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Many classes of non-parity-time (PT )-symmetric wave-
guides with arbitrary gain and loss distributions still possess
all-real linear spectrum or exhibit phase transition. In this
Letter, nonlinear light behaviors in these complex wave-
guides are probed analytically near a phase transition.
Using multi-scale perturbation methods, a nonlinear ordi-
nary differential equation (ODE) is derived for the light’s
amplitude evolution. This ODE predicts that a single class
of these non-PT -symmetric waveguides supports soliton
families and amplitude-oscillating solutions both above
and below linear phase transition, in close analogy with
PT -symmetric systems. For the other classes of wave-
guides, the light’s intensity always amplifies under the effect
of nonlinearity, even if the waveguide is below the linear
phase transition. These analytical predictions are confirmed
by direct computations of the full system. © 2016 Optical
Society of America

OCIS codes: (190.0190) Nonlinear optics; (190.6135) Spatial

solitons.
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The study of complex optical potentials which still possess an
all-real spectrum has its roots in parity-time (PT ) symmetry.
First introduced as a non-Hermitian generalization of quantum
mechanics [1], this concept later spread to optics, where an
even refractive index profile, together with an odd gain and loss
landscape, constitutes a PT -symmetric system [2]. In this
optical setting, PT symmetry has been experimentally realized
[3–5]. A distinctive feature of PT -symmetric systems is phase
transition, where the spectrum turns from all real to partially
complex when the gain-loss component (relative to the real re-
fractive index) rises above a certain threshold [1–6]. This phase
transition has been utilized in a number of emerging applica-
tions ofPT optics [7–9]. The added effects of nonlinearity into
PT -symmetric systems induce further novel properties which
are being actively explored [10–16].

The downside of PT optics lies in its restrictive construc-
tion, where the refractive index must be even while the gain
and loss profile must be odd. Relaxing this restriction, non-
PT -symmetric complex potentials with all-real spectra have
been introduced [17–20]. In particular, many classes of

non-PT -symmetric complex potentials with arbitrary gain-
loss distributions and all-real spectra were reported in [20].
By tuning the free parameters in those potentials, phase tran-
sition could also be induced. In the linear regime, light in those
different classes of non-PT -symmetric potentials behaves
similarly in dynamics due to the same all-real spectra or phase
transition [20]. In the presence of nonlinearity, will light still
behave similarly in those different classes of potentials?

In this Letter, we analytically probe nonlinear light behav-
iors in these different classes of non-PT -symmetric complex
potentials. Our analysis is focused near a phase transition,
where a pair of real eigenvalues of the waveguide coalesces and
forms an exceptional point. Using multi-scale perturbation
methods, a nonlinear ordinary differential equation (ODE) is
derived for the light’s amplitude evolution. This ODE predicts
that a single class of these non-PT -symmetric waveguides
support soliton families and amplitude-oscillating solutions
both above and below linear phase transition, closely resem-
bling PT -symmetric systems. For the other classes of wave-
guides, the light’s intensity always amplifies under the effect
of nonlinearity (even if the waveguide is below linear phase
transition). These analytical results show that different classes
of non-PT -symmetric waveguides exhibit different nonlinear
behaviors.

The paraxial model for the propagation of light down a
waveguide with a longitudinally uniform refractive index
distribution and gain-loss landscape is

iΨz �Ψxx � V �x�Ψ� σjΨj2Ψ � 0; (1)

where V �x� is a complex potential whose real part represents
the linear refractive index and whose imaginary part represents
gain and loss. If this potential satisfies the symmetry relation,

ηL � L†η; (2)

where L � ∂xx � V �x�, † represents the adjoint of an operator
and η is a Hermitian operator (i.e., η† � η), then when η has an
empty kernel, the eigenvalues of L come in complex-conjugate
pairs [20]. In that case, the spectrum of L is either all real,
or partially complex with conjugate pairs of eigenvalues. As
an example, the class of PT -symmetric potentials, where
V ��x� � V �−x�, falls within this framework when η is chosen
as the parity operator, Pf �x� ≡ f �−x�. Here, * represents
complex conjugation.
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However, when η is chosen as a differential operator, wide
classes of non-PT -symmetric potentials with all-real spectra
can be obtained [20]. One such class of potentials, which
we denote as Type-I, is

V �x; γ� � g2�x� − 2γg�x� � ig 0�x�; (3)

where g�x� is an arbitrary real function, and γ is a free real
parameter. For this type of potential, the associated Hermitian
operator η is

η�x; γ� � i∂x − g�x� � γ: (4)

Another class of such potentials, which we denote as Type-II, is

V �x; γ� � g2

4
� g 02 − 2gg 0 0

4 g2
� γ

g2
� ig 0 − β0; (5)

where g�x� is again an arbitrary real function, and γ, β0 are
real constants (see [20] for their associated η operator). If g�x�
approaches the same non-zero constant g∞ as x → �∞ [as in
Eq. (7) below], then we choose β0 � g2∞∕4� γ∕g2∞, so that
V �x� is localized. For further classes of these potentials,
see [20].

