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Abstract

Using the variational method, we obtain analytical conditions for stationary propagation of a Gaussian pulse in a fibre
with strong dispersion management. We consider both the lossless fibre and the one with losses and periodic amplification.
The analytical predictions have been checked against direct numerical simulations, and a good agreement between the two
has been demonstrated. In particular, we find that in a certain region of parameters, the average dispersion necessary to

Ž .support the stationary propagation is negative normal . We also show that under a certain assumption, the variance of the
Gordon-Haus timing jitter for the pulse in a strongly dispersion-managed system approximately equals that for the
conventional soliton, reduced by an energy enhancement factor. Using our analytical conditions, we obtain an estimate for
this factor. In particular, we show that in the presence of losses and periodic amplification, this jitter suppression factor can
be made to be as large as that for the lossless case, by properly choosing the segment lengths in the dispersion map. q 1998
Elsevier Science B.V.

PACS: 42.65.T; 03.40.Kf
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1. Introduction

The technique of dispersion compensation, or disper-
Ž .sion management DM , for pulse propagation in telecom-

munication lines has been a subject of intensive theoretical
Žand experimental research in the last few years see Refs.

w x .1–19 and references therein . We will be using the
acronym ‘‘DM’’ for both ‘‘dispersion management’’ and
‘‘dispersion managed’’, since this will not result in a
confusion. For the sake of brevity, we will call the pulse in
a DM line a ‘‘DM soliton’’. The DM technique uses
periodically concatenated pieces of fibre with opposite
signs of dispersion. One advantage of the DM technique
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over conventional soliton propagation in a uniform fibre is
that it allows one to reduce the four-wave mixing, which
occurs due to the fibre nonlinearity. The four-wave mixing

w xhas been shown 20 to be detrimental for wavelength-divi-
Ž .sion multiplexing WDM in a conventional soliton trans-

mission line. Another advantage of the DM technique is
that it allows one to keep the average dispersion small,

Ž . w xwhich reduces the Gordon-Haus GH timing jitter 21 .
Moreover, it has been recently suggested on the basis of a

w x w xnumerical evidence 2,18 and experimentally verified 3
that the GH jitter in a DM line is reduced compared to that
jitter in a uniform fibre with the same average dispersion.

w xIn Ref. 3 , it was concluded that the corresponding jitter
suppression factor is approximately equal to the energy
enhancement factor, i.e. the ratio of the pulse energy in the
DM line to that of the pulse with the same width in the
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w xuniform fibre 2–4 . Another nontrivial feature of the jitter
w xsuppression by means of DM was revealed in Ref. 18 ,

where a model that took into account losses and periodic
amplification was studied numerically. The results of Ref.
w x18 showed a strong dependence of the jitter suppression

w xupon the DM period. In Ref. 19 , it was further shown
that in a modified model where the average dispersion
D ;1rz, i.e. slowly decreases with the propagation dis-0

tance z, the mean squared jitter grows proportionally only
to z, rather than to z 3, as occurs in the GH theory for the

Ž .nonlinear Schrodinger NLS soliton.¨
Although several attempts at developing a systematic

w xtheory of the DM soliton have been made 22,4–7 , such a
theory is still far from being complete. The regime of the
so-called weak DM, when the local dispersion lengths are
of the order of magnitude of the nonlinear length, has been

w xstudied in most detail 23,22,4,5 . It is the strong DM
regime, when the local dispersion lengths are much smaller
than the nonlinear length, that is both the most interesting
for the applications and also the most difficult for the

Žanalysis we note that this regime has been recently ana-
w x .lyzed in Refs. 6,7 using the Lie transformation . How-

ever, in the strong DM regime, the following simplifica-
tion occurs: Since the local dispersion, but not the nonlin-
earity, is the main factor affecting the pulse propagation,
then that pulse must resemble some particular exact solu-
tion of the linear part of the evolution. Numerical findings

w xof Refs. 8–10 , and of a number of other studies, indicate
that this particular solution must be a Gaussian pulse.

In this work, we employ the variational method to
obtain the conditions for the stationary propagation of a
pulse in the strong DM regime. We consider both the case
of a lossless fibre and the case where losses and periodic
amplification are present in the transmission line. It should
be noted that the variational method has been previously

w xused 11–15 to study the DM soliton, with the last two
papers specifically focusing on determining the stationary

Žpropagation conditions. One of the two conditions the one
.related to the initial chirp of the pulse that we obtain here

w xis the same as was obtained in Refs. 14,15 and in a
number of numerical studies. The other condition, which
relates the average dispersion to the pulse’s maximum
amplitude, appears to be different. In particular, we find
that this latter condition predicts, quite unexpectedly, that a
DM soliton can propagate stationarily when the average

Ž .dispersion is negatiÕe i.e. normal . To verify the condi-
tions obtained, we ran a series of extensive numerical
simulations. The numerical results were found to agree
quite well with our analytical predictions.

In the second part of our work, we follow the standard
Žw x w x.procedure 21 , see also sect. 8.1 in Ref. 24 and derive

the GH timing jitter for the DM soliton. We point out that
such a derivation requires a certain assumption about the
orthogonality of the solutions of the linearized evolution
equation in question. With that assumption, we can recover
the standard GH result, and then can estimate the jitter

suppression factor as a function of the dispersion map
parameters. In particular, we show that by properly choos-
ing the segment lengths in the dispersion map, one can
make the jitter suppression factor in a system with losses
and periodic amplification to be almost as large as that in
the corresponding lossless system.

