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Symmetry breaking of solitons in a class of one-dimensional parity-time (PT ) symmetric complex potentials
with cubic nonlinearity is reported. In generic PT -symmetric potentials, such symmetry breaking is forbidden.
However, in a special class of PT -symmetric potentials V�x� � g2�x� � αg�x� � ig0�x�, where g�x� is a real and even
function and α a real constant, symmetry breaking of solitons can occur. That is, a branch of non-PT -symmetric
solitons can bifurcate out from the base branch of PT -symmetric solitons when the base branch’s power reaches
a certain threshold. At the bifurcation point, the base branch changes stability, and the bifurcated branch can
be stable. © 2014 Optical Society of America
OCIS codes: (190.0190) Nonlinear optics; (190.6135) Spatial solitons.
http://dx.doi.org/10.1364/OL.39.005547

Light propagation in optical waveguides is often modeled
by Schrödinger-type equations under the paraxial
approximation [1,2]. If the waveguide contains gain
and loss, the optical potential of the Schrödinger
equation would be complex [3,4]. A surprising phenome-
non is that if this complex potential satisfies parity-time
(PT ) symmetry, i.e., if the refractive index is even and
the gain-loss profile odd, then the linear spectrum can
still be all-real, thus allowing stationary light transmis-
sion [5–8]. A number of other unusual properties have
been discovered in PT -symmetric systems as well
[7–32]. One of them is that PT -symmetric potentials
can support continuous families of PT -symmetric soli-
tons [8,17–22], in contrast with typical dissipative sys-
tems where solitons only exist as isolated solutions [33].
However, symmetry breaking of solitons in PT -sym-

metric potentials has never been reported. Based on a
perturbative analysis, it was shown that this symmetry
breaking requires an infinite number of nontrivial condi-
tions to be satisfied simultaneously, which cannot occur
in a generic PT -symmetric potential [34]. From a similar
analysis, it was shown that a generic non- PT -symmetric
complex potential could not support continuous families
of solitons either [35]. Recently, a continuous family of
solitons was reported in a special non-PT -symmetric
potential V�x� � g2�x� � ig0�x�, where g�x� was a real
asymmetric localized function [36]. This is a surprising
result, and it suggests that symmetry breaking of solitons
might also be possible in special types of PT -symmetric
potentials.
In this Letter, we show that for the special type of PT -

symmetric potentials V�x� � g2�x� � αg�x� � ig0�x�,
where g�x� is an arbitrary real and even function, and
α is an arbitrary real constant; symmetry breaking of sol-
itons can indeed occur. Specifically, in this class of com-
plex potentials, a branch of non-PT -symmetric solitons
can bifurcate out from the base branch of PT -symmetric
solitons when the base branch’s power reaches a certain
threshold. But if the PT potential deviates from this spe-
cial form, then symmetry breaking generically disap-
pears. Symmetry breaking of solitons in this class of
PT -symmetric potentials is a surprising phenomenon, be-
cause infinitely many nontrivial conditions in Ref. [34]

are miraculously satisfied simultaneously, which makes
this symmetry breaking possible.

The model for nonlinear propagation of light beams in
one-dimensional complex optical potentials is taken as

iΨz �Ψxx � V�x�Ψ� σjΨj2Ψ � 0; (1)

where z is the propagation direction, x is the transverse
direction, and σ � �1 is the sign of cubic nonlinearity.
The complex potential V�x� is assumed to be PT -
symmetric, i.e.,

V��x� � V�−x�; (2)

where the asterisk “*” represents complex conjugation.
Solitons in Eq. (1) are sought of the form

Ψ�x; z� � ψ�x�eiμz; (3)

where μ is a real propagation constant, and ψ�x� is a
localized function which satisfies the equation

ψxx � V�x�ψ � σjψ j2ψ � μψ : (4)

For a generic PT -symmetric potential V�x�, its linear
spectrum, i.e., the set of eigenvalues μ for the linear
Schrödinger equation

ψxx � V�x�ψ � μψ ; (5)

can be all-real [5–8]. In addition, such a potential often
admits continuous families of PT -symmetric solitons
[8,17–22]. However, it is very hard for a PT potential
to admit families of non-PT -symmetric solitons. Indeed,
such solution families have never been reported to the
author’s best knowledge. The analytical reason is that
in order for such non-PT solution families to exist in a
PT potential, infinitely many nontrivial conditions have
to be met, which is impossible in generic PT -symmetric
potentials [34].

