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Saddle solitons: a balance between bi-diffraction
and hybrid nonlinearity
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We demonstrate self-trapping of light by simultaneously compensating normal and anomalous (saddle-
shaped) diffractions with self-focusing and self-defocusing hybrid nonlinearity in optically induced ionic-type
photonic lattices. Innovative two-dimensional gap solitons, named “saddle solitons,” are established, whose
phase and spectrum characteristics are different from all previously observed spatial solitons. © 2009 Op-
tical Society of America
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Despite the discovery of a variety of soliton entities in
discrete systems [1], to our knowledge, it has not
been possible to demonstrate a two-dimensional (2D)
spatial soliton in a physical arrangement where an
optical beam exhibits simultaneously normal and
anomalous diffractions in different transverse direc-
tions. First, natural materials typically are not en-
dowed with a saddle-shaped bi-diffractive property;
second, it remains a challenge to find a nonlinear ma-
terial that can support hybrid self-focusing and self-
defocusing nonlinearities without changing experi-
mental conditions. Previous work on nonlinear X
waves and light bullets was aimed toward balancing
of beam diffraction and pulse dispersion simulta-
neously, but in spatial domain alone compensation of
normal and anomalous diffractions in the same ex-
perimental setting has not been realized.

Man-made periodic structures have shown many
intriguing optical properties. In an optically induced
2D square lattice [2–4], for example, the high-
symmetry X point in the first Bloch band is akin to a
saddle point in diffraction spectrum [see Fig. 1(c)],
where normal and anomalous diffractions coexist
along orthogonal directions [5]. At this X point, a
quasi-1D soliton train can be excited provided that
an appropriate type of nonlinearity is used to balance
beam diffraction in one particular direction, whereas
in the orthogonal direction it is an extended plane
wave [6]. The propagation constant of such a 1D soli-
ton train could reside within the first Bloch band,
thus named “in-band” or “embedded” solitons [7].
However, to simultaneously balance normal and
anomalous diffractions for self-trapping of a 2D-
localized optical beam, one needs orientation-
dependent hybrid nonlinearity. Fortunately, such
nonlinearity was found in our recent work with
photorefractive nonlinear crystals under nonconven-
tional bias (NCB) condition [8–10], in which coexist-
ence of self-focusing and self-defocusing nonlineari-
ties at two orthogonal directions has led to
observation of controlled 1D soliton transition from
different band edges or subband edges.
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In this Letter, we employ the hybrid nonlinearity
to demonstrate a type of spatial gap solitons, namely,
“saddle solitons,” by balancing the saddle-shaped dif-
fraction in an optically induced 2D ionic-type lattice
[10]. Such solitons have propagation constant resid-
ing in the Bragg reflection gap, but they differ from
all previously observed solitons supported by a single
self-focusing or self-defocusing nonlinearity. In addi-
tion, quasi-localized 2D in-band solitons are also
identified, but they are not stable during propaga-
tion. Our theoretical analysis finds good agreement
with experimental observations.

First, let us determine numerical solutions for the
aforementioned saddle solitons from our theoretical
model. In our NCB condition, the bias electric field is
perpendicular to the crystalline c axis of a photo-
refractive strontium barium niobate (SBN) crystal

Fig. 1. (Color online) (a) Orientations of crystalline c axis,
bias field, and square lattice-inducing beam; (b) refractive
index distribution of the induced ionic-type lattice; (c) ex-
tended first Bloch band; (d) Existence curve of saddle soli-
tons at V0=0.94; (e)–(g) Intensity pattern (associated index
change shown in insert), phase structure, and Fourier spec-
trum of the saddle soliton at the marked point in (d); (h), (i)
evolution of intensity profiles along dashed lines in (e) for
10 cm propagation of the soliton solution. Added squares in

(c) and (g) mark the boundary of the first Brillouin zone.
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[Fig. 1(a)] as used in our experiment. This arrange-
ment gives rise to hybrid nonlinearity with the stron-
gest self-focusing and self-defocusing effects along
the two orthogonal directions [8,9]. In addition, the
2D square intensity pattern of the lattice-inducing
beam shown in Fig. 1(a) creates a 2D ionic-type index
lattice of Fig. 1(b) [10]. Light propagation in such a
lattice under the NCB condition can be described by
the following normalized equation [8]:
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where �= x̂�� /�x�+ ŷ�� /�y�, B�r�� is the amplitude of
the probe beam, � is the light-induced electrostatic
potential, �= �k0l0n0

