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We demonstrate both theoretically and experimentally that photonic lattices under self-defocusing nonlinearity
support gap solitons in various shapes such as cross and H shapes. These solitons, with their intensity humps
all in-phase, are stable against perturbations, thus they propagate robustly throughout the lattices. Based on this
finding, we propose soliton-based text/image transmission through bulk photonic structures. © 2011 Optical
Society of America
OCIS codes: 190.0190, 160.5293.

Image transmission through bulk nonlinear media is a
challenging problem due to heavy nonlinear distortions.
Several techniques have been demonstrated, including
image transmission based on phase conjugation [1], inco-
herent soliton waveguides [2], and digital holography [3].
Recently, image transmission based on coherent destruc-
tion of tunneling has also been demonstrated [4,5]. De-
spite these techniques, transmission of sophisticated
images with high fidelity is still very difficult. Recent pro-
gress in photonic-lattice research reveals some new phe-
nomena in self-defocusing nonlinear media. In particular,
it was found that nonlinear Bloch states in photonic lat-
tices can be truncated to form stable soliton clusters with
an arbitrary number of adjacent intensity humps [6,7].
Stimulated by such phenomena, we show in this Letter
that in a photonic lattice under self-defocusing nonlinear-
ity, one can construct stable gap solitons whose intensity
humps can form almost arbitrary shapes (such as cross
and H shapes), and these humps are all in-phase with
each other. Based on this finding, we propose to trans-
mit text and images with these solitons through self-
defocusing photonic lattices, and to demonstrate such
transmission both theoretically and experimentally.
The theoretical model we use for light transmission in

a self-defocusing photonic lattice is

iUz þ Uxx þ Uyy þ nðx; yÞU − jU j2U ¼ 0; ð1Þ

where z is the direction of propagation, ðx; yÞ is the trans-
verse coordinate, and nðx; yÞ is the periodic transverse
refractive-index variation. All variables have been nor-
malized. Experimentally, the index variation nðx; yÞ can
be induced by optical induction [8–10], and thus is called
optically-induced photonic lattice. In our analysis, we
take the lattice to be nðx; yÞ ¼ hðcos2 xþ cos2 yÞ, where
h is the index-variation depth parameter. This lattice is
shown in Fig. 1(a). Note that this lattice has periodic in-
dex humps and dips, and it closely resembles the “egg-
crate” lattice [11] optically induced in our experiment
[see Fig. 1(e)]. For simplicity, we use in our theoretical
model the cubic (Kerr-type) self-defocusing nonlinearity
(in our experiment, the photorefractive nonlinearity is
saturable rather than cubic [8–10], but we have found

numerically that both cubic and saturable nonlinearities
give qualitatively similar results).

We look for stationary solitons in Eq. (1) in the form
Uðx; y; zÞ ¼ uðx; yÞe−iμz, where uðx; yÞ is a real-valued lo-
calized function, and μ is the propagation constant. We
find that Eq. (1) supports gap solitons of almost arbitrary
shapes when the lattice is sufficiently deep. To demon-
strate, we take the lattice-depth parameter h ¼ 6 as an
example. The first two Bloch bands for this lattice are
displayed in Fig. 1(d). In the gap between these two
bands, solitons with three intensity humps aligned along
one of the principal axes of the lattice are found. This
soliton at μ ¼ 6 is displayed in Fig. 1(b). These three in-
tensity humps have the same phase, and they are located
at three adjacent lattice sites (high-index positions).
Using the continuation method, we can obtain the entire
family of this gap soliton. The power curve of this family
is shown in Fig. 1(d). It is seen that this power curve has
double branches, and the soliton in Fig. 1(b) is located on
the lower branch. On the upper branch, the soliton in this
family develops two extra intensity humps at the edges,
and these extra humps are out of phase with the three

Fig. 1. (Color online) (a), (e) Photonic lattice as used in our
theory (a) and experiment (e); (b), (c), (d) line-soliton solu-
tions, where (d) is the power curve, and (b), (c) show soliton
profiles at marked points in (d); (f), (g) stability spectra of gap
solitons in (b), (c), respectively; (h) stable (solid) and unstable
(dashed) evolutions of the top hump’s intensity for solitons in
(b), (c) under perturbations. Background circles in (b), (c)
mark lattice sites. Shaded regions in (d) represent the first
two Bloch bands.

