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Defect modes in one-dimensional photonic lattices
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Linear defect modes in one-dimensional photonic lattices are studied theoretically. For negative (repulsive)
defects, various localized defect modes are found. The strongest confinement of the defect modes appears
when the lattice intensity at the defect site is nonzero rather than zero. When launched at small angles into
such a defect site of the lattice, a Gaussian beam can be trapped and undergo snake oscillations under ap-
propriate conditions. © 2005 Optical Society of America
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Light propagation in periodic photonic lattices is un-
der intensive study these days due to their novel
physics and light-routing applications.1,2 Most of
these studies focused on nonlinear light behavior in
uniformly periodic lattices.3–10 A natural question
arises: how does light propagate if the photonic lat-
tice has a local defect? In photonic crystals, this ques-
tion has been much analyzed.11 While nonuniform ar-
rays of fabricated waveguides with structured defects
were used in previous studies,12–14 the issue of defect
modes in optically induced photonic lattices has not
yet received much attention. Since photonic lattices
differ from photonic crystals in many aspects (for in-
stance, the refractive-index variation in an induced
photonic lattice is typically several orders of magni-
tude smaller than that in a photonic crystal), one
wonders if photonic lattices with a local defect can
also support defect modes.

In this Letter we theoretically analyze linear defect
modes in one-dimensional photonic lattices with a lo-
cal negative defect as induced in a biased photore-
fractive crystal. In such a defect the lattice intensity
is lower than that at nearby sites (akin to air defects
in photonic crystals11), thus light has a tendency to
escape from the defect to nearby sites. However, we
found that localized defect modes exist as a result of
repeated Bragg reflections. More interestingly,
strongly confined defect modes appear when the lat-
tice intensity at the defect site is nonzero rather than
zero. As the lattice potential increases (by raising the
bias field), defect modes move from lower bandgaps
to higher ones. If a Gaussian beam is launched at
small angles into the defect, it can be trapped and
undergo robust snake oscillations inside the defect
site without much radiation.

The physical situation that we consider here is that
of an ordinarily polarized lattice beam with a single-
site negative defect launched into a photorefractive
crystal. This defected lattice beam is assumed to be
uniform along the direction of propagation. Mean-
while, an extraordinarily polarized probe beam with
a low intensity is launched into the defect site, propa-

gating collinearly with the lattice beam. The nondi-
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mensionalized model equation for the probe beam is5

iUz + Uxx −
E0

1 + ILsxd
U = 0. s1d

Here U is the slowly varying amplitude of the probe
beam, z is the propagation distance (in units of
2k1D2 /p2), x is the transverse distance (in units of
D /p), E0 is the applied DC field [in units of
p2 / sk0

2ne
4D2r33d], IL=I0 cos2 xf1+efDsxdg is the inten-

sity function of the photorefractive lattice (normal-
ized by the dark irradiance of the crystal, Id), I0 is the
peak intensity of the otherwise uniform photonic lat-
tice (i.e., far from the defect site), fDsxd is a localized
function describing the shape of the defect, e controls
the strength of the defect, D is the lattice spacing,
k0=2p /l0 is the wave number (l0 is the wavelength),
k1=k0ne ,ne is the unperturbed refractive index, and
r33 is the electro-optic coefficient of the crystal. In
this Letter we assume that the defect is restricted to
a single lattice site at x=0. Thus, we take fDsxd
=exps−x8 /128d. Other choices of defect functions fD
give similar results. When e,0, the light intensity IL
at the defect site is lower than that at the surround-
ing sites. This is called a negative (repulsive) defect
where light tends to escape to nearby lattice sites.
For e=−1 and −0.5, the corresponding lattice inten-
sity profiles are displayed in Figs. 1(a) and 3(b), re-
spectively. In the former case there is no light at the
defect site, while in the latter case there is still light
at the defect site but with a halfway reduced inten-
sity. These lattices with structured defects might be
generated experimentally by optical induction. Con-
sistent with our previous experiments,7 we choose
the parameters as follows: lattice intensity I0=3Id,
lattice spacing D=20 mm, l0=0.5 mm, ne=2.3, and
r33=280 pm/V. One x unit corresponds to 6.4 mm,
one z unit corresponds to 2.3 mm, and one E0 unit
corresponds to 20 V/mm in physical units.