In this Letter, we consider a special class of PT -
symmetric potentials
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V�x� � g2�x� � αg�x� � ig0�x�; (6)

where g�x� is an arbitrary real and even function, and α is
an arbitrary real constant. This form of the potential con-
tains that used in Ref. [36] as a special case (when α � 0).
Even though this potential can be reduced to the form of
Ref. [36] through shifts of g�x� � α∕2 → g�x� and
μ� α2∕4 → μ, we find this new form of the potential
to be more flexible and easier to work with (see
later text).
Note that the Schrödinger eigenvalue problem [Eq. (5)]

with potential [Eq. (6)] can be transformed to Zakharov–
Shabat-type eigenvalue problems [36,37]. This fact can be
used to establish all-real spectra under these potentials.
For this class of potentials [Eq. (6)], we will show that

continuous families of non-PT -symmetric solitons can
appear through symmetry-breaking bifurcations. In real
symmetric potentials, symmetry breaking of solitons is
a well-known phenomenon [38]. But in complex PT -sym-
metric potentials, such symmetry breaking is very novel.
We will numerically demonstrate this symmetry breaking
by a number of examples. Comparison with the analytical
conditions for symmetry breaking in Ref. [34] will also
be made.
We first consider a localized double-hump function of

g�x�

g�x� � A
�
e−�x�x0�2 � e−�x−x0�

2�
; (7)

with A � 2, x0 � 1.2 and α � 1. The corresponding PT
potential V�x� from Eq. (6) is plotted in Fig. 1(a). The lin-
ear spectrum of this potential is all-real, and it contains
three positive discrete eigenvalues, the largest being
3.6614. From this largest discrete eigenmode, a family
of PT -symmetric solitons bifurcates out. Under focusing
nonlinearity (σ � 1), the power curve of this solution

family is shown in Fig. 1(b), and the soliton profile at
the marked point “c” (with μ � 4.3) is displayed in
Fig. 1(c). Here the soliton’s power is defined as
P � R∞

−∞ jψ�x; μ�j2dx. What is interesting is that, at the
propagation constant μc ≈ 3.9287 of this base power
branch, a family of non-PT -symmetric solitons bifurcates
out. The power curve of this non-PT -symmetric family is
also shown in Fig. 1(b). At the marked point “d” of the
bifurcated power branch, the non-PT -symmetric solu-
tion is displayed in Fig. 1(d). It is seen that most of
the energy in this soliton resides on the right side of
the potential. In order to ascertain these non-PT -
symmetric solitons are true solutions to Eq. (4), we have
computed them using the Newton-conjugate-gradient
method [2] and 32 significant digits (in Matlab with a mul-
tiprecision toolbox). These solutions are found to satisfy
Eq. (4) to an accuracy of 1 × 10−30, confirming that they
are indeed true solutions.

Because Eq. (4) is PT -symmetric, if ψ�x� is a solution,
so is ψ��−x�. Thus, for each of the non-PT -symmetric sol-
itons ψ�x; μ� in Fig. 1(b), there is a companion soliton
ψ��−x; μ� whose energy resides primarily on the left
side of the potential. In other words, the bifurcation in
Fig. 1(b) is a pitchfork-type symmetry-breaking bifurca-
tion. This bifurcation resembles that in conservative sys-
tems with real symmetric potentials, which is remarkable
because the present potential is dissipative (with gain
and loss).