2. Variational approximation

Pulse propagation in a DM transmission line is conven-
tionally described by the following equation:

1 2˜ ˜ < <iU q D Z U qG Z U U s0 , 1Ž . Ž . Ž .Z TT2

where Z, T , and U are the coordinates and the electric field
˜Ž .amplitude, D Z is the local dispersion coefficient, and

˜Ž .G Z , whose form will be specified later, accounts for the
Ždamping and periodic amplification of the pulse see, e.g.,

˜ 2 2w x. Ž . ŽRef. 24 . Note that in Eq. 1 , DsyE krEv where k
and v are, respectively, the wave vector and frequency of

˜ 2. w xthe carrier ; thus the units of D are s rm . The form of
˜Ž . Ž .the periodic function D Z of period L ismap

˜ ˜D , 0-mod Z, L -L ,Ž .1 map 1
D̃ Z s 2Ž . Ž .½ ˜ ˜D , L -mod Z, L -L ,Ž .2 1 map map

˜ ˜with D D -0. The strong DM regime corresponds to the1 2
˜ 2 ˜ ˜ ˜ ˜Ž < < . < < < <situation where L <1r G U and D L f D Lmap 0 1 1 2 2

2 < < 2;t . Here U is the pulse peak power, t is the pulsep 0 p
˜ ˜width, and L sL yL . If we introduce new, nondi-2 map 1

m e n s io n a l v a r ia b le s : z s Z r L , t sm a p

˜ ˜ ˜ ˜< < Ž .(Tr L L D yD rL , and usUrU , then Eq. 11 2 1 2 map 0

takes on the form:

21 1 < <iu q D z u qe D u qG z u u s0 . 3Ž . Ž . Ž .z tt 0 tt2 2

< < 2Here esL U andmap 0

° ˜ ˜sgn D yDŽ .1 2
D s , 0-mod z ,1 -L ,Ž .1 1L1~D z sŽ .

˜ ˜sgn D yDŽ .2 1
D s , L -mod z ,1 -1 ,Ž .2 1¢ L2

4Ž .
˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜Ž . Ž <L s L rL , D s D L q D L r L L D y1,2 1,2 map 0 1 1 2 2 1 2 1

˜ 2 ˜< < < . Ž . Ž .D U , and G z sG ZrL . Note that for the vari-2 0 map
Ž .ables scaled as in Eq. 3 , one has the dispersion map

period unity and

< < < <D L qD L s0, D L s D L s1 . 5Ž .1 1 2 2 1 1 2 2

The following important remark regarding the meaning
Ž .of the small parameter e in Eq. 3 is in order here. In the

discussion in Section 3 below, we will consider the maxi-
mum amplitude A of the soliton to be of order unity. Then
e is on the order of magnitude of the ratio of the local
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dispersion length to the nonlinear length in the system. On
the other hand, as we will show below, the average
dispersion D that will be necessary for stationary propa-0

gation of a pulse can be rather small. Thus, if one defines
the measure of the ‘‘strength’’ of the DM in a given fibre
to be the ratio of the average and local dispersion lengths
Žas it was implied in the majority of numerical and experi-

. Ž .mental studies , then that ‘‘strength’’ parameter, 1r eD ,0

can actually be much greater than 1re .
Ž .A well known particular solution of Eq. 3 with es0

is the Gaussian pulse
2A t

u s exp y q if . 6Ž .0 22 t q2 iDŽ .1q2 i Drt 0( Ž .0

Here A and t are, respectively, the maximum amplitude0

and minimum width of the pulse over one map period,
Ž . z Ž X. X

D z sD qH D z d z , and D and f are real con-0 0 0

stants. In the majority of previous studies, the same ansatz
has been used, but in a different form:

2t
2u sa z exp y q ic z t q if . 6’Ž . Ž . Ž .0 2W zŽ .

The relation between the so introduced quantities: complex
Ž . Ž . Ž .amplitude a z , width W z , and chirp parameter c z , on

Ž .one hand, and the parameters used in Eq. 6 , on the other,
is as follows:

4 2(t q4DA 0
a z s , W z s ,Ž . Ž .

2 t 01q2 i Drt( Ž .0

2 D
c z s . 7Ž . Ž .4 2t q4D0

Our goal is to determine for what values of these
parameters the pulse, whose form is assumed to be close to

Ž . Ž .Eq. 6 , will propagate stationarily when e in Eq. 3 is
w xsmall but nonzero. Following Ref. 25 , we insert the

Ž .ansatz 6 , in which A, t , D , and f are now allowed to0 0

change slowly with z, into the Lagrangian density of Eq.
Ž .3 and integrate over t . The resulting reduced Lagrangian
is then used to obtain the evolutions of these four parame-
ters. The phase f is eliminated by simple algebra, and
then one obtains the following three equations:

A2t 'Esconst , 8aŽ .0

dt e G z Et D zŽ . Ž .0 0's 2 , 8bŽ .3d z W zŽ .
2 4d D e G z E 4D z ytŽ . Ž .0 0

seD q . 8cŽ .0 3'd z 2 2 W zŽ .
Ž .Note that for the specific form of ansatz 6 , the perturba-

Ž .tion terms in Eq. 3 are even functions of t . Thus they
will not change the soliton’s velocity and centre coordi-
nate, and therefore we need not include the latter two
parameters in the variational ansatz.

