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We experimentally demonstrate linear bandgap guidance of optical vortices as high-gap defect modes (DMs) in two-
dimensional inducedphotonic lattices.We show that donut-shaped vortex beams can be guided in a tunable negative
(lower-index) defect, provided that the defect strength is set at an appropriate level. Such vortex DMs have fine fea-
tures in the “tails” associatedwith the lattice anisotropy and can be considered as a superposition of dipole DMs. Our
numerical results find good agreement with experimental observations. © 2010 Optical Society of America
OCIS codes: 190.4420, 160.5293.

Light propagation in periodic materials has attracted a
great deal of interest. In the spatial domain, much of
the work has focused on nonlinear localization of light
into discrete or gap solitons in waveguide arrays [1,2].
Recently, linear localization of light due to spatial band-
gap guidance, namely, linear defect modes (DMs), has
also been studied. In particular, one-dimensional and
two-dimensional (2D) linear DMs were predicted and in-
vestigated experimentally in induced photonic lattices
and laser-written waveguide arrays [3–11]. It has also
been suggested that linear control of beam propagation
and multicolor routing can be realized with spatial photo-
nic DMs [12]. However, thus far only fundamental linear
DMs have been observed with a Gaussian beam excita-
tion. It is of great interest and an experimental challenge
to demonstrate PCF-like guidance of dipole and vortex
modes.
In this Letter, we study experimentally linear propaga-

tion of a singly charged vortex beam through a tunable
negative defect optically induced in a 2D photonic lattice.
We show that the vortex beam can be guided in the defect
as a DM, provided that the defect is not too deep. The vor-
tex maintains the donut shape and vortex singularity at
the defect site, but its “tails” contain fine features of addi-
tional vortex pairs along the principal axes of the square
lattice. This vortex mode is identified as a high-gap DM, in
perfect agreement with our earlier prediction [7]. In addi-
tion, we find that the fine features can be explained from
the anisotropy of the induced lattices, and the vortex DMs
can be viewed as a superposition of dipole modes also ob-
served in our experiment. These experimental results are
corroborated by numerical simulations.
The experiment setup is similar to that used in our de-

monstration of 2D fundamental DMs [8], except that now
we have two sets of photonic lattices for tuning the defect
strength, and the probe beam is a singly charged vortex
beam [Fig. 1(a)]. A laser beam (λ ¼ 488 nm) splits through
a polarizing beam splitter before entering a biased stron-
tium barium niobate photorefractive crystal. The ordina-

rily polarized beam splits again into two lattice-inducing
beams: one has an uniform periodic intensity pattern, as
shown in Fig. 1(c) [peak intensity Ic], and the other has a
zero-intensity defect site on otherwise uniform periodic
pattern, as shown in Fig. 1(d) [peak intensity Id]. Super-
imposing the two lattice-inducing beams of equal lattice
spacing results in a nonzero but tunable defect [an exam-
ple obtained at Id=Ic ¼ 1=2 is shown in Fig. 1(b)]. The tun-
ability of the defect strength is realized by varying the
intensity ratio Id=Ic (e.g., at Id=Ic ≫ 1, the defect is deep
or close to zero intensity, but at Id=Ic ≪ 1, the defect is
shallow or close to washout). With a positive voltage, the
crystal turns into a self-focusing medium, and the two
beams induce a 2D photonic lattice with a single-site
negative defect [8]. The extraordinarily polarized beam
passes through a vortexmask, and its intensity is kept suf-
ficiently low so that the vortex beam undergoes linear
propagation through the defect channel. When needed,
an interferometer is employed tomeasure the phase struc-
ture of the vortex beam exiting the crystal. (Interference