For a negative defect, a surprising feature is the
possible existence of localized defect modes that are

due to repeated Bragg reflections. We seek such
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modes in the form Usx ,zd=exps−imzdusxd, where
function usxd is localized in x and m is a propagation
constant. Our numerical method is to expand the so-
lution usxd into discrete Fourier series, then convert
the linear usxd equation into an eigenvalue problem
with m as the eigenvalue. First, we consider the de-
fect with e=−1, where the lattice intensity at the de-
fect is zero [see Fig. 1(a)]. For this defect, we have
found defect modes at various values of E0. The re-
sults are shown in Fig. 1(b). It is seen that at low val-
ues of E0 (low potential) two defect modes appear in
the first and second bandgaps. The one in the first
bandgap is symmetric in x, while the one in the sec-
ond bandgap is antisymmetric in x. Both types of de-
fect mode are moderately confined. Examples of such
modes are displayed in Figs. 1(c) and 1(d), respec-
tively. However, these defect modes disappear when
E0 increases above certain threshold values. In par-
ticular, the symmetric branch in the first bandgap
disappears when E0.2.8, while the antisymmetric
branch in the second bandgap disappears when E0
.7.5. On the other hand, before the antisymmetric
branch disappears, another symmetric branch of de-
fect modes appears inside the same (second) band-
gap. This new branch exists when 5.3,E0,10.3, and
it is generally more localized than the previous two
branches. This can be seen in Fig. 1(e), obtained at
E0=7.5. Compared with the modes in Figs. 1(c) and
1(d), this new mode is much more confined.

Three general features in Fig. 1(b) should be noted.
First, for any positive E0 value, at least one defect
mode can be found. Second, each branch of defect
modes disappears as E0 increases to above a certain
threshold. In other words, defect modes move from
lower bandgaps to higher ones as E0 increases.

The existence of these defect modes as well as their

Fig. 1. (a) Lattice intensity profile with I0=3 and e=−1. (b)
Applied dc field parameter E0 versus the defect eigenvalues
m; the shaded regions are Bloch bands. (c)–(e) Three defect
modes at sE0 ,md= s1.2,1.604d , s3.5,5.812d , s7.5,7.997d,
marked by circles in (b). The shaded stripes indicate the lo-
cations of the lattice’s peak intensities.
profile and symmetry properties have a profound ef-
fect on linear light propagation in the underlying de-
fected photonic lattices. If the input probe beam
takes the profile of a defect mode, then it will propa-
gate stationarily and not diffract at all. This is seen
in Fig. 2(b), where the numerical evolution of an ini-
tial defect mode (with e=−1 and E0=7.5) is displayed
[the corresponding lattice field is shown in Fig. 2(a)].
This evolution was simulated using the pseudospec-
tral method. For a Gaussian input beam (as is cus-
tomary in experimental conditions), the evolution
will critically depend on whether a defect mode re-
sembling the input Gaussian beam exists under the
same physical conditions. To demonstrate, we take
an initial Gaussian beam as Usx ,0d=expf−s1/3dx2g,
which resembles the central hump of the defect mode
in Fig. 1(e), and simulate its evolution under various
E0 values. The lattice intensity pattern is the same
as that in Fig. 2(a) (where e=−1). We found that at
small values of E0 the Gaussian beam strongly dif-
fracts and quickly becomes invisible. Similar behav-
ior persists as E0 increases [see Fig. 2(c)] until it
reaches a value of ,7.5, when a large portion of the
initial beam’s energy is trapped inside the defect site
and propagates stationarily [see Fig. 2(d)]. As E0 in-
creases beyond 7.5, however, strong diffraction of the
probe is seen again [see Fig. 2(e)]. These results indi-
cate that the light trapping shown in Fig. 2(d) could
not be attributed to either simple guidance resulting
from increased lattice potential or nonlinear self-
action of the probe beam itself. Rather, it must be at-
tributed to repeated Bragg reflections inside the pho-
tonic lattice under certain phase-matching
conditions, as the Gaussian beam matches the local-
ized mode of the defect. This bears strong resem-
blance to localized modes in photonic crystal fibers.