The conditions for the stationary propagation of a pulse
require that its amplitude and width remain, on average,

w xthe same when z is increasing 14,15 . This is so if
Ž . Ž . Ž . Ž . Žt z s t z q 1 and D z s D z q 1 recall that0 0 0 0

Ž .. Ž .L s1 in the units of Eq. 3 . Moreover, from Eqs. 8map
Ž .one sees that t and D can change by no more than O e0 0

within one map period. Thus, it is legitimate to obtain the
Ž .first-order conditions in question, by inserting into 8b

Ž .and 8c the unperturbed values for t and D , and0 0

requiring that

dt d D1 10 0
d zs d zs0 . 9Ž .H H

d z d z0 0

Then these two conditions become, respectively:
1sqD q g s d sŽ .1r2 0 2

s0 , 10aŽ .H 3r221y1r2 4t q4 sqD qŽ .0 0 2

21 44 sqD q yt g s d s' Ž .Ž .2 0 021r22 4D sy A t ,H0 0 3r224 1y1r2 4t q4 sqD qŽ .0 0 2

10bŽ .
where

1 1g s sL G L sq qL G L qL ys .Ž . Ž . Ž .Ž . Ž .1 1 2 1 22 2

11Ž .
Ž . Ž . Ž .Eqs. 10 and 11 can be obtained from Eq. 9 in the

following way. First, one integrates over z from 0 to L1
Ž .and makes the variable substitution zsL sq1r2 . Then1

one adds to this result, the integral over L -z-1, in1
Ž .which one needs to make the variable substitution zyL1

Ž . Ž . Ž .sL 1r2ys . Then with Eq. 5 , one obtains Eqs. 102
Ž .and 11 .

Ž .Conditions 10 have the following meaning. The first
Žcondition determines D and hence the initial chirp cf.0

Ž ..Eq. 7 which results in the pulse propagating stationarily
down the DM fibre. Then the second condition determines
the maximum amplitude required for the stationary propa-
gation for a given average dispersion of the system.

( )3. Comparison of analytical conditions 10 with nu-
merical results

We now consider different configurations of the peri-
odic amplification relative to the periodic dispersion map.
The simplest case is when one has no losses and amplifica-

Ž . Ž .tion, so that G z '1, and then g s '1. In this case, the
Ž .integrals in Eqs. 10 can be evaluated explicitly, yielding:

1
D sy , 12aŽ .0 2

'2 1 1 2
2 4D sy A t ln 1q q y .0 0 4 2( 4ž /4 t t (t q10 0 0

12bŽ .
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Ž . Ž .Conditions 8a and 12a , expressed in a different but
equivalent form, have been previously obtained analyti-

w x Ž .cally in Refs. 14,15 . Condition 12a has also been found
w xnumerically in, e.g., Refs. 16,10,9 . This condition re-

quires that the pulse have zero chirp at midpoint of each
Ž .fibre segment. Condition 12b coincides with the condi-

w x 2tion obtained in Ref. 15 when t 41, which is where0

the approximation made in that paper is only expected to
w x Ž Ž .work well; cf. Fig. 2 in Ref. 15 . Since in Eq. 12b and

in subsequent formulae, it is t 2 and its powers, rather than0

t itself, that appear, then we will refer to the parameter0
2 . Ž .t in our discussion below. Eq. 12b is also different0

from the corresponding condition derived earlier in Ref.
w x Ž w x14 . The approaches adopted in Ref. 14 and in the
present work appear to be technically not equivalent;
however, a detailed comparison of these approaches and

.their results is outside the scope of this paper. Note that
Ž .Eq. 12b also predicts, quite unexpectedly, that the DM

soliton can propagate stationarily for negatiÕe D provided0
2 Ž 2.that t - t f0.30. To our knowledge, this fact has0 0 th

Žnever been reported before. Note that the expression
w xderived in Ref. 14 did not predict the sign of D , but0

.only its absolute value.
Ž . ŽIn order to verify the validity of Eqs. 10 and, in

Ž . .particular, of Eqs. 12 for the lossless case , we solved
Ž .Eq. 3 numerically, with the parameters of the initial

Ž .Gaussian pulse 6 being taken as predicted by these
equations. We used the pseudo-spectral method in t and
the fourth-order Runge-Kutta method in z. The value of e

in all our simulations was set to 0.1. For the lossless case,
we also fixed L s0.4, L s0.6, D s1rL and D s1 2 1 1 2

y1rL , and then the only free parameter of a pulse with a2
Ž .unit maximum amplitude i.e. with As1 was its mini-

Ž .mum width, t . The average dispersion, D , in Eq. 30 0
Ž .was set in accordance with Eq. 12b . The simulations

were run for a number of values of the parameter t 2 in the0

range from 0.05 to 3.0; cf. Fig. 1.

Fig. 1. Comparison of the ratio of the average dispersion to pulse
Ž .energy, as given by Eq. 10b , with the results of numerical

Ž .simulations of Eq. 3 . Lossless case: solid – theory, circles –
Ž 2 .numerics. The threshold value t is marked with a tick mark.0 th

The following data pertain to the model with losses and amplifica-
tion. L s L , L rL s7r18: dashed – theory, squares –map amp 1 amp

numerics; L s L , L rL s2r3: triangles – numericsmap amp 1 amp
Ž .see main text ; L s L q4L , L rL s0.5: dash-dottedmap 1 amp 1 amp

Ž .– theory see main text .

