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Multidimensional complex optical potentials with partial parity-time (PT ) symmetry are proposed. The usual
PT symmetry requires that the potential is invariant under complex conjugation and simultaneous reflection
in all spatial directions. However, we show that if the potential is only partially PT symmetric, i.e., it is invariant
under complex conjugation and reflection in a single spatial direction, then it can also possess all-real spectra and
continuous families of solitons. These results are established analytically and corroborated numerically. © 2014
Optical Society of America
OCIS codes: (190.0190) Nonlinear optics; (190.6135) Spatial solitons.
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In optics, light propagation is often modeled by
Schrödinger-type equations [1]. If the medium contains
gain and loss, the optical potential of the Schrödinger
equation would be complex. A surprising finding in
recent years is that, if this complex potential satisfies
parity-time (PT ) symmetry, then the linear spectrum
can still be all-real, thus admitting stationary light trans-
mission [2–7].HerePT symmetrymeans that the potential
is invariant under complex conjugation and simultaneous
reflection in all spatial directions. In one dimension (1D),
PT symmetry condition is V��x� � V�−x�; in 2D, this con-
dition is V��x; y� � V�−x;−y�; and so on. Besides all-real
spectra,PT symmetric potentials have been found to sup-
port continuous families of optical solitons [8–12]. But if
the complexpotential is notPT symmetric, then the linear
spectrum is often nonreal, and soliton families often do
not exist [13]. Other findings onPT systems can be found
in [14–29].
In this Letter, we show that in multidimensions, if the

complex potential is not PT symmetric but is partially
PT symmetric, then such potentials can still admit all-real
spectra and continuous families of solitons. Here partial
PT symmetry means that the potential is invariant under
complex conjugation and reflection in a single spatial
direction (rather than in all spatial directions simultane-
ously). For example, in 2D, partiallyPT symmetric poten-
tials are such that eitherV��x; y� � V�−x; y� orV��x; y� �
V�x;−y�. Partially PT symmetric potentials constitute
another large class of complex potentials with all-real
spectra and soliton families, and they may find interesting
applications in optics. For simplicity, we consider the 2D
case throughout the Letter, but similar results hold for
three and higher dimensions too.
The model for nonlinear propagation of light beams in

complex optical potentials is taken as

iΨz �∇2Ψ� V�x; y�Ψ� σjΨj2Ψ � 0; (1)

where z is the propagation direction, �x; y� is the trans-
verse plane, ∇2 � ∂xx � ∂yy, and σ � �1 is the sign of
nonlinearity. The complex potential V�x; y� is assumed
to possess the partial PT symmetry

V��x; y� � V�−x; y�: (2)

The real part of this potential is symmetric in x, and its
imaginary part anti-symmetric in x. No symmetry is
assumed in the y direction.

First, we show that the spectrum of this partially PT
symmetric potential can be all-real. Eigenvalues of this
potential are defined by the Schrödinger equation

�∇2 � V�ψ � λψ ; (3)

where λ is the eigenvalue and ψ the eigenfunction.
We start by considering separable potentials where

V�x; y� � V1�x� � V2�y�.

For these potentials, the partial PT symmetry condition
(2) implies that

V�
1�x� � V1�−x�; V�

2�y� � V2�y�:

Thus the function V1�x� is PT symmetric and V2�y�
strictly real. Eigenvalues of this separable potential are

λ � Λ1 � Λ2

and the corresponding eigenfunctions are ψ�x; y� �
Ψ1�x�Ψ2�y�, where

�∂xx � V1�x��Ψ1�x� � Λ1Ψ1�x�;
�∂yy � V2�y��Ψ2�y� � Λ2Ψ2�y�:

Since V1�x� is PT symmetric, its eigenvalues Λ1 can
be all real. Since V2�y� is strictly real, its eigenvalues
Λ2 are all real as well. Thus eigenvalues λ of the separable
potential V�x; y� can be all real.

Next we consider separable potentials perturbed by
localized potentials,

V�x; y� � V0�x; y� � ϵVp�x; y�; (4)
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where V0 is separable, Vp localized, ϵ a small real param-
eter, and both V0, Vp satisfy the partial PT symmetry
condition (2). Since Vp is localized, continuous eigenval-
ues of the perturbed potential V are the same as those of
the separable potential V0 and are thus all-real. We now
show that discrete eigenvalues of V are also real.
Suppose λ0 is a simple discrete real eigenvalue of the

separable potential V0. Since V0 is partially PT symmet-
ric, the eigenfunction ψ0 of λ0 is partially PT symmetric
as well, i.e., ψ�

0�x; y� � ψ0�−x; y�. Under perturbation
ϵVp, the perturbed eigenvalue and eigenfunction can
be expanded into the following perturbation series:

λ � λ0 � ϵλ1 � ϵ2λ2 �…;ψ � ψ0 � ϵψ1 � ϵ2ψ2 �….