772 OPTICS LETTERS / Vol. 36, No. 5 / March 1, 2011

0146-9592/11/050772-03$15.00/0 © 2011 Optical Society of America



humps in the interior. To illustrate this, the soliton at the
marked point on the upper branch (μ ¼ 6) is shown in
Fig. 1(c). Our important finding is that these gap solitons
on the lower branch are linearly stable, while the ones on
the upper branch are not. The linear-stability spectra
of gap solitons in Figs. 1(b) and 1(c) are displayed in
Figs. 1(f) and 1(g), respectively. These spectra are ob-
tained numerically by turning the linear-stability eigenva-
lue problem of these solitons into a matrix eigenvalue
problem through Fourier collocation methods [12]. Note
that all eigenvalues in Fig. 1(f) lie on the imaginary axis,
indicating that the soliton in Fig. 1(b) is linearly stable.
But the spectrum in Fig. 1(g) contains positive eigen-
values, indicating that the soliton in Fig. 1(c) is linearly
unstable.
The above linear-stability results are corroborated by

nonlinear evolution simulations of these gap solitons un-
der perturbations. For the lower-branch gap soliton in
Fig. 1(b), we have added various random-noise perturba-
tions, and found that the perturbed soliton can always
transmit stably for arbitrarily long distances if the initial
perturbation is not too strong. For instance, for one rea-
lization of 10% random-noise perturbations, the intensity
of the top hump in this soliton versus distance z is dis-
played in Fig. 1(h) (solid curve). One can see only small
intensity oscillation around its initial value. The same
holds for the other two humps in this soliton. Thus this
soliton in Fig. 1(b) is nonlinearly stable, in agreement
with the linear stability of this soliton shown in Fig. 1(f).
However, when the upper-branch soliton in Fig. 1(c) is
perturbed by the same amount of noise, the intensities
of its five humps can move far away from their initial
values [see Fig. 1(h), dashed curve). Note that this inten-
sity can decrease by over 50% from its initial value, lead-
ing to breakdown of the soliton structure. Thus this
soliton is nonlinearly unstable, again in agreement with
its linear instability shown in Fig. 1(g).
The above stability property can be heuristically un-

derstood. It has been shown that in a lattice under defo-
cusing nonlinearity, a dipole soliton is stable if its two
humps residing in adjacent lattice sites are in-phase,
but unstable otherwise [12–14]. Thus, line gap solitons
composed of all in-phase intensity humps [as in Fig. 1(b)]
are expected to be stable, whereas those containing out-
of-phase intensity humps [as in Fig. 1(c)] are unstable.
An important finding in this Letter is that, in addition to

the family of line-shape gap solitons in Fig. 1, the lattice
also supports gap solitons in almost arbitrary configura-
tions. As examples, three other gap solitons at h ¼ 6
and μ ¼ 6 are shown in Figs. 2(a)–2(c). The soliton in
Fig. 2(a) has three intensity humps forming a 90° corner;
the soliton in Fig. 2(b) has nine intensity humps forming a
cross shape, and the soliton in Fig. 2(c) has 12 intensity

humps forming an H-shape. All intensity humps in these
solitons have the same phase, and are located at lattice
sites. Note that the shapes of these solitons are much
more general and flexible than the truncated-Bloch-wave
solitons reported in [6]. Intuitively, the existence of these
solitons of arbitrary shapes can be understood by
viewing the line soliton of Fig. 1(b), the corner soliton
of Fig. 2(a), and the in-phase dipole soliton [12–14] as
building blocks. Using these basic blocks, one can con-
struct arbitrary shapes of solitons. An important fact is
that all these solitons of various shapes are linearly and
nonlinearly stable, just like the line soliton in Fig. 1(b).
For instance, the stability spectrum of the H-shaped so-
liton in Fig. 2(c) is shown in Fig. 2(d). It is seen that all the
eigenvalues in this spectrum lie on the imaginary axis,
indicating that this soliton is linearly stable. Our numer-
ical simulation of this soliton under perturbations shows
that this soliton is nonlinearly stable as well. This stable
behavior agrees with our earlier intuition that under de-
focusing nonlinearity, adjacent in-phase intensity humps
form stable structures.