Ž .Fig. 2. a Evolution of minimum and maximum pulse amplitudes
in the lossless case. Solid – t 2 s0.2; dashed – t 2 s0.5. Other0 0

Ž .parameters are specified in the text. b Evolution of the pulse
amplitude within one map period in the lossless case; 799F zF
800. Thick solid – t 2 s0.2; thick dashed t 2 s0.5; thin solid and0 0

Ž .thin dashed – the corresponding quantities for 0F zF1. c Pulse
profiles for the same parameters as in Fig. 2b. Thick solid –
t 2 s0.2 at zs800; thick dashed – t 2 s0.5 at zs800; thin0 0

solid and thin dashed – the corresponding profiles at zs0. Note
that in order to fit both profiles in the same figure, we shifted the
centre of the pulse with t 2 s0.2 from t s0 to t sy5, and the0

centre of the pulse with t 2 s0.5 from t s0 to t s10.0

In each run, we measured the value of t when the0
Ž .pulse appeared to reach a quasi- stationary regime. Then

for each t so obtained, we plotted, in Fig. 1, the ratio of0

the average dispersion to the pulse energy, along with the
corresponding analytical curve. The agreement between
the theory and the numerics is seen to be good.

In Fig. 2, we showed the pulse evolution for two
typical cases where t 2 is initially 0.2 and 0.5. For all t 2

0 0
Ž 2.greater than the threshold value, t , the maximum and0 th

minimum amplitudes of the pulse do not settle down to
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constant values, but instead undergo almost periodic,
Ž .long-term and small-amplitude oscillations Fig. 2a . In

this case, very small continuum radiation from the pulse is
2 Ž 2.seen in the numerics. On the other hand, for t - t ,0 0 th

the pulse amplitudes undergo a very slow decay, occurring
with an approximately constant rate, due to emission of
continuum radiation. The amount of this radiation is still
quite small, so that the amplitudes of the pulse with the
initial value of t 2 s0.2 decrease by less than 10% over0

Ž .the distance zs800 Fig. 2a . Even though this decay
intensifies for pulses with smaller initial values of t 2, we0

still observed that even for t 2 as small as 0.05, the0

amplitudes of the pulse decay only by about 10% over a
Ždistance as large as zs600. However, rigorously speak-

Ž . 2 Ž 2.ing, there exist no quasi- stationary pulses for t - t .0 0 th

Thus we did not plot the corresponding numerical results
.in Fig. 1. It is also worth noting that despite the fact that,

for large z, the amplitude evolution within one period of
the dispersion map becomes noticeably different from that

Ž . Ž .assumed by ansatz 6 , cf. Fig. 2b , the stationarity condi-
Ž . Ž Ž ..tions 10 and, in particular, 12 , which were derived

using that ansatz, still continue to hold remarkably well.
We also note that for relatively large values of t 2

0
Ž 2 .t )2.0 , the long-term oscillations of the pulse ampli-0

tudes look more like those of an NLS soliton launched
Žwith a slightly ‘‘wrong’’ initial amplitude see, e.g., Ref.

w x.26 . In fact, this is to be expected: for larger pulse
Ž .widths, the magnitude of the second term in Eq. 3

decreases compared to the magnitude of the last term
Ž .recall that the maximum pulse amplitude is unity . Thus
for large t , the nonlinear term plays a larger role in the0

evolution than it does for small t , and therefore the0

equation becomes closer to the NLS equation. This is also
Ž . 2consistent with the asymptotics of Eq. 12b for large t ,0

where one finds that the product At is proportional to0
1r2 ŽD , which is characteristic of an NLS soliton. This was0

w x .also pointed out earlier in Ref. 14 .
When there are losses and periodic amplification in the

transmission line, then possible configurations of the peri-
odic dispersion map relative to the amplification pattern
become numerous. Here we will only consider three of
them, which are representative of those cases that seem to
be the most interesting from the viewpoint of applications.
First, we consider the situation when the amplification and

Žthe dispersion map periods coincide, so that L s1 samp
. Ž . Ž Ž ..L and G z sexp y2a mod z ,1 . Here a is themap

Ž . Ž .damping coefficient. In such a case, g s in Eq. 11 takes
on the form:

ya L y2 a L s yaq2 a L s1 1 2g s se L e qL e . 13Ž . Ž .1 2

Ž .Since L qL s1, then the integrals in 10 depend on1 2

three parameters: t , a , and, say, L . We took as1.0130 1
Žwhich in physical units corresponds to 2as0.22 dBrkm

.and L s40 km and numerically calculated D and theamp 0
Ž . Ž .ratio D rE from Eqs. 10 as functions of t for several0 0

different values of L , in the range from 1r6 to 5r6. We1
Ž .note that in both these and the previous i.e. lossless

cases, a unique value of D was found for each t .0 0
Ž .Our results for D t are plotted in Fig. 3a. Next, for0 0

all values of L , the curves showing the dependence of1
Ž . 2D rE on t are very close to each other for all t that0 0 0

Ž 2.are just slightly larger than the threshold value t .0 th

Therefore, in Fig. 1 we only plotted one theoretical curve
Ž .in this case, corresponding to L s7r18 dashed line .1

The reason for choosing this particular L will be ex-1

plained later. The results of numerical simulations of Eq.
Ž .3 for L s7r18 are plotted with squares. Also in the1

same figure, we plotted the results of numerical simula-
Ž .tions for L s2r3 triangles . The agreement between the1

theory and the numerics is again seen to be good. The
long-term oscillations of the pulse’s maximum and mini-
mum amplitudes were found in this case to have signifi-

Ž .cantly larger periods by more than a factor of two than it
was, for the same initial values of t 2, in the lossless case0
Ž .cf. Fig. 2a .

