiv-
alently when their peak intensities Ip are in the
range of 0.94Id , Ip , 15.7Id. Such solitons with
peak intensities 12Id, 3Id, and Id are displayed in
Fig. 1 (the corresponding propagation constants m are
1.80, 3.11, and 3.50, respectively). As seen from this
figure, the location and localization of dipole solitons
change with their peak intensities. However, in all
these cases the intensity between the two main humps
is very low (close to zero) because of the destructive
interference, indicating the OOP feature of the dipole.
At high intensities the two humps of the dipoles do not
reside at the centers of two diagonal lattice sites [see
Fig. 1(a)]. Instead, they reside at the outskirts of
diagonal lattice sites, so that the separation between
them is considerably larger than the diagonal lattice
spacing. When the intensity of the dipole soliton

Fig. 1. Dipole solitons at E0 � 6 and peak intensities
of (a) 12Id, (b) 3Id, (c) Id. (d) Lattice field.
© 2004 Optical Society of America



July 15, 2004 / Vol. 29, No. 14 / OPTICS LETTERS 1663
is moderate, the two humps of the dipoles do reside
at the centers of diagonal lattice sites as shown in
Fig. 1(b), and the soliton is localized. If the intensity
is low, however, the soliton becomes less localized, and
the intensity f ield spreads to more lattice sites in the
manner shown in Fig. 1(c).

In experimental conditions the input beams are typi-
cally a pair of OOP Gaussian beams. Thus it is desir-
able to simulate theoretical model (1) with a pair of
Gaussian beams as initial conditions. For this pur-
pose we take crystal length L � 10 mm, lattice spac-
ing D � 20 mm, and lattice peak intensity I0 � 3Id.
The peak intensities of both Gaussian beams are 1�6
of the lattice intensity (i.e., 0.5Id), and the FWHM
of these Gaussian beams is 10 mm. The simulation
results are plotted in Fig. 2 (top). We see that at a
low field of 40 V�mm the beams experience discrete
diffraction, in which light tunnels away from the dipole
center along the original orientation [Fig. 2(b)]. The
reason is that no light can be in lattice sites between
the dipole because of destructive interference. Such
a discrete diffraction pattern also conf irms the initial
phase relation between the two humps of the dipole.
At a high dc field of 200 V�mm, dipole solitons are re-
alized, as shown in Fig. 2(c) for which most of the light
is trapped in the two lattice sites where the dipole sits
initially at the input. Without the lattice the two OOP
humps would repel each other13 [Fig. 2(d)].

The dipole solitons predicted above were also ob-
served in our experiment. Similar to earlier experi-
ments with fundamental and vortex solitons in 2D
optically induced lattices,8,11 a biased photorefractive
crystal (SBN:60, 5 mm 3 5 mm 3 8 mm) is used as a
self-focusing nonlinear medium. The crystal is illu-
minated by a lattice beam created by periodic spatial
modulation of a partially coherent beam �l0 � 488 nm�
from a diffuse laser source.14 The lattice beam is
ordinarily polarized, with its principal axes oriented
in the diagonal directions. The dipole beams, how-
ever, are extraordinarily polarized. With such a con-
figuration the lattice remains nearly invariant, but
the dipole itself experiences a strong self-focusing
nonlinearity.5 The two beams for the dipole are
generated from a Mach–Zehnder interferometer, with
a piezoelectric-transducer mirror tuning the relative
phase between them to be �p (i.e., OOP). The sepa-
ration between the two beams is adjusted to match the
diagonal lattice spacing ��28 mm�. After exiting the
interferometer, the two beams are launched into two
nearby lattice sites in the vertical direction [Fig. 2(a)],
propagating collinearly with the lattice beam through
the crystal. In addition, a broad incoherent beam is
used as background illumination for fine-tuning the
nonlinearity.

