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Symmetry breaking with opposite stability
between bifurcated asymmetric solitons in
parity-time-symmetric potentials
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We report a new type of symmetry-breaking bifurcation
of solitons in optical systems with parity-time-symmetric
potentials. In this bifurcation, the two bifurcated branches
of asymmetric solitons exhibit opposite stability, which
contrasts all previous symmetry-breaking bifurcations in
conservative and non-conservative systems. We show that
this novel symmetry-breaking bifurcation can be exploited
to achieve unidirectional propagation of high-intensity
light beams in parity-time-symmetric potentials. © 2019
Optical Society of America

https://doi.org/10.1364/0L.44.002641

Symmetry breaking of solitons is a common phenomenon in
nonlinear wave systems [1]. In this symmetry breaking, two
branches of asymmetric solitons emerge from the base branch
of symmetric solitons through a pitchfork bifurcation, when
the power of the symmetric soliton crosses a certain threshold.
This bifurcation has been heavily studied, especially in the non-
linear Schrédinger (NLS)-type models with symmetric
conservative potentials or symmetric gain-loss landscape
[2-5]. It has been experimentally observed as well [2]. In
parity-time (P7) symmetric complex potentials, while this
bifurcation is less common, it has been reported in certain
classes of PT -symmetric potentials [6].

In all previous symmetry-breaking bifurcations, the two bi-
furcated branches of asymmetric solitons always featured the
same stability. In systems with symmetric conservative poten-
tials or symmetric gain-loss landscape [2—5], this same stability
between the two asymmetric solitons is guaranteed, because the
system is symmetric in space and thus does not distinguish
between the left and right. In P7 -symmetric potentials, while
the system does distinguish between the left and right due to
the anti-symmetric gain-loss landscape, the reported symmetry
breaking in a Kerr nonlinear medium [6] still exhibited the
same stability for the two branches of asymmetric solitons.

In this Letter, we report a new type of symmetry breaking of
solitons, where the two bifurcated branches of asymmetric
solitons exhibit opposite stability. This symmetry breaking is
discovered in an optical system where a light beam propagates
in certain P7 -symmetric potentials under cubic-quintic or
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saturable nonlinearity. This opposite stability indicates that
the system favors one asymmetric soliton over the other. As
an application of this bifurcation, we demonstrate a device
which features unidirectional propagation for high-intensity
beams but reciprocal propagation for low-intensity beams.
The optical system we consider is nonlinear paraxial
beam propagation in complex PT -symmetric potentials under
cubic-quintic or saturable nonlinearity. We first consider cubic-
quintic nonlinearity, where the mathematical model is [7-9]

WP, +¥, + V)P + |PPY +7|PP=0. (1)

Here, ¥ is the complex envelope of the lights electric field,
z is the propagation distance, x is the transverse coordinate,
V(x) is a PT -symmetric potential, i.e., V*(x) = V(-x), with
the asterisk * representing complex conjugation, and y is the
coefficient of quintic nonlinearity. All variables have been
non-dimensionalized. Physically, the P7 -symmetric potential
means that the refractive index of the medium [i.e., Re(V)]
is symmetric in space, while the gain-loss profile [i.e.,
Im(V)] is anti-symmetric in space [9]. Such potentials have
been fabricated in various physical experiments [10-15]. In
addition, the cubic-quintic nonlinearity is common in many
materials too. The quintic term in the above equation is im-
portant, because without that term, symmetry breaking of
solitons in Eq. (1) would not exhibit the novel behavior
that we will report in this Letter [6]. Solitons in other PT -
symmetric systems under cubic-quintic nonlinearity have been
studied before [16,17], but there was no symmetry breaking
in such studies.

Solitons in Eq. (1) are sought of the form W(x,z) =
w(x)e**, where p is a real propagation constant, and y/(x)
is a localized function which satisfies the equation

Yo + VW + Py + rlwl'y = uy. @2
Since the potential V' (x) is P7 -symmetric, solitons in Eq. (1)
are generally also P7 -symmetric, i.e., y*(x) = w(-x), and
these solitons form continuous families parameterized by the
propagation constant p [12—15]. Symmetry-breaking of soli-
tons is forbidden in generic P7 -symmetric potentials [18].
However, in a special class of P7 -symmetric potentials