Fig. 1. (Color online) Experimental results of bandgap gui-
dance of a vortex beam in a tunable negative defect. (a) Vortex
at input. (b)–(d) Induced lattices with nonzero-intensity defect,
no defect, and zero-intensity defect, respectively. (e), (f) Vortex
output from the defect in (b) and its zoom-in interferogam. The
circles in (f) mark the location of the vortex pairs. (g) Interfer-
ogram when the vortex is excited at nondefect site. (h) Vortex
diffraction output when lattice is absent.
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between the vortex and a tilted plane wave results in
“fork fringes” in the interferogram, representing phase
singularity.)
Typical experimental results are presented in the bot-

tom panels of Fig. 1. Under proper experimental condi-
tions, the input vortex beam (20 μm in diameter) is
guided into the defect channel [Fig. 1(e)], maintaining a
donut-shaped pattern in the defect sitewith “tails” extend-
ing along two principal axes of the square lattice. The
propagation length is the crystal length of 1 cm, corre-
sponding to about a 6 diffraction length. This result was
obtained at 42 μm lattice spacing, 2:3 kV=cm bias field,
and Id=Ic ¼ 1=2. For comparison, the same vortex beam
diffracts dramatically when the defect/lattice is removed
[Fig. 1(h)], showing no self-action of the vortex beam un-
der the same bias condition. Fine features can be seen in
the interferogram obtained by interference between the
output vortex beam and an inclined broad beam (quasi-
plane wave): while the phase singularity is maintained
in the vortex center [Fig. 1(f)], additional vortex pairs
are evident along the four “tails” away from the defect site,
manifested by two close but separated fork fringes in the
interferogram of Fig. 1(f). These fine structures in the
“tails,” as elaborated below, provide us a way to identify
the properties of the vortex DMs. By comparing with
the theoretical results [7], it is apparent that the input sin-
gly charged vortex beam has evolved into a high-gap DM,
whose propagation constant resides between the second
and third Bloch bands.We emphasize that the localization
of the vortex beam arises from the linear bandgap gui-
dance, quite different from stationary propagation of sec-
ond-band vortex solitons where the vortex beam itself
creates a positive defect with self-focusing nonlinearity
[13]. For comparison, the interferogram from the vortex
beam exiting a normal lattice site is shown in Fig. 1(g),
where a single vortex (instead of vortex pair) is observed
along each “tail.”
The formation of the vortex DMs depends on the defect

strength [7]. A series of experiments is performed to illus-
trate the influence of the defect strength. To do so, we
keep the bias field and Ic fixed but tune the defect strength
by gradually varying Id. We found that the vortex can be
guided only when the defect is not too deep (or the inten-
sity in the defect site is not close to zero). Examples of
varying the intensity ratio Id=Ic or the bias field (both con-
trol the induced index change at the defect site) are shown
in Fig. 2. When the biased field is set at 2:6 kV=cm, gui-
dance of the vortex beam is clearly observed at Id=Ic ¼
1 [Fig. 2(a)] (which corresponds to a half-intensity defect).
However, once the uniform lattice beam is removed
(Ic ¼ 0), the vortex beam cannot be confined in the defect

site under the same bias condition [Fig. 2(b)]. At this zero-
intensity defect, the vortex DM cannot form, even at a de-
creased bias field of 1:4 kV=cm [Fig. 2(c)] or an increased
bias field of 3:2 kV=cm [Fig. 2(d)]. Thus, bandgap gui-
dance of the vortex clearly occurs in the half-intensity de-
fect, but deteriorates in the zero-intensity defect. There
might be a threshold for the defect strength that would
support the vortex DM, but, experimentally, it is difficult
to determine such a threshold. Nevertheless, these obser-
vations agree well with the theoretical prediction [7]. In-
tuitively, a negative defect supports a DM in the photonic
bandgap. When the defect gets deeper, the propagation
constant of the DM moves deeper toward a higher band-
gap. Because of the limited number of fully opened higher
gaps, the propagation constant of the DM may move into
a higher Bloch band, and, eventually, localized DMs
disappear.