Ž .Next, we considered two cases with: i L s4L ,1 amp
Ž . Ž .L -L , and ii L s4L , L -L . Cases i and2 amp 2 amp 1 amp

Ž .ii correspond to the situations when the dispersion accu-
mulated over four consecutive amplification periods in the
fibre is compensated by a short piece of fibre with the
opposite sign of dispersion just before and just after an
amplifier, respectively. These cases are sometimes referred

Ž . Ž .Fig. 3. a D t for the case with L s L for the following0 0 map amp
Ž . Ž . Ž . Ž . Ž .values of L rL : 5r6 a ; 2r3 b ; 1r2 c ; 7r18 d ; 1r6 e .1 amp

Ž . Ž . Ž . Ž . Ž . Ž .b D t for cases i and ii . a – case i with any L rL ;0 0 2 amp
Ž . Ž . Ž . Ž .b – case ii with L rL s0.5; c – case ii with L rL1 amp 1 amp

s0.1. Note that the vertical scale is different from that in Fig. 3a.
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to in the literature as a postcompensation and a precom-
Ž w x.pensation schemes, respectively see, e.g., Ref. 12 . The

proportionality coefficient of 4 between the longer seg-
ment of the map and L was taken somewhat arbitrarily,amp

although it does correspond to the experimental setups
w xconsidered in Refs. 17,3 . These cases are also close to the

one for which the jitter suppression factor was found to be
w x Ž . Ž .maximum in Ref. 18 . In case i , G z s

Ž . Žexp y2a zrL yk for kL Fz- kq1 L kŽ .amp amp amp
. Ž . Ž . Ž .s0,1,2 and for 3L Fz-1 ks3 . In case ii , G zamp

sexp y2a zyL rL yk for 0Fz-L qLŽ .Ž .1 amp amp 1
Ž . Ž . Ž . Žks0 and for kL F zyL - kq1 L ksamp 1 amp

. Ž .1,2,3 . The corresponding forms of g s can easily be
found to be as follows:

case i g s sL g sŽ . Ž . Ž .˜1

L2
qL exp ya 2q 1y2 s ,Ž .2 ž /Lamp

14aŽ .

L1
case ii g s sL exp a 1y2 s qL g ys ,Ž . Ž . Ž . Ž .˜1 2Lamp

14bŽ .

Ž . Žw xwhere g s sexp y8a sykr4 for kr4Fs- kqŽ .˜
. Ž .1 r4 ksy2,y1,0,1 .

Ž .The value of the damping parameter aL , in casesmap
Ž . Ž .i and ii was taken to be the same as in the case with
L sL , i.e. aL s1.013. In compliance with themap amp map

w x Žnumerical observations of Ref. 16 although made for a
. Ž .slightly different configuration , we found that Eqs. 10 ,

Ž . Ž .with g s given by Eqs. 14 , yield solutions that are only
Žslightly different from those in the lossless case see Eqs.

Ž .. Ž . Ž .12 . In case i , the curves D t for all values of0 0

L rL from 0.1 to 0.5 are essentially indistinguishable2 amp

in the plot. Thus we only plotted one such curve, for
Ž . Ž . Ž .L rL s0.1 Fig. 3b . In case ii , D t depends2 amp 0 0

Ž .slightly on the ratio L rL , with D t increasing1 amp 0 0
Ž .monotonically with L rL for all t cf. Fig. 3b . The1 amp 0

Ž . Ž .values of D rE in case i , as well as these values for0
Ž .L rL s0.1 in case ii , are very close to those values1 amp

found in the case L sL ; therefore we did not plotmap amp

them in Fig. 1. We plotted only the corresponding curve
Ž . Ž .for case ii with L rL s0.5 dash-dotted line , which1 amp

is the most distinct from the other two curves in Fig. 1.
Since the numerical simulations confirmed the validity of
our analytical predictions in the previous cases, we did not

Ž . Ž .perform simulations for cases i and ii .
Ž .The proximity of the results obtained in cases i and

Ž .ii to those obtained in the lossless case holds, however,
2 Ž 2. Žonly for t ) t . This threshold differs slightly from0 0 th

case to case and from one value of L rL or L rL to1 amp 2 amp

another within the same case, but it remains close to its
Ž 2. . 2 Ž 2.value in the lossless case, t f0.30. For t - t ,0 th 0 0 th

Ž .there exist more than one up to seven, for very small t 0
Ž .values of D . As an example, we considered case i with0

L rL st 2 s0.15, where there exist five values of D .2 amp 0 0
Ž .These values were computed numerically from Eq. 10a .