(6,19,20]
V(x) = g*(x) + aglx) +ig'(x), 3
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where g(x) is a real and even function and « a real constant,
symmetry breaking of solitons is possible, where two branches
of non-P7 -symmetric (asymmetric) solitons bifurcate out
from the base branch of P7 -symmetric solitons when the
power of the P7 -symmetric soliton crosses a certain threshold.
For Kerr nonlinearity (y = 0), symmetry breaking has been re-
ported in [6]. However, for the cubic-quintic nonlinearity
(y #0), we will show that this symmetry breaking exhibits
behaviors which have never been seen before.
To be concrete, let us take y = -0.1, a = -0.5, and

g(x) = A(e 0" o), )

with A = 2 and xy = 1.2. The corresponding P7 -symmetric
potential is displayed in Fig. 1(a). The real part of this potential
(i.e., the refractive index of the medium) is double-humped and
symmetric, and these two humps can be viewed as two wave-
guide channels, which are centered at x = -x and x = xq, re-
spectively. The imaginary part of this potential (i.e., gain-loss
profile of the medium) is anti-symmetric. Notice that the gain
and loss is quite strong, but this potential is still below phase
transition, i.e., its spectrum is all-real [9,21].

This P7 -symmetric potential admits a family of PT-
symmetric solitons, which bifurcate out from the linear discrete
eigenvalue p1y & 1.23 of the potential. The power curve of this
soliton family is shown as the solid line in Fig. 1(b), where
the power is defined as P(u) = [ |y(x; u)|*dx. At a point
marked by letter ‘d’ of this power curve, the corresponding sol-
iton is shown in Fig. 1(d). It is seen that the amplitude function
|y (x)| of this soliton is symmetric since y(x) is P7 -symmetric.

On this P7T -symmetric soliton branch, symmetry breaking
occurs at y, & 1.65, where two branches of asymmetric solitons
bifurcate out on the right side of the bifurcation point. These
two asymmetric solitons are related by w7 (x, u) = y,(~x, p).
Thus, their power curves are identical and displayed as a dashed
line in Fig. 1(b). At a point marked by letters ‘e,f” of this power
curve, the corresponding two asymmetric solitons are shown in
Figs. 1(e) and 1(f). The soliton in Fig. 1(e) has its energy con-
centrated in the right waveguide channel [i.e., the right hump
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Fig. 1. PT-symmetry-breaking of solitons in the cubic-quintic
model Eq. (1) with y =-0.1 and potential V(x) given by
Egs. (3)—(4), where a = -0.5. (a) Potential V' [solid blue: Re(V);
dashed red: Im(V)]. (b) Power curves of P7 -symmetric (solid) and
asymmetric (dashed) solitons in this potential. (c) The amplitude ||
of the soliton at the right waveguide channel x = x; = 1.2 versus the
propagation constant y. Solid: P7 -symmetric branch; dashed: asym-
metric branches. (d)—(f) Profiles of soliton amplitudes |w(x)| at
parameter points marked by letters “d,e,f” in panels (b) and (c).
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of Re(V)], while the one in Fig. 1(f) has its energy concen-
trated in the left waveguide channel. Obviously, neither soliton
is PT -symmetric.

The power curves in Fig. 1(b) cannot distinguish between
the two branches of asymmetric solitons. Thus, in Fig. 1(c) we
plot the soliton amplitudes || at the right waveguide channel
x = xy = 1.2 versus the propagation constant y. In this
figure, the two asymmetric soliton branches (dashed lines),
with energy concentrated in the right and left waveguide chan-
nels, are above and below the base P7 -symmetric soliton
branch (solid line) respectively; thus, they are now clearly
distinguishable.

Obur focus in this Letter is the stability behaviors of solitons
near the symmetry-breaking point. In particular, we consider
their linear stability. For this purpose, we perturb these soli-
tons as

P(x,2) = ey (x) + u(x)e” + w* (x)e!7], (5)

where |#|, |w| < |y|. Substituting it into Eq. (1) and lineariz-
ing, we arrive at the eigenvalue problem

-k .

E = |:L>1kl Liz:|3
L12 Lll

Liy = i(0y + V = u+ 20wl* + 3ylwl"),
Liy = iy (1 + 2y |y ).

If eigenvalues A with positive real parts exist, then the soliton is
linearly unstable; otherwise it is linearly stable.

It is easy to see that eigenvalues of operator £ always come
in conjugate pairs (4, 4*). In addition, if two asymmetric sol-
itons are related as w7 (x, ) = w,(-x, ), as those in Fig. 1,
then ecigenvalues for y,(x, ) would be negative of those
for w1 (x, p).