Linear stability of these solitons can be determined
by perturbing them with normal modes, Ψ�x; t� �
eiμz�ψ�x� � q�x�eλz � r��x�eλ�z	, where q, r ≪ ψ . Inserting
this perturbation into Eq. (1), a linearized eigenvalue
problem for �q; r� can be derived, with λ being the eigen-
value. If eigenvalues with positive real parts exist, then
the soliton is linearly unstable. Otherwise it is linearly
stable.

We have determined the linear-stability spectra of
these solitons by the Fourier collocation method [2].
We found that the base branch of PT -symmetric solitons
is stable before the bifurcation point (μ < μc). After the
bifurcation point, this base branch becomes unstable due
to the presence of a real positive eigenvalue. However,
the bifurcated branch of non-PT -symmetric solitons is
stable. These stability results are marked on the power
diagram of Fig. 1(b). To corroborate these linear-stability
results, we perturb the two solitons in Figs. 1(c) and 1(d)
by 1% random-noise perturbations, and their nonlinear
evolutions are displayed in Figs. 2(a) and 2(b). It is seen
from Fig. 2(a) that the PT -symmetric soliton in Fig. 1(c)
breaks up and becomes non-PT -symmetric. Upon further
propagation, the solution bounces back to almost
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Fig. 1. Symmetry breaking of solitons in the PT -symmetric po-
tential [Eq. (6)] for a double-hump function [Eq. (7)] with A � 2,
x0 � 1.2, α � 1, and σ � 1. (a) Profile of the potential V�x�
[solid blue, Re�V�; dashed red, Im�V�]. (b) Power diagram (solid
blue, stable branches; dashed red, unstable branch). (c) PT -
symmetric soliton at point “c” of the power diagram.
(d) Non-PT -symmetric soliton at point “d” of the power dia-
gram. In (c) and (d), solid blue is Re�ψ�, dashed is red
Im�ψ�, and μ � 4.3.

Fig. 2. (a) and (b) Nonlinear evolutions of the two solitons in
Figs. 1(c) and 1(d) under 1% random-noise perturbations.
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PT -symmetric again, followed by another breakup. In
contrast, Fig. 2(b) shows that the non-PT -symmetric
soliton in Fig. 1(d) is stable against perturbations.
For the PT -symmetric potential [Eq. (6)] with g�x�

given by Eq. (7), we have also tested many other values
of A, x0 and α, and observed symmetry-breaking bifurca-
tions as well. Interestingly, we found that symmetry
breaking can still occur even if the potential is above
the phase-transition point, i.e., when the linear spectrum
of the potential is not all-real [5–7]. For instance, with the
same A and x0 values as above, when α � −0.9, the linear
spectrum of the resulting potential [Eq. (6)] is displayed
in Fig. 3(a). This spectrum contains a pair of complex ei-
genvalues, indicating that this PT -symmetric potential is
above the phase-transition point. This spectrum also con-
tains a discrete real eigenvalue μ ≈ 0.5817, from which a
continuous family of PT -symmetric solitons bifurcates
out. The power curve of these PT -symmetric solitons
(for σ � 1) is shown in Fig. 3(b). The low-power segment
of this solution branch is unstable since the potential is
above the phase-transition point. However, when the
power is above 1.14, these PT -symmetric solitons be-
come stable. At the power value of approximately 1.8,
symmetry breaking occurs, where a branch of non-PT -
symmetric solitons bifurcates out. Meanwhile, the base
branch of PT -symmetric solitons loses stability. The
presence of symmetry breaking and existence of stable
non-PT -symmetric solitons in a PT -symmetric potential
above phase transition is remarkable.
In addition to the double-hump function [Eq. (7)], sym-

metry breaking can occur in the PT -symmetric potential
[Eq. (6)] for many other types of real and even functions
of g�x�. To demonstrate, we now choose a periodic
function for g�x�

g�x� � sin2 x; (8)

and take α � 6. The corresponding periodic PT -
symmetric potential [Eq. (6)] is displayed in Fig. 4(a).
In this potential under focusing nonlinearity (σ � 1), a
family of PT -symmetric “dipole” solitons exists in the
semi-infinite gap. The power curve of this “dipole” family
is plotted in Fig. 4(b), and the profile of the PT -symmet-
ric soliton at point “c” of this power curve is shown in
Fig. 4(c). At μc ≈ 4.5801 of this PT -symmetric power
curve, a family of non-PT -symmetric solitons bifurcates
out. Its power curve is also shown in Fig. 4(b) (the middle

curve), and the non-PT -symmetric soliton at point “d” of
this power branch is displayed in Fig. 4(d).