Three of them are less than y0.5 and the other two are
greater than y0.5. All five of the corresponding values of

Ž .the average dispersion, given by Eq. 10b , are negative,
and their magnitudes can vary by more than a factor of
three depending on what particular D is taken. We per-0

formed simulations for the maximum amplitude A being
initially unity in all those cases, and the initial pulse chirp
and the average dispersion in the system taken according

Ž .to Eqs. 10 . The pulse evolution was followed up to
zs300. In all these five cases, we observed that the
evolution was essentially similar to that in other cases
when the initial parameter t 2 was less than the threshold0

value and the average dispersion was negative. In particu-
lar, we observed a buildup of a small amount of radiation
near the core of the pulse as well as a slow and monotonic
change of the pulse’s maximum amplitude.

Finally, we also numerically investigated the stability
of a DM soliton against relatively large perturbations of its
initial conditions. We restricted our attention to the lossless
case, since in the other cases the results are expected to be
similar. We ran several simulations where the initial en-
ergy of a DM soliton was taken to be by up to 60%

Ž .different both greater and less from the value predicted
Ž . Ž .by Eqs. 8a and 12b . We considered both cases, of

positive and negative average dispersion. In all simula-
tions, we observed that the pulse eventually settles down to
a new DM soliton surrounded by continuum radiation
Žrecall that in the case of negative D , such a soliton is0

expected to slowly decay due to its continuous emission of
.radiation . This behaviour is similar to that of the NLS

soliton. However, there are two essential differences from
the NLS case, which we will point out. The first one is the
observed fact that the radiation remains in the vicinity of a

ŽDM soliton for a much longer time the maximum length
of the evolution in this series of our simulations was

Fig. 4. Evolution of a pulse launched with t 2 s0.1 and As1 in0
Ž 2a line with D s0.305 this value of D corresponds to t s0.50 0 0 'Ž ..and As1 in Eq. 12b . Note that the pulse energy is initially 5

less than that of a pulse with t 2 s0.5 and As1, which would0

propagate stationarily at that average dispersion.
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. Ž .zs800 . The reason is that the variable dispersion D z
Ž . Ž .in Eq. 3 , that determines the evolution of u z,t in the

leading order, does not allow any initial disturbance to
spread out without limit. Indeed, no matter how much the
disturbance has spread out during its propagation in one

Žsegment of the fibre, this will be precisely undone when
.es0 in the next segment. Thus it is only the much

weaker average dispersion eD that forces the radiation to0

eventually separate from the soliton. The second difference
from the NLS case pertains to the evolution of sufficiently

Ž 2 .narrow t -0.5 pulses launched with ‘‘wrong’’ initial0

conditions. In that case, the parameters of the pulse tend to
remain almost unchanged up to a fairly large propagation

Ž Ž 2..distance, z z ;1r et . Then they change, within ac c 0

much shorter distance, and the modified pulse continues its
propagation at new, stationary values of its parameters.
This feature of the model is illustrated in Fig. 4.

4. Estimate of the timing jitter suppression for a DM
soliton

Having demonstrated that the variational method works
well in predicting the initial amplitude and chirp for
launching a stationary DM soliton, we will now use the
same method to evaluate the GH timing jitter for such a
pulse. We will follow the standard derivation for the NLS
soliton, but we will need to make a certain assumption in
order to obtain the jitter variance for the DM soliton.
Proceeding with that assumption will give us the conven-
tional result, and hence allow us to estimate the jitter

Ž .suppression factor JSF .
Ž .In order to model the distributed noise from the

Ž .amplifiers, we add to the rhs of Eq. 3 a random force
Ž .RsR t , z , whose variance we assume to be much smaller

Ž .than e . Then the solution to Eq. 3 is sought in the form:
< < < < Ž .usu qu q . . . , u < u . Here u is given by Eq. 60 1 1 0 0

in which the parameters are now slow functions of z, and
u is the continuum radiation. Since R is expected to affect1

the pulse velocity V and centre position t , we need toc
Ž .include these degrees of freedom in the ansatz 6 , This

can easily be done by using the Galilean and translational
Ž . w xinvariances of Eq. 3 . Following, e.g., Ref. 27 , one

obtains:

`
) w xdt u lhs of 3 qc.c.� 4Ž .H 0,t

y`

`
) )w x w xs dt u Rqc.c. q iE u u yc.c. , 15� 4 Ž .H 0,t z 0,t 1

y`

Ž .where the term in square brackets on the lhs of Eq. 15 is
evaluated for usu and c.c. stands for the complex0

w xconjugate. In Ref. 27 , where the NLS and other nonlinear
evolution equations with constant coefficients were consid-

Ž .ered, the last term on the rhs of the counterpart of Eq. 15

vanished due to the orthogonality of the radiation field u1
Ž w x.to the Goldstone mode u see, e.g., Ref. 28 . However,0,t

this same argument cannot be made at this time for Eq.
Ž .3 , since the corresponding linearized operator has yet to
be studied. Thus nothing is certain about the orthogonality
of its eigenmodes. In order to proceed with the above
approach, we shall assume here that the last term on the

Ž .rhs of Eq. 15 can be neglected in comparison with the
first one. The main reason why we can justify such an
assumption is that with it, we will be able to recover the
conventional GH result, which was shown to be in good

w xagreement with the experimental results 3 . In fact, in Ref.
w x3 , the values of the GH jitter in a DM line were com-
pared with those values obtained with the Gordon-Haus
formula for the NLS soliton with approximately the same
width. The agreement between these two sets of data was
found to be good when the latter values were reduced by a
factor approximately equal to the ratio of the energies of
the DM and NLS solitons.