In these potentials, since g�x� is arbitrary, the gain and loss
profile (i.e., the imaginary part) of the potential can be arbi-
trary. Thus, these potentials are non-PT -symmetric, in general.
Yet, their spectra can still be all real, which is surprising. Also
notice that these potentials contain a free parameter (γ). By tun-
ing this parameter, phase transition can be induced [20].

To illustrate, we take

g�x� � tanh 2�x � 1� − tanh�x − 1�; (6)

in the Type-I potential Eq. (3), and

g�x� � tanh 2�x � 1� − tanh�x − 1� � 1; (7)

in the Type-II potential Eq. (5). These two potentials are plot-
ted in Fig. 1, for γ � 0.368 and γ � 0.467, respectively. They
have the same gain-loss profile, but different refractive index
distributions. Both potentials are non-PT -symmetric; yet,
their spectra are all real (which we have verified numerically).

For the above g�x� functions, varying the parameter γ can
induce a phase transition. For example, for Type-I potentials,
the eigenvalue spectra for a range of γ values are displayed
in Fig. 2 (top panel). Here, eigenvalues μ are defined by
Lψ � −μψ . It is seen that at γ ≈ 0.368, two discrete real ei-
genvalues collide, form an exceptional point, and then bifurcate
off the real axis; thus, a phase transition occurs. The Type-I
potential displayed in Fig. 1 is at this phase-transition point.

Similarly, the tuning of γ can induce a phase transition in the
Type-II potentials. This is shown in Fig. 2 (bottom panel),

where a phase transition occurs at γ ≈ 0.467. The potential
at this point was displayed in Fig. 1 (right panel).

It is easy to notice from Fig. 2 that the spectra of Type-I and
Type-II potentials behave quite similarly, which indicates that
in the linear regime, solution dynamics in the two types of po-
tentials would be largely similar. Then, in the nonlinear regime,
would their solution dynamics still be similar? The answer is
negative, as we will show analytically below.

For our analytical treatment, we focus on these potentials
near a phase transition, where nonlinear solution dynamics can
be determined by multi-scale perturbation methods. Suppose
the spectrum of L has an exceptional point at μ � μ0 when
γ � γ0 and consider the potentials nearby in the family,
i.e., γ � γ0 � ϵ, where jϵj ≪ 1. Then, up to order ϵ, the
potential is

V �x; γ� ≈ V 0�x� � ϵV 2�x�;
where V 0�x� � V �x; γ0� is the unperturbed potential at a
phase transition, and V 2�x� � ∂

∂γ V �x; γ�jγ�γ0 . Defining

L0 � ∂xx � V 0�x� � μ0; (8)

then, since μ0 is an exceptional point, L0 has one eigenfunction
and at least one generalized eigenfunction where

L0ue � 0; L0ug � ue: (9)

For simplicity, we assume the algebraic multiplicity of the
exceptional point μ0 is two, which is the generic case when
two simple real eigenvalues coalesce (see Fig. 2). Then, L0 has
a single generalized eigenfunction, i.e., the equation L0ug2 �
ug does not admit a localized solution.

When the symmetry relation (2) is evaluated at γ � γ0, we
get η0L0 � L†0η0, where η0�x� � η�x; γ0�. From this, we
see that L†0η0ue � 0, i.e., η0ue is in the kernel of the adjoint
operator L†0. Thus, the solvability condition for the L0ug �
ue equation is that

hue; η0uei � 0; (10)

where hf ; gi � R∞
−∞ f g�dx is the standard inner product.

In addition, the nonsolvability condition for the L0ug2 � ug
equation is that

Fig. 1. (Left) Type-I potential with g�x� given by Eq. (6) and
γ � 0.368. (Right) Type-II potential with g�x� given by Eq. (7)
and γ � 0.467. The solid blue lines are Re�V �, and the dashed ma-
genta lines are Im�V �.