The various solitons in Fig. 2 were obtained at a parti-
cular propagation constant μ. When μ varies (with the lat-
tice unchanged), each of these solitons will generate its
own solution family. The power curve of each solution
family has double branches, just as in Fig. 1(d). The
stable in-phase solitons in Fig. 2 all lie on the lower
branches of the respective families. Unstable solitons
on the upper branches develop additional out-of-phase
intensity humps, similar to Fig. 1(c).

The above stable solitons can be used for text and im-
age transmission. To demonstrate the principle, we per-
formed experiments in a biased photorefractive SBN:60
crystal with the optical induction technique [8–10]. First,
a two-dimensional ionic-type lattice [11] with spacing
28 μm is created with an ordinarily polarized lattice-
inducing beam, which propagates invariantly through-
out the 10-mm-long crystal at a negative bias field of
−1:4 kV=cm (hence the nonlinearity is self-defocusing).
This ionic lattice was formed by interfering two pairs
of beams, with one pair out of phase, and the other pair
in phase. The output of this lattice is shown in Fig. 1(e),
which resembles the lattice in our theoretical model [see
Fig. 1(a)]. Then an extraordinarily polarized probe beam
is sent through an amplitude mask to form the desired
cross or H shape [Fig. 3(a)] at the input to the crystal.

Fig. 2. (Color online) (a)–(c) Three gap solitons of different
shapes obtained at h ¼ 6 and μ ¼ 6; (d) stability spectrum of
the H-shaped soliton in (c).

Fig. 3. (Color online) Experimental results on image
transmission in photonic lattice [shown in Fig. 1(e)] under
self-defocusing nonlinearity: (a) input pattern, (b) linear output
without lattice, (c) linear output with lattice, (d) nonlinear out-
put with lattice.
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Without the induced lattice, linear propagation of the
probe beam leads to strong diffraction and deformation
of the initial shape at the crystal output [Fig. 3(b)]. With
the induced lattice at the bias field of −1:4 kV=cm, linear
propagation of the probe beam experiences discrete dif-
fraction so that the input patterns also are distorted due
to waveguide coupling among lattice sites [Fig. 3(c)].
However, nonlinear propagation of the probe beam leads
to self-trapping of gap soliton clusters in the shape of the
input pattern [Fig. 3(d)]. Thus, soliton-based transmis-
sion of cross or H shape is established in the nonlinear
crystal.
To corroborate these experimental results, we also

performed numerical simulations using the theoretical
model in Eq. (1) with h ¼ 6. Our initial condition is a
superposition of Gaussian humps forming a cross or H
pattern [Fig. 4(a)], and all humps are located at lattice
sites. The peak intensities of these Gaussian humps
are all equal to each other (at 3.2), but their widths
are slightly varied to mimic the experimental initial con-
ditions in Fig. 3. The simulation distance is z ¼ 2:2, which
corresponds to the crystal length in the experiment. The
simulation results are shown in Fig. 4. Clearly, these re-
sults agree well with experimental results in Fig. 3. In par-
ticular, these results show that the initial cross and H
patterns hold up much better in the lattice with defocus-
ing nonlinearity [Fig. 4(d)] than without nonlinearity
[Fig. 4(c)] or without lattice [Fig. 4(b)]. We have per-
formed simulations to longer distances as well and found
that, in the lattice under defocusing nonlinearity, cross
and H patterns show little distortion for all distances.
Comparatively, without the nonlinearity and/or the lat-
tice, these patterns further distort from their original
shapes and totally break up at longer distances.

We would like to point out that when the nonlinearity
is self-focusing [i.e., the nonlinear coefficient in Eq. (1) is
positive], we have found stable solitons of arbitrary
shapes as well. The main difference from the defocusing
case is that intensity humps in these stable solitons are
now out of phase with each other. This phenomenon can
also be exploited for image transmission, but intensity
humps (pixels) in these images now need to be phase-
engineered so that neighboring pixels are out of phase
with each other.

In summary, we have theoretically and experimentally
demonstrated that photonic lattices support stable gap
solitons of almost arbitrary shapes. We expect that this
phenomenon can be utilized as a new way for image
transmission through nonlinear media.
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