Proceeding with the assumption stated above, we will
also obtain that the JSF approximately equals the ratio of
those energies, provided that the widths of both pulses are
the same. We shall refer to our result as to an estimate for
the JSF. Such an estimate, although not fully rigorous, is
still expected to show the important dependence of the JSF
on the parameters of the pulse and the dispersion map. We

Ž .will then use this estimate to show that: i the JSF can be
2 Ž 2. Ž .made very large, provided that t f t , and ii when0 0 th

losses and periodic amplification are present, the JSF can
be very sensitive to the ratio of the lengths of the segments
of the dispersion map.

Ž .Neglecting the last term on the rhs of Eq. 15 and then
w x Ž w x.proceeding similarly to Ref. 21 see also Ref. 24 , one

obtains:

V sj z , 16Ž . Ž .z

Ž . ² Ž .:where j z is the white noise with j z s0 and

G y1 d zyzXŽ .aX² :j z j z s . 17Ž . Ž . Ž .
`2 N L 220 amp < <t u dtH 0

y`

Here the angle brackets stand for the average value, G isa

the power gain of the amplifier, and N is the number of0

photons per unit energy.
Ž . Ž .The following three remarks about Eqs. 16 and 17

Ž .are in order. First, V appears in Eq. 16 from the term inz
Ž . Ž .Eq. 15 with the slow z-derivative: u sV u q0, z slow z 0,V

Ž . Ž .t u q . . . . Second, in deriving Eqs. 16 and 17c, z 0,t c

Ž .from Eq. 15 in which the last term on the rhs has already
been dropped, one again needs to make an assumption
that is equivalent to the one made above. Namely, one
needs to assume that the continuum radiation u is orthog-1

onal to the Goldstone mode u . Indeed, in the derivation0,t

of the timing jitter for the NLS, one implicitly used the



( )T.I. Lakoba et al.rOptics Communications 149 1998 366–375 373

fact that the perturbation R could be expanded over the
complete and orthogonal set of the eigenmodes of the

Žlinearized NLS. A similar point has been recently empha-
sized in the derivation of the timing jitter for a pulse in a

w x .fibre laser 29 . Finally, the third remark is that Gordon
and Haus had a slightly different integrand in the denomi-

Ž . Žnator of their counterpart of Eq. 17 for the NLS soliton,
Ž 2 2 . Ž 2 2 .they had tanh t sech t instead of t sech t as it would

Ž ..follow from Eq. 17 . This, however, does not lead to any
significant difference between their result and ours.

Ž .From Eq. 17 one easily deduces that the JSF equals:

`
22 < <t u dtH 0ž /y` DMJSFs . 18Ž .

`
22 < <t u dtH 0ž /y` NLS

Notice that, although this expression is not tantamount to
the ratio of the energies of the DM and NLS solitons, its
value is expected to be close to that ratio when the widths

Ž .of the two solitons are the same. The numerator in Eq. 18
Ž . Ž .is evaluated using Eqs. 6 and 10 , whereas the denomi-

nator is evaluated for the guiding-centre soliton of the NLS
Ž .that is obtained from Eq. 3 by dropping the term

1 Ž . ŽD z u . The latter soliton has the form see, e.g., Ref.tt2

w x. Ž < < 2. Ž 2. 2Ž .24 : u s a D rt sech trt , where the fac-0 NLS 0 0 0 0
Ž . Ž Ž ..tor a s 2aL r 1yexp y2aL accounts for the0 amp amp

Ž .periodic amplification. As it stands in Eq. 18 , the JSF is
Ž .z-dependent, because the numerator in Eq. 18 is propor-

2Ž . Ž Ž ..tional to W z see Eq. 7 . We then simply average
over one map period, obtaining:

214t q q 2 D q1Ž .0 03
JSF;y , 19Ž .6a t f t , L ,aŽ .0 0 0 1

Ž . Ž .where f t , L ,a denotes the integral in Eq. 10b . We0 1

remind the reader that our goal here is to obtain the
essential dependence of the JSF on the pulse and system
parameters. Therefore we are not concerned with the nu-
merical factors of order one that could possibly be intro-
duced by the above averaging andror by taking the width
of the NLS soliton to be the minimum width, t , of the0

DM soliton, rather than the latter’s average width, etc.
Ž .Eq. 19 and the previous considerations show that the

JSF can be very large near the point where the function
Ž . Ž 2 Ž 2. .f t , L ,a vanishes i.e for t f t . Thus, it seems0 1 0 0 th

2 Ž 2.advantageous to launch DM solitons with t f t in0 0 th

order to achieve a large jitter suppression. On the other
Žhand, near such a point, a so-called stretching factor the
.ratio of the maximum and minimum widths of the pulse ,

24 < <(t q 1q 2 D q1Ž .0 0
S' , 20Ž .2t 0

is also rather large. Using pulses with a large stretching
factor has the obvious disadvantage that such pulses should

be launched at sufficiently large separation in order to
prevent their overlapping. Thus, in designing a transmis-
sion line for DM solitons, a certain compromise between
these two factors must be reached. Another possible tech-
nological problem here is that, if one wishes to use pulses