In applications, it is often desirable to keep the de-
fect modes as locally confined as possible. The defect
considered above with e=−1 [see Figs. 1(a) and 2(a)]
is certainly simple, but does it give the most strongly

Fig. 2. (a) Lattice intensity pattern with I0=3 and e=−1.
(b) Evolution of an exact defect mode [shown in Fig. 1(e)] at
E0=7.5. (c)–(e) Evolutions of a Gaussian beam at E0 values

of 5, 7.5, and 10, respectively.
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confined defect modes? To answer this question, we
fix the value of E0 and allow the defect parameter e to
vary from −1 to 0, then determine at what e values
the most localized defect modes arise. With fixed E0
=6, we obtain the defect modes versus e and plot the
results in Fig. 3. Figure 3(a) reveals that at small
negative values of e a single defect mode bifurcates
from an edge of a Bloch band inside each bandgap. As
e decreases, the defect mode in the first bandgap dis-
appears (at e=−0.81), while the one in the second
bandgap persists. The defect-mode branch in the first
bandgap is more localized than the one in the second
bandgap in general. Thus we focus on this branch in
the first bandgap below. When ueu is small, the defect
eigenvalue is rather close to the left Bloch band, thus
the defect mode is rather weakly confined [see Fig.
3(c)]. As ueu increases, the mode becomes more con-
fined. As e approaches −0.81, the defect eigenvalue
approaches the right Bloch band, and the defect
mode becomes less confined again [see Fig. 3(e)]. Sur-
prisingly, we found that the strongly confined defect
mode occurs when e<−0.5. This defect mode and the
corresponding lattice intensity field are shown in
Figs. 3(d) and 3(b), respectively. These findings are
rather interesting, as they show that the most local-
ized defect mode arises when the lattice intensity at
the defect site is nonzero rather than zero.

Fig. 3. (a) Defect strength e versus the defect eigenvalues
m. (b) Intensity profile ILsxd of the photonic lattice with e
=−0.5. (c)–(e) Three defect modes of the first bandgap with
se ,md, marked by circles in (a).

Fig. 4. Evolution of a Gaussian beam launched at zero (b)
and nonzero (c) angles into the defect site of a photonic lat-
tice shown in (a). Here I0=3, E0=6, and e=−0.5 in Eq. (1).
The initial phase gradient in (c) is k=1.
We further studied the evolution of a Gaussian in-
put beam launched at small angles into a photonic
lattice with E0=6 and e=−0.5. For this purpose, we
take the initial condition as Usx ,0d=expf−s1/2dx2

+ ikxg, where this Gaussian intensity profile re-
sembles the central hump in the defect mode of Fig.
3(d), and the phase gradient k is proportional to the
launch angle of the Gaussian beam. At zero launch
angle sk=0d, a vast majority of the input beam’s en-
ergy is trapped inside the defect and propagates sta-
tionarily [see Fig. 4(b)]. Compared with Fig. 2, we see
that the confinement of the probe beam by the
present defect [shown in Fig. 4(a)] is more efficient,
mainly because the defect mode admitted under
these conditions is more localized [see Fig. 3(d)]. Next
we take k=1, which corresponds to a launch angle of
0.58° with the physical parameters listed above. In
this case most of the light is still trapped inside the
defect site. However, the trapped light undergoes ro-
bust snakelike oscillations as it propagates through
the defect [see Fig. 4(c)]. The ability of a negative de-
fect to trap oscillating light beams is a remarkable
feature that merits further investigation.
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