The eigenvalue problem Eq. (6) can be numerically com-
puted by the Fourier collocation method [8]. Our computation
shows that the P7 -symmetric branch of solitons in Figs. 1(b)
and 1(c) is stable before the symmetry-breaking bifurcation and
becomes unstable after the bifurcation. In addition, the branch
of asymmetric solitons with energy concentrated in the right
waveguide channel [the upper dashed branch in Fig. 1(c)] is
unstable, but the branch of asymmetric solitons with energy
concentrated in the left waveguide channel [the lower dashed
branch in Fig. 1(c)] is stable. These stability results are shown in
Fig. 2(a), which is a copy of Fig. 1(c) but with stability infor-
mation displayed (blue for stable and red for unstable). To
illustrate the reasons for these stability results, linear-stability
eigenvalue spectra for the three solitons in Figs. 1(d)-1(f)
are plotted in Figs. 2(d)-2(f), respectively. These spectra show
that the P7 -symmetric soliton in Fig. 1(d), which is above the
symmetry-breaking point, is unstable due to the appearance of
a pair of real eigenvalues, one of which is positive. The asym-
metric soliton in Fig. 1(e), whose energy is concentrated in the
right waveguide channel, is unstable due to the appearance of a
conjugate pair of eigenvalues on the right half of the complex
plane. However, the asymmetric soliton in Fig. 1(f), whose
energy is concentrated in the left waveguide channel, is stable

where
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Fig. 2. Linear-stability eigenvalue spectra for the three solitons in
Figs. 1(d)-1(f), respectively. The upper-left panel is Fig. 1(c) but with
stability illustrated (blue for stable and red unstable).

because there are no eigenvalues in the right half of the
complex plane.

It is constructive to understand the above stability results
from the point of view of eigenvalue bifurcations. At the sym-
metry breaking point u = y,, zero eigenvalue in the linear-
stability operator £ has geometric multiplicity two and algebraic
muldplicity four [5,18]. When the soliton bifurcates away from
the symmetry-breaking point, the zero eigenvalue of geometric
multiplicity one and algebraic multiplicity two stays at the origin
[due to phase invariance of the system Eq. (1)], but the zero
eigenvalue with the remaining geometric and algebraic multi-
plicities bifurcates out of the origin. Along the base branch, since
the soliton is P7 -symmetric, if 4 is an eigenvalue of £, so must
be A*, -4 and -A*. This quartet eigenvalue symmetry forces the
zero eigenvalue of algebraic multiplicity two to bifurcate along
only the real or imaginary axis, thus creating a pair of real or
purely imaginary eigenvalues of opposite sign [see Fig. 2(d)].
Along the bifurcated branches, however, since the soliton is
asymmetric, eigenvalues of £ only feature the pair (4, 4*) sym-
metry but generally not the quartet symmetry. In this case, that
zero eigenvalue of algebraic multiplicity two does not have to
bifurcate along the real or imaginary axis. Instead, it generically
bifurcates to a conjugate pair of complex eigenvalues on the
same side of the complex plane. In particular, when the bifur-
cation is along the upper branch of Fig. 1(c), the zero eigenvalue
bifurcates to the right side, creating oscillatory instability [see
Fig. 2(e)]. But when the bifurcation is along the lower branch
of Fig. 1(c), the zero eigenvalue bifurcates to the left side, thus
not generating any instability [see Fig. 2(f)].

Compared to previous stability results of symmetry-
breaking bifurcations of solitons [2—6], the stability switching
on the base branch of P7 -symmetric solitons in Fig. 2 is sim-
ilar to previous results and, thus, not surprising. However, the
opposite stability between the two bifurcated branches of asym-
metric solitons in Fig. 2 is totally new because it has never
been seen before, to the best of our knowledge. Conventional
wisdom has always expected the two asymmetric solitons in
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a symmetry-breaking bifurcation to share the same stability,
often out of symmetry considerations when the underlying
wave system is symmetric in space [2-5]. However, in P7 -
symmetric potentials, the anti-symmetric gain-loss profile
breaks this spatial symmetry and causes the two asymmetric
solitons to possess opposite linear-stability eigenvalues [see the
paragraph below Eq. (6)], which opens the door for opposite
stability between these asymmetric solitons, as Fig. 2 shows.

To corroborate the linear-stability results in Fig. 2, we
consider the nonlinear evolution of these solitons under per-
turbations. As examples, we perturb the three solitons in
Figs. 1(d)-1(f) under 10% random noise initial perturbations,
and their subsequent nonlinear evolutions are displayed in
Figs. 3(a)-3(c), respectively. These evolutions show that the
PT -symmetric soliton above symmetry breaking and the asym-
metric soliton with energy concentrated in the right waveguide
channel are also nonlinearly unstable, and initial perturbations
break them up and drive them to the left waveguide channel.
However, the asymmetric soliton with energy concentrated in
the left waveguide channel is nonlinearly stable.