Fig. 2. Phase transitions in Type-I (top) and Type-II (bottom)
potentials. The real eigenvalues are in solid blue, the complex eigen-
values are in magenta, and the cyan region represents the continuous
spectrum.
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D ≡ hug ; η0uei ≠ 0: (11)

Note that from L0ue � 0, we have L�0u
�
e � 0. However, for L0,

L†0 � L�0 ; thus, L
†
0u

�
e � 0. Recalling L†0η0ue � 0 above, we see

that η0ue � Cu�e , where C is some constant.
Now we consider low-amplitude nonlinear solutions to

Eq. (1) near this exceptional point. These solutions can be
expanded into a multi-scale perturbation series,

Ψ�x; z� � �jϵj12u1�x; Z � � jϵju2 � jϵj32u3 �…
�
e−iμ0z ;

where Z � jϵj12z is the slow-modulation scale. At the first three
orders, we obtain the system of equations

L0u1 � 0; L0u2 � −iu1Z ;

L0u3 � −iu2Z − ρV 2u1 − σju1j2u1;
where ρ � sgn�ϵ�. The u1 and u2 equations can be solved:

u1 � A�Z �ue�x�; u2 � −iA 0�Z �ug�x�:
Substituting them into the u3 equation, we get

L0u3 � −AZZug − AρV 2ue − σjAj2Ajuej2ue;
whose solvability condition yields

AZZ − αA� σ1jAj2A � 0; (12)

where

α � −
ρ

D
hV 2ue; η0uei; σ1 �

σ

D
hjuej2ue; η0uei: (13)

Equation (12) is our reduced ODE model for nonlinear solu-
tion dynamics near an exceptional point in these non-PT -
symmetric complex potentials.

Now we show that in this ODE model, α is always real. In
addition, σ1 is real for Type-I potentials, but complex for other
potentials such as Type-II.

First, we note that since L0 satisfies the symmetry relation
η0L0 � L†0η0, then

D� � hη0ue; ugi � hη0L0ug ; ugi � hL†0η0ug ; ugi
� hη0ug ; L0ugi � hη0ug ; uei � hug ; η0uei � D:

Thus, D is real.
Next, we differentiate the symmetry equation (2) with

respect to the free parameter γ, which yields ηγ0L0 � η0V 2 �
V �

2η0 � L†0ηγ0, where ηγ0 � ∂
∂γ η�x; γ�jγ�γ0 . Then,

hV 2ue; η0uei� � hη0ue; V 2uei � hV �
2η0ue; uei

� h�η0V 2 � ηγ0L0 − L
†
0ηγ0�ue; uei

� hη0V 2ue; uei − hηγ0ue; L0uei � hV 2ue; η0uei.
Thus, α is real.

For the nonlinear coefficient σ1, the symmetry relation
alone is insufficient to guarantee a real constant. Instead, the
form (4) of operator η associated with Type-I potentials must
be employed. In this case,

hjuej2ue; η0uei � hjuej2ue; �i∂x − g � γ0�uei

� 1

2
Imhu2e ; �u2e �xi −

Z
∞

−∞
�g − γ0�juej4dx.

Thus, σ1 is real for Type-I potentials. However, for other types
of potentials, it is generically complex as can be numerically
verified.

The fact that σ1 is real for Type-I potentials, but complex for
other types of potentials has far-reaching consequences on the
nonlinear dynamics in these potentials. When σ1 is real, the
ODE [Eq. (12)] admits solutions with stationary amplitude,
A�Z � � A0e

−iμ1Z , where μ1 is a free real parameter, and A0

is a constant given by

jA0j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�μ21 � α�∕σ1

q
: (14)

This implies that under Type-I potentials, the full system
[Eq. (1)] admits continuous families of solitons, Ψ�x; μ� �
u�x�e−iμz , parameterized by μ, where

μ � μ0 � jϵj12μ1; u�x� ≈ jϵj12A0ue�x�:
In particular, when α > 0 (above phase transition) and σ1 > 0,
Eq. (14) predicts a soliton family above an amplitude threshold
jA0jmin �

ffiffiffiffiffiffiffiffiffiffi
α∕σ1

p
; when α < 0 (below phase transition) and

σ1 < 0, Eq. (14) predicts a soliton family below an amplitude
threshold jA0jmax �

ffiffiffiffiffiffiffiffiffiffi
α∕σ1

p
. These predictions are verified in

our numerics of the full system [Eq. (1)] (see also [19,21,22]).
However, when σ1 is complex, the ODE (12) does not

admit solutions with stationary amplitude [because the right
side of Eq. (14) becomes complex]. This implies that under
Type-II and higher-type potentials, the full system [Eq. (1)]
does not admit continuous families of solitons. This is consis-
tent with our numerics on this system, where soliton families
could not be found.