In a PT -symmetric potential, symmetry breaking re-
quires infinitely many nontrivial conditions to be satisfied
simultaneously [34]. Due to such stringent conditions,
symmetry breaking cannot occur in a generic PT -
symmetric potential. But for the special class of poten-
tials [Eq. (6)], those sequences of conditions are miracu-
lously satisfied. For instance, for the potential in Fig. 1,
we have numerically checked the first two of those con-
ditions, the first being Eq. (69) in Ref. [34], and the
second being mentioned but not presented in Ref. [34].
We verified that those two (nontrivial) conditions are in-
deed met. Why potentials [Eq. (6)] satisfy all those infin-
ite conditions is an interesting question which merits
further investigation. The special nature of potentials
[Eq. (6)] is also reflected in the fact that, when the PT
potential V�x� deviates from those special forms, sym-
metry breaking generically disappears. To demonstrate,
we introduce a real parameter β into those potentials:

V�x� � g2�x� � αg�x� � iβg0�x�: (9)

Then when β moves away from 1, we cannot find
symmetry breaking anymore. For instance, from the po-
tentials in Figs. 1–3, when we change β from 1 to 0.9, we
find that families of non-PT -symmetric solitons in those
figures no longer exist. Similar findings were also re-
ported in [34,39], where for several PT -symmetric poten-
tials not of the form [Eq. (6)], families of non-PT -
symmetric solitons could not be found.

It should be pointed out that even though the poten-
tials [Eq. (6)] are very special among all PT -symmetric
potentials, they still represent a large class of potentials
since g�x� is an arbitrary real even function, and α is an
arbitrary real constant. In addition, even though we
chose a cubic nonlinearity in our model [Eq. (1)], we have
found that other types of nonlinearities (such as

Fig. 3. Symmetry breaking of solitons in the PT -symmetric po-
tential [Eqs. (6) and (7)] above the phase transition point (with
A � 2, x0 � 1.2, α � −0.9, and σ � 1). (a) Linear spectrum of
the potential [Eq. (6)]. (b) Power diagram of symmetry-breaking
bifurcations (solid blue, stable solitons; dashed red, unstable
solitons).

Fig. 4. Symmetry breaking of solitons in a periodic PT -sym-
metric potential [Eq. (6)] with g�x� given by Eq. (8), α � 6
and σ � 1. (a) Profile of the potential V�x� [solid blue,
Re�V�; dashed red, Im�V�]. (b) Power diagram. (c) PT -symmet-
ric soliton at point “c” of the power diagram. (d) Non-PT -
symmetric soliton at point “d” of the power diagram. In (c)
and (d), solid blue is Re�ψ� and dashed red is Im�ψ�.
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cubic-quintic nonlinearity) admit symmetry breaking as
well inside the class of potentials [Eq. (6)]. Thus, by
changing different forms of functions g�x� and nonlinear-
ities, we may still get a wide variety of symmetry-
breaking bifurcations. Whether there are additional types
of PT -symmetric potentials that admit symmetry-
breaking bifurcations is an interesting open question.
Extension of this symmetry breaking to higher spatial
dimensions is another important direction.
In summary, we have reported symmetry breaking bi-

furcations in a class of PT -symmetric potentials [Eq. (6)].
From these bifurcations, families of stable non-PT -
symmetric solitons can be generated. These results open
the door for the study of symmetry breaking in PT -
symmetric potentials under more general circumstances.

The author thanks Prof. V. Konotop and Dr. D. Zezyulin
for bringing Ref. [36] to his attention. This work is
supported in part by AFOSR and NSF.
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