Substituting these expansions and the perturbed poten-
tial (4) into Eq. (3), at O�ϵ� we get

Lψ1 � �λ1 − Vp�ψ0; (5)

where L≡∇2 � V0 − λ0. Since λ0 is a simple eigenvalue,
the kernel of the adjoint operator L� then contains a
single eigenfunction ψ�

0 . Then in order for Eq. (5) to
be solvable, the solvability condition is that its right-hand
side be orthogonal to ψ�

0 , which yields

λ1 �
hψ�

0 ; Vpψ0i
hψ�

0 ;ψ0i
; (6)

where the inner product is defined as

hf ; gi �
Z

∞

−∞

Z
∞

−∞
f ��x; y�g�x; y�dxdy:

Since λ0 is simple, it is easy to show that hψ�
0 ;ψ0i ≠ 0.

A key consequence of partial PT symmetry is that, if
functions f and g are both partially PT symmetric, then
their inner product hf ; gi is real, because

hf ; gi� � hf �; g�i � hf �−x; y�; g�−x; y�i � hf ; gi:

Since ψ0 and Vp are partially PT symmetric, the inner
products in Eq. (6) then are real; thus λ1 is real.
Pursuing this perturbation calculation to higher orders,

we can show that λn is real for all n ≥ 1; thus the eigen-
value λ remains real under perturbations ϵVp.
For general partially PT symmetric potentials, we use

numerical methods to establish that their spectra can be
all real. To illustrate, we take the complex potential
V�x; y� to be localized at four spots:

V�x; y� � 3�e−�x−x0�2−�y−y0�2 � e−�x�x0�2−�y−y0�2�
�2�e−�x−x0�2−�y�y0�2 � e−�x�x0�2−�y�y0�2�
� iβ�2�e−�x−x0�2−�y−y0�2 − e−�x�x0�2−�y−y0�2�
� �e−�x−x0�2−�y�y0�2 − e−�x�x0�2−�y�y0�2��; (7)

where x0, y0 control the separation distances between
these four spots, and β is a real constant. For definite-
ness, we set x0 � y0 � 1.5. This potential is not PT sym-
metric but is partially PT symmetric with symmetry

Eq. (2). For β � 0.1, this potential is displayed in Fig. 1
(top row). It is seen that Re�V� is symmetric in x, Im�V�
anti-symmetric in x, and both Re�V�, Im�V� are asymmet-
ric in y. The spectrum of this potential is plotted in
Fig. 1(c). It is seen that this spectrum contains three dis-
crete eigenvalues and the continuous spectrum, which
are all-real. Thus we have numerically established that
partially PT symmetric potentials can have all-real spec-
tra. For these real eigenvalues, their eigenfunctions
respect the partial PT symmetry of the potential.

For potential (7) with varying β, we have found that its
spectrum is all-real as long as jβj is below a threshold
value of 0.214. Above this threshold, a phase transition
occurs, where complex eigenvalues appear in the spec-
trum. This phase transition is illustrated in Fig. 1(d),
where the spectrum at β � 0.3 is shown. Phase transition
is a well-known phenomenon ofPT symmetric potentials
[2,5,6,8]. We see that it arises in partially PT symmetric
potentials too.

In addition to the four-spot potential (7), we have
tested other partially PT symmetric (but notPT symmet-
ric) potentials as well, such as the one-spot potential

V�x; y� � �1� iγxy�e−x2−y2 ;

where γ is a real constant. We have found that the spec-
trum of this potential is also all-real. In addition, no phase
transition is detected here.

Next we examine whether these partially PT symmet-
ric potentials support continuous families of solitons.
These solitons are special solutions of Eq. (1) in the
form of

Ψ�x; y; t� � ψ�x; y�eiμz; (8)

where μ is a real propagation constant, and ψ�x; y� satis-
fies the equation

Fig. 1. (a), (b) Real and imaginary parts of the partially PT
symmetric potential (7) for β � 0.1 and (c), (d) spectrum of this
potential for β � 0.1 and 0.3, respectively.
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∇2ψ � V�x; y�ψ � σjψ j2ψ � μψ (9)

and vanishes when �x; y� goes to infinity. In 1D, non-PT
symmetric potentials cannot admit soliton families [13].
However, in higher dimensions, we will show analytically
and numerically that partiallyPT symmetric potentials do
support continuous families of solitons.
First, we show analytically that, from each real dis-

crete eigenvalue of the partially PT symmetric potential,
a continuous family of solitons bifurcates out under
each of the focusing and defocusing nonlinearities.
Suppose μ0 is a discrete simple real eigenvalue of the
potential and ψ0 is its eigenfunction, i.e., Lψ0 � 0, where
L≡∇2 � V − μ0. Then we seek solitons with the follow-
ing perturbation expansion

ψ�x; y; μ� � ϵ1∕2�c0ψ0 � ϵψ1 � ϵ2ψ2 �…�;

where ϵ≡ jμ − μ0j ≪ 1 and c0 is a certain nonzero con-
stant. Substituting this expansion into Eq. (9), the
O�ϵ1∕2� equation is automatically satisfied. At O�ϵ3∕2�,
we get the equation for ψ1 as