The above observations are corroborated by numerical
solutions [7] and BPM simulations with a 2D continuum
model used in [12]. Numerical solution of the vortex DM
is shown in Fig. 3(a), and beam propagation results ob-
tainedwithparameters close to those from theexperiment
are shown in Fig. 3(b). An input vortex beam [Fig. 3(d),
top] is guided in a negative half-intensity defect (Id=Ic ¼
1), as shown inFig. 3(b), but couples dramatically into sur-
rounding lattice sites for a zero-intensity defect [Fig. 3(d),
bottom], in agreement with the experimental results of
Figs. 2(a) and 2(b). A subtle but interesting feature merits
discussionwhen one carefully compares the vortex singu-
larities in the “tails” obtained from numerical solution,
BPMsimulation, andexperiment. In the solution [Fig. 3(a),
bottom] and numerical simulation [Fig. 3(b), bottom], the
vortexpairs in all “tails”haveopposite topological charges
as compared with that of the main vortex in the center.
This can be seen either by tracing the round-trip phase var-
iation or the directions of fringe bifurcation (forking).
However, from the experimental results of Fig. 1(g), the
vortex pairs in one direction have the opposite topological
charge, but those in the other orthogonal direction have
the same charge with respect to the charge of the center
vortex. We mention that a similar phenomenon was also
observed forhighergap fundamentalDMs [8].Here thedif-
ference seems to result from the anisotropy of the induced

Fig. 2. (Color online) Output of the vortex beam through (a) a
half-intensity (Id=Ic ¼ 1) defect and (b) a zero-intensity defect at
a fixed bias field of 2:6 kV=cm. (c), (d)Output of the vortex beam
through the zero-intensity defectwhen thebias field is decreased
to 1:4 kV=cm and increased to 3:2 kV=cm, respectively.

Fig. 3. (Color online) Numerical results of the vortex DM: (a)
DM solution (top) and its phase structure (bottom); (b), (c) in-
tensity (top) and interferogram (bottom) of output vortex after
1 cm of propagation through lattice with a half-intensity defect;
(d) input vortex (top) and its output (bottom) from a zero-
intensity defect. The insets in (b)–(d) show the corresponding
lattices and DM phase structure. Result (c) is from an anisotro-
pic lattice.
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lattices (i.e., the couplings between waveguides along the
x and y directions are slightly different) owing to the
anisotropic photorefractive nonlinearity [14,15]. With an
anisotropic lattice in the form of ½cosðπxd Þ þ cosð0:8πyd Þ�2
(d is the lattice spacing),we findbysimulation that thevor-
tex beam forms a DM with “tail” structures similar to that
from the experimental observation. Results from the ani-
sotropic lattice are shown in Fig. 3(c), where the topolo-
gical charges of the vortex pairs along one direction are
different from those along the orthogonal direction.
As discussed in [7], a vortex DM can be regarded as a

superposition of two dipole modes along orthogonal axes
with a π=2phase delay but the samepropagation constant.
In fact, dipole DMs have also been observed in our experi-
ment in a similar setting. One example is presented in
Fig. 4, where the dipole beam is oriented along the vertical
direction. Because of the anisotropy of induced lattices,
we find the stability of the dipole DM is sensitive to dipole
orientation. In addition, dipole DMs along two lattice prin-
cipal axes have different propagation constants, and the
phase difference between two dipole DMs is expected to
change during propagation. Thus, strictly speaking, a vor-
tex mode originating from the superposition of two linear
dipole modes cannot be stable in anisotropic lattices, but
rather it may break up into dipole modes and undergo
charge flipping [15]. In our experiment with the 1-cm-long
crystal, the donut-shapedDMs excitedwith an optical vor-
tex remain robust during linear propagation. We mention
that such linear vortex DMs are quite different from the
nonlinear vortex modes found in anisotropic lattices
[15–17], where the vortex covers four lattice sites and
is localized by the nonlinearity-induced defect. Our single-
site vortex tends to break up during nonlinear propa-
gation due to the anisotropic nonlinearity andmodulation
instability.
In conclusion, we have demonstrated bandgap gui-

dance of optical vortices in photonic lattices with a tun-
able negative defect. We found that the guidance of the

vortex beam in the defect can be realized, provided that
the defect is not too deep. The vortex DMs have fine fea-
tures in the “tails”—better explained from the anisotropy
of the induced lattices. Numerical simulation agrees well
with the experiment observation. Our results may prove
relevant in defect-based light routing [12] and Bragg
gratings [18].
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Fig. 4. (Color online) Experimental results of linear guidance
of a dipole beam in a negative defect: (a) Induced lattice with
defects, (b) input dipole beam, (c) guidance of the dipole beam
in the central defect, (d) normal diffraction of dipole beam
when the lattice is removed after 2 cm linear propagation at
a bias field of 1:9 kV=cm.
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