Typical experimental results of dipole lattice soli-
tons are shown in Fig. 2 (bottom panel). Intensity ra-
tio I0�Id is �3, and the intensity of the dipole beam is
�6 times weaker than that of the lattice. At a low bias
field the dipole undergoes discrete diffraction in the
lattice [Fig. 2(b)], exhibiting interesting patterns simi-
lar to those found in our simulation. At a high bias
field the dipole beam is trapped by the lattice poten-
tial and forms a dipole lattice soliton [Fig. 2(c)]. Note
that in the highly nonlinear regime, although some
energy is radiated to the lattice sites away from the
dipole, most of the energy is concentrated in the two
sites matched by the input dipole. The initial phase
structure is preserved after the dipole soliton is cre-
ated, as seen from its output intensity pattern, in which
destructive interference diminishes light between the
two humps [Fig. 2(c)]. Should one of the two beams be
turned off, the other forms a fundamental lattice soli-
ton and redistributes the energy to its center as well
as four neighboring sites along the principal axes of
the lattice.5,8 When the same dipole beam is launched
into the crystal without the lattice, the dipole diverges
[Fig. 2(d)] as expected.

The simulation and experimental results in Fig. 2
suggest that dipole solitons in theoretical model (1)
may be stable. To investigate this issue, we first
carry out a linear stability analysis for these soli-
tons. For this purpose we perturb the solitons as
U � exp�2mz� �u�x, y� 1 Ũ �x, y, z��, where u�x, y�
is a dipole soliton and Ũ ,, 1 is the infinitesimal
perturbation. When this perturbed solution is sub-
stituted into Eq. (1), the linearized equation for Ũ can
be derived. Starting with a random-noise initial con-
dition, we simulated this linearized equation for long
distances (hundreds of z units). If the solution grows
exponentially, then the underlying dipole soliton will
be linearly unstable, and the real part of the expo-
nential constant (eigenvalue) will be the growth rate
of infinitesimal perturbations. Otherwise, the dipole
soliton would be linearly stable. We have carried out
this stability analysis for all dipole solitons at two
applied dc fields, E0 � 5 and 6, and the growth-rate
diagrams are plotted in Fig. 3 (left panel). We see
immediately that the dipole solitons are linearly stable
in the intermediate-intensity regime (and unstable
otherwise). In particular, if E0 � 5, these solitons are
stable when 2.5Id , Ip , 6.6Id. If E0 increases to 6,
these solitons become stable when 2.1Id , Ip , 10Id,
i.e, the stability region is almost doubled. Thus
increasing the applied dc f ield stabilizes dipole soli-
tons. Next we study the nonlinear evolution of dipole
solitons under random-noise perturbations. The
noise has a Gaussian distribution in the spectral k
space with a FWHM that is 2 times larger than that
of the soliton, and it has 5% of the soliton’s power. To
illustrate, we chose a linearly stable dipole soliton with

Fig. 2. Theoretical (top) and experimental (bottom) re-
sults of dipole solitons: (a) input; (b) output at low f ield;
(c), (d) output at high f ield, with and without lattice.
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Fig. 3. Left panel, growth rates of infinitesimal per-
turbations on dipole solitons at E0 � 5 and 6; right
panel, intensities (top) and phases (bottom) of a dipole
soliton with E0 � 6 and peak intensity Ip � 3Id under 5%
perturbations.

Fig. 4. Theoretical and experimental results of in-phase
dipolelike solitons. From left to right, output at low and
high f ields from theory and the corresponding results from
experiments.

E0 � 6 and Ip � 3Id. The simulation result is shown
in Fig. 3 (right panel). The soliton does not break up
even after 36 z units of propagation (corresponding to
more than 80 mm in physical distance). In addition,
the two lobes of the dipole remain OOP as in the input.
This simulation result, as well as others that we have
done with different parameters, shows that dipole
solitons with intermediate intensities are both linearly
and nonlinearly stable. This stability explains why
dipole solitons are so robust in our experiment.

Finally, we mention that we have also discovered
dipolelike solitons whose two peaks have the same
phase. These in-phase dipolelike solitons are always
linearly unstable, but this instability can be strongly
suppressed in the regime of a high bias f ield. These
solitons were observed in our numerical simulations
and experiments under conditions analogous to those
in Fig. 2, except that the two input beams are now in
phase. Typical results are shown in Fig. 4. Details
will be reported elsewhere. In comparison with
Fig. 2, a clear distinction between the two types of
soliton structure lies in the intensity redistribution
for both discrete diffraction and nonlinear trapping.

In summary, we have demonstrated the formation of
dipole solitons in 2D optically induced photonic lattices.
The OOP dipole solitons are shown to be stable in a
large region of the parameter space.
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