Lψ1 � c0�ρψ0 − σjc0j2jψ0j2ψ0�;

where ρ � sgn�μ − μ0�. The solvability condition of this
ψ1 equation is that its right-hand side be orthogonal to
the adjoint homogeneous solution ψ�

0 . This condition
yields an equation for c0 as

jc0j2 �
ρhψ�

0 ;ψ0i
σhψ�

0 ; jψ0j2ψ0i
: (10)

For the real eigenvalue μ0, its eigenfunction ψ0 pos-
sesses partial PT symmetry. Thus the two inner products
in the above equation are both real. Then for a certain
sign of ρ, i.e., when μ is on a certain side of μ0, the right
side of Eq. (10) is positive; hence this equation is solvable
for the constant c0. Since the soliton in Eq. (9) is phase
invariant, we can take c0 to be positive without any loss
of generality.
Pursuing this perturbation calculation to higher orders,

we can find that this perturbation solution can be con-
structed to all orders for any small ϵ; thus a continuous
family of solitons bifurcates out from the linear eigen-
mode �μ0;ψ0�. In this construction process, partial PT
symmetry of the potential is critical. For instance, in
the absence of this partial PT symmetry (and PT sym-
metry), it is generally impossible to guarantee the reality
of inner products in Eq. (10), which makes this equation
unsolvable for c0.
Next we corroborate these analytical results numeri-

cally. The partial PT potential (7) with β � 0.1 contains
three discrete real eigenvalues [see Fig. 1(c)]. From each
of these three eigenmodes, we have found numerically
that a soliton family bifurcates out, just as the theory pre-
dicted. To illustrate, we take the focusing nonlinearity
(σ � 1). Then power curves of soliton families bifurcated
from the first and second eigenmodes of the potential are
displayed in Fig. 2. Here the power P is defined as
∬ jψ j2dxdy. Interestingly, these two power curves are
connected through a fold bifurcation, meaning that

solitons bifurcated from these two eigenmodes belong
to the same solution family, and the power of this
solution family has an upper bound.

Profiles of solitons on this power curve are also dis-
played in Fig. 2. Here the amplitude fields of solitons
at points “b,c” of the power curve (with μ � 1.3) are plot-
ted on the right column of the figure. It is seen that the
soliton at point “b” has higher amplitude, obviously be-
cause it is on the upper power branch. The phase fields
of these two solitons are similar; thus only the phase field
at point “b” is shown. Note that these solitons share the
same partial PT symmetry of the complex potential (7).

Lastly, we examine linear stability of this soliton
family. For this purpose, we perturb these solitons by
normal modes

Ψ�x; y; z� � eiμz�ψ�x; y� � f �x; y�eλz � g��x; y�eλ�z�;

where f , g ≪ 1, and λ is the growth rate of the disturb-
ance. Linearization of Eq. (1) for these perturbations
yields a linear-stability eigenvalue problem

i
�

M1 M2

−M�
2 −M�

1

��
f
g

�
� λ

�
f
g

�
; (11)

where M1 � ∇2 � V − μ� 2σjψ j2, and M2 � σψ2.
We solve this eigenvalue problem (11) by the Fourier

collocation method. For the four solitons on the power
curve of Fig. 2, their eigenvalue spectra are computed
and displayed in Fig. 3. It is seen that the soliton at point
“a” contains a quartet of complex eigenvalues, and the
soliton at point “c” contains a pair of real eigenvalues,
thus these two solitons are both linearly unstable.
However, solitons at points “b,d” only contain purely
imaginary eigenvalues and are thus linearly stable.

Repeating this spectrum computation for other soli-
tons on the power curve of Fig. 2, their linear stability

Fig. 2. Upper left: power diagram of the soliton family in
potential (7) with β � 0.1 and σ � 1 (solid blue are stable
and dashed red unstable); upper and lower right: amplitude
fields of solitons (jψ j) at points “b,c” of the power curve; lower
left: phase field of the soliton at “b”.
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is then determined, and the results are indicated on that
power curve, with solid blue representing stable solitons
and dashed red for unstable ones. Notice that most of the
lower power branch is unstable, while most of the upper
power branch is stable. This is surprising, since in
conservative potentials, solitons on the upper power
branch are generally less stable.
In summary, we have proposed a class of multidimen-

sional complex optical potentials that are not PT sym-
metric but rather partially PT symmetric, i.e., they are
invariant under complex conjugation and reflection in
a single spatial direction. We have shown that these
partially PT symmetric potentials can possess all-real
spectra and support continuous families of solitons,
similar to PT symmetric potentials. We have also shown
that these soliton families can exhibit multiple power
branches, with the upper power branches more stable
than the lower ones. These results expand the concept
of PT symmetry in multidimensions, and they may find
interesting optical applications.

The author thanks Prof. V. Konotop for helpful discus-
sions. This work is supported by AFOSR and NSF.
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Fig. 3. Linear-stability spectra of the four solitons marked by
letters “a,b,c,d” on the power curve of Fig. 2.
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