Beyond solitons, the ODE [Eq. (12)] also predicts different
behaviors on other types of solutions for real and complex σ1
values. If σ1 is real, Eq. (12) exhibits periodic orbits when
σ1 > 0 (for either sign of α ). This implies that under Type-I
potentials, the full system [Eq. (1)] admits periodically-
oscillating solutions under a suitable sign of nonlinearity both
above and below phase transition. For example, for the Type-I
potential with g�x� given by Eq. (6) and ϵ � 0.052 (above
phase transition), a periodic orbit of the ODE under focusing
nonlinearity (σ � 1) is plotted in Fig. 3 (upper left panel).
Numerically, we have found the corresponding solution in the

Fig. 3. Top: comparisons of numerical simulations of the full system
in solid blue against the ODE result in dashed red for potentials above
phase transition with focusing nonlinearity. Bottom: solution evolutions
in the full system. Left: Type-I potential. Right: Type-II potential.
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PDE system [Eq. (1)], which is shown in the left panels of the
same figure.

If σ1 is real, Eq. (12) also exhibits periodic orbits when
σ1 < 0, α < 0, and the initial amplitude is below a certain
threshold. Above this threshold, the ODE solution will blow
up to infinity in finite distance. This implies that under
Type-I potentials, the full system Eq. (1) admits periodically-
oscillating solutions (at low amplitude) and amplifying solutions
(at high amplitude) under an opposite sign of nonlinearity below
phase transition. As an example, we consider the same Type-I
potential, but with defocusing nonlinearity and ϵ � −0.052

(below phase transition). In this case, twoODE orbits, one peri-
odic and the other amplifying, are plotted in Fig. 4 (upper left
panel). These orbits match the corresponding solutions in the
PDE system shown in the left panels of the same figure.

However, if σ1 is complex, the ODE [Eq. (12)] does not
admit periodic orbits. Instead, all solutions will amplify and
blow up to infinity in finite distance. This implies that for other
potentials such as Type-II, the PDE solutions will always am-
plify to high amplitude, regardless of the sign of nonlinearity or
whether the potential is above or below linear phase transition.
To verify this behavior, we first consider an example Type-II
potential with g�x� given by Eq. (7), where a phase transition
occurs at γ0 ≈ 0.467 and μ0 ≈ −0.052. In this case, the
coefficients in the ODE model are α � sgn�ϵ�0.093 and
σ1 � σ�0.104� i0.011�, where ue�x� has been normalized
to have unit peak amplitude. For ϵ � 0.052 (above phase tran-
sition) and σ � 1 (focusing nonlinearity), an amplifying solu-
tion in the ODE model and the corresponding PDE solution
are displayed in the right panels of Fig. 3, where good agree-
ment is seen. To verify the amplifying behavior below phase
transition, we take this same Type-II potential, but with
ϵ � −0.052 and defocusing nonlinearity. In this case, an am-
plifying ODE solution and the corresponding PDE solution are
displayed in the right panels of Fig. 4.

The above nonlinear dynamics in Type-I potentials is re-
markably similar to that in PT symmetric potentials [23].
In contrast, nonlinear dynamics in Type-II and higher-type

potentials is quite different. Thus, we conclude that, even
though all non-PT -symmetric potentials obeying the sym-
metry relation (2) for differential operators η exhibit similar
linear behaviors, there is a large difference between Type-I
potentials and the other potentials on nonlinear behaviors.

Why are Type-I potentials so special on nonlinear dynam-
ics? One reason is that only for these potentials does the full
system [Eq. (1)] admit a conserved quantity I � hΨ; ηΨi,
where η is given in Eq. (4), and dI

dz � 0. For the other types
of potentials, we could not find a conserved quantity.
Apparently, this conserved quantity puts strong restrictions
on the nonlinear dynamics in Type-I potentials.

In summary, nonlinear light behaviors in non-PT -symmetric
complex waveguides obeying the symmetry condition (2) were
probed analytically near a phase transition. It was found that
nonlinear behaviors in Type-I waveguides are similar to those
in PT -symmetric systems, while those in other waveguides
behave quite differently. Thus, these non-PT -symmetric wave-
guides exhibit a wider variety of nonlinear dynamics than
PT -symmetric waveguides.
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Fig. 4. Top: comparisons of numerical simulations of the full sys-
tem in solid blue lines against ODE results in dashed red lines for
potentials below phase transition with defocusing nonlinearity.
Bottom: solution evolutions in the full system for the lower ODE
orbits in the top panels.
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