The opposite stability between the two branches of asymmet-
ric solitons in Fig. 2 and nonlinear evolution results in Fig. 3
reveal that the wave system Eq. (1) under the P7 -symmetric
potential Egs. (3)—(4) favors asymmetric solitons with energy
concentrated in the left waveguide channel, and this preference
can motivate interesting applications. As an example, one poten-
tial application is a unidirectional (non-reciprocal) nonlinear
light routing device. In this device, the P7 -symmetric complex
potential in Fig. 1(a) is set up (with the refractive index and gain-
loss distributions engineered as the real and imaginary parts of
this potential), and the waveguide material is chosen to exhibit
cubic-quintic nonlinearity as in Eq. (1). Then, we launch a
Gaussian beam

Y(x,0) = Rye *4)'/2 (7

into this device, where R and & are the initial amplitude and
center position of the beam. At the high amplitude of Ry = 1.2,
evolutions of the beam launched at the initial positions of 4, =
1 (inside the right waveguide channel) and 4y = -1 (inside the
left waveguide channel) are displayed in the upper panels of
Fig. 4. It is seen that both beams eventually move into the left
waveguide channel, exhibiting unidirectional (non-reciprocal)
transmission. However, if the initial beam has lower amplitude
of Ry = 0.6, then the corresponding evolutions from the above
two initial positions are shown in the lower panels of Fig. 4. In
this case, transmission is reciprocal and bi-directional. This
means that this device exhibits unidirectional transmission only
at high amplitudes but not at low amplitudes. Physically, unidir-
ectionality is not expected at low amplitudes, because this trans-
mission is governed by the linear Schrédinger equation with a

-5

0 0 -5 0 5
x xT T

Fig. 3. Nonlinear evolutions of solitons in (a) Figs. 1(d), (b) 1(e),
and (¢) 1(f) under 10% random noise initial perturbations, respectively.
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Fig. 4. Upper row: unidirectional transmission of high-intensity
Gaussian beams Eq. (7) with Ry = 1.2 in Eq. (1) with potential of
Fig. 1(a): (a) launched at 4, = 1; (b) launched at 4, = -1. Lower
row: reciprocal transmission of low-power Gaussian beams Eq. (7)
with Ry = 0.6 in the same model and potential: (c) launched at
by = 1; (d) launched at 4y = -1.

PT -symmetric potential below phase transition; so there is no
instability to drive the beam’s unidirectionality.

In [22,23], unidirectional transmission was reported in P7 -
symmetric as well as non-P7 -symmetric dimer (ordinary dif-
ferential equation) models. However, unidirectionality in those
studies was due to different physical mechanisms and exhibit-
ing different dynamical behaviors.

This opposite stability between asymmetric solitons of
symmetry-breaking bifurcations in the P7 -symmetric model
Eq. (1) is not restricted to the quintic coefficient y = -0.1 used
above. We have found that this phenomenon also occurs for a
wide range of other positive and negative y values (except for
y = 0 where the nonlinearity is Kerr [6]). In addition, it occurs
for other types of nonlinearities such as saturable nonlinearity.
Let us consider the saturable nonlinearity, where Eq. (1) becomes

E
W+, 4 V()Y - —

and Ej is a real constant. Saturable nonlinearity arises in many
materials, such as photorefractive crystals [24]. When the poten-
tial V'(x) is as given in Eq. (3), g(x) as given in Eq. (4), a =
-0.9 and E, = 4, P7 -symmetry breaking of solitons is dis-
played in Fig. 5. In this case, we have found that the two
branches of asymmetric solitons exhibit opposite stability as well
[see Fig. 5(c)]. Thus, this novel type of symmetry breaking can
arise in many physical P7 -symmetric systems.

In summary, we have reported a new type of symmetry-
breaking bifurcation of solitons in P7 -symmetric optical sys-
tems with cubic-quintic and saturable nonlinearities. In this
bifurcation, the two bifurcated branches of asymmetric soli-
tons exhibit opposite stability, which contrasts all previous
symmetry-breaking bifurcations. This novel bifurcation can be
exploited for potential applications, such as devices featuring
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Fig. 5. P7-symmetry-breaking of solitons in the saturable model
Eq. (8) with £y = 4 and potential V(x) given by Egs. (3)—(4), where
a = -0.9. The notations are the same as in Fig. 1, except that in (c),
red denotes unstable and blue stable.

unidirectional transmission for high-intensity beams but recip-
rocal transmission for low-intensity beams.
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