2 Ž 2.with t f t or less, then the average dispersion has to0 0 th
Ž Ž .be made extremely small cf. Eq. 10b and also recall that

the pulse amplitude cannot be too large, so as not to
< < 2 Ž .violate the assumption that the term e u u in Eq. 3 is a

.small perturbation . This might require a very precise
Žtailoring of the parameters of the dispersion map. On the

other hand, as illustrated in Fig. 4, slight fluctuations of
the average dispersion may lead to the destruction of a
narrow pulse only after a sufficiently large propagation

.distance.
Ž .In Fig. 5, we plotted the JSF evaluated with Eq. 19

Ž .versus the stretching factor 20 for the lossless case and
for all the three cases with different periodic amplification
patterns considered above. In the case with L sLmap amp
Ž .Fig. 5a , one can see that the JSF significantly depends on
the ratio L rL . The optimal case, where the JSF is1 amp

even slightly larger than that in the lossless case for the
same values of the stretching factor, was found to occur

Ž . Ž . Ž .Fig. 5. a Jitter suppression factor calculated from Eq. 19 . a –
Ž .lossless case also see main text . Other curves calculated for the

case L s L with the following values of L rL : 1r2map amp 1 amp
Ž . Ž . Ž . Ž . Ž .b ; 1r6 c ; 2r3 d ; 5r6 e . b Jitter suppression factor

Ž . Ž . Ž . Ž .calculated from Eq. 19 for cases i and ii . a – lossless case
Ž . Ž . Ž . Ž .shown for comparison ; b – case ii with L rL s0.3; c1 amp

Ž . Ž .– case i with any L rL and case ii with L rL s0.1;2 amp 1 amp
Ž . Ž .d – case ii with L rL s0.5.1 amp
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Ž Ž . .when L rL f7r18 for aL s1.013 . This curve1 amp amp

and the one for the lossless case are so close to each other
that they are essentially the same curve in the plot. Note
that the ordering of the curves in Fig. 5a, for increasing

Ž . Ž . Ž . Ž . Ž .L , is: c , effectively a , b , d , and then e . Our1

prediction of the existence of an optimal ratio L rL1 amp
w xappears to correct the conclusions of Ref. 10 , which

predicted the JSF in a DM line with losses and periodic
amplification to be significantly lower than that in the
lossless line. We also note that there appears to be some
correlation between the values of D and the JSF. First of0

Ž .all, for the optimal ratio L rL s7r18, D t for all1 amp 0 0

but very small t is very close to its value in the lossless0
Ž .case, i.e. y0.5 see Fig. 3a . Moreover, for L rL s1r61 amp

Ž .and L rL s2r3, the curves D t are approximately1 amp 0 0
Ž .symmetric relative to the line D sy0.5 see Fig. 3a ,0

and the corresponding curves in Fig. 5a are also very close
to each other.

The results for the JSF in the cases when either L or1

L equals 4L , are close to the estimate in the lossless2 amp
Ž . Ž .case, as expected Fig. 5b . In case i , all the curves are

almost the same, irrespective of the ratio L rL . In case2 amp
Ž . Ž Ž ..ii , the ratio L rL f0.3 curve b appears to yield1 amp

Ž Ž . .the maximum JSF for aL s1.013 .amp

5. Conclusions

In this paper, we have found analytical expressions for
the values of the initial chirp and amplitude at which a
nearly Gaussian pulse can propagate almost stationarily in
the strong DM regime. This was done both for the lossless
case and for the case when losses and periodic amplifica-
tion were present simultaneously. Our analytical results are
in good agreement with the numerics. Surprisingly, we
also found that a DM soliton can propagate quasi-station-
arily in the regime of normal average dispersion, provided
that its minimum width is smaller than the threshold value,
Ž 2.t .0 th

Next, we estimated the GH timing jitter for a DM
soliton by assuming that the continuous spectrum of the
linearized evolution equation in question would be orthog-
onal to the bound states. Our justification for making this
assumption is that the result obtained in this manner here

w xwas earlier shown 3 to be in good agreement with the
Ž w xresults of the physical experiment in Ref. 3 , the corre-

sponding formula was essentially postulated; cf. also Sec-
.tion 4 above . Having estimated the jitter for a DM soliton

and using our analytical conditions of stationary propaga-
Žtion, we then estimated the jitter suppression factor which

shows how much the jitter for a DM soliton is suppressed,
.compared to the case of its NLS counterpart . We showed

Ž .that pulses with a relatively large stretching factor )2
can have a large JSF. We also demonstrated that by a
proper choice of the ratio of the segment lengths in the

DM map, the JSF for a system with losses and periodic
amplification can be made to be essentially the same as
that in the lossless case. In particular, our estimate predicts

Ž Ž . .that a precompensation scheme case ii above can yield
a slightly larger jitter suppression factor than a postcom-

Ž Ž ..pensation scheme case i .

Note added in proof. It has been pointed to us by S.K.
Turitsyn that stable propagation of a DM soliton at zero
and normal average dispersions was recently observed in

w xnumerical simulations in Ref. 30 , over distances as long
as five hundred dispersion map periods. We note that in
those simulations, the ratio of the map period to the

Žnonlinear length which is an analogue of our parameter e ,
Ž ..introduced in Eq. 3 , was of order one. This suggests that

our results, obtained with the assumption of the nonlinear-
ity being weak compared to the local dispersion, can also
be valid for larger values of the nonlinearity.
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