2�2�33E0 /2 is a normalized nonlin-
ear parameter related to the electro-optic coefficient
�33 and the bias field E0, k0 is the wavenumber in
vacuum, l0 is an arbitrary length unit for scaling,
and n0 is the unperturbed refractive index of the
crystal. The normalized total intensity is defined as
I= �B�r���2+V�x ,y�, where V�x ,y�=V0 cos2���x+y� /
�2��sin2���x−y� /�2�� is the intensity of the lattice-
inducing beam with a spatial period � and peak in-
tensity V0. If we assume that the soliton solutions of
Eq. (1) take the form B�x ,y ,z�=b�x ,y�exp�i�z�, with �
being the propagation constant, then the envelope
function b�x ,y� satisfies the following equation:
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By solving Eqs. (1) and (2), we obtain saddle soliton
solutions residing in the first Bragg reflection gap as
shown in Figs. 1(d) and 1(e), where the parameters
used are �=2, �=8.6, V0=0.94. The phase structure
and spectrum of the gap solitons established here are
different from those of 2D gap solitons found before.
Specifically, the phase structure of the central soliton
region [Fig. 1(f)] fits that of the Bloch modes from X
points, and the power spectrum [Fig. 1(g)] also con-
centrates mostly at the two X points within the first
Brillouin zone (BZ). This indicates that the saddle
solitons must consist of modes from the interior X
points of the first band, although far away from the
soliton center staggered phase characteristic to band
edge M point modes is evident. These 2D saddle soli-
tons differ from previously observed quasi-1D embed-
ded or gap solitons (also from first-band X points),
which are localized only in one direction [6,9], and
from the reduced symmetry solitons created solely by
self-focusing nonlinearity (but from second-band X
points) [11]. Their stable long-distance propagation
[Figs. 1(h) and 1(i)] obtained from simulation with
numerical solutions of Fig. 1(e) as the initial condi-
tion suggests that such saddle solitons could be ob-
served in experiment.

Our experimental arrangement is similar to that

used in our earlier work [6,9]. A laser beam at a
wavelength of 532 nm splits into two parts with a po-
larizing beam splitter. The ordinarily polarized part
(lattice-inducing beam) passes through a rotating dif-
fuser and an amplitude mask, and is then imaged
onto a SBN:60 crystal to construct a 2D ionic-type
photonic lattice (about 26 �m spacing). The relative
orientation between the c axis, bias field, and the lat-
tice beam is as depicted in Fig. 1(a). The e-polarized
part splits again into two beams: one of them is fo-
cused at the crystal input as a probe beam to gener-
ate solitons, and the other is used as a reference
plane wave to determine the phase structure of the
solitons. To excite the saddle soliton originated from
the X points, the probe beam is reconfigured into
three in-phase spots and launched into the lattice
without any input tilt [illustrated by three light gray
(green online) dots in Fig. 1(a)], with the central spot
having a higher intensity. To make sure on-site exci-
tation in the induced index lattice [which has an off-
set with the intensity pattern as seen in Figs. 1(a)
and 1(b)], the three beam spots are aimed at the in-
tensity minima of the lattice beam. The output of the
probe beam are monitored with imaging lenses and
CCD cameras.

The top panels of Fig. 2 show our typical experi-
mental results, where Fig. 2(a) is the intensity pat-
tern of the observed saddle soliton. From the interfer-
ence patterns between the soliton beam and the
reference plane wave tilted to two different directions
[see Figs. 2(b) and 2(c)], we can tell that the soliton
possesses uniform and “staggered” phase structure
along two orthogonal directions. This kind of phase
structure resembles that of the Bloch modes at the
first-band X points, as found in our numerical solu-
tion of Fig. 1(f). In addition, the k-space spectrum
[12] of the soliton also shows that most of its power
concentrates at the two X points of the first BZ [Fig.
2(d)]. We emphasize again that, unlike previously ob-
served lattice solitons, this saddle soliton does not
arise from single (self-focusing or self-defocusing)

Fig. 2. (Color online) (a)–(d) Experimental and (e)–(j) nu-
merical results of in-gap saddle soliton. The first row shows
the (a) intensity pattern; (b), (c) interferograms with a
tilted plane wave at two orthogonal directions; and (d) Fou-
rier spectrum of the soliton. The second row shows corre-
sponding numerical results. The third row shows evolution
of intensity profiles along dashed lines in (e) for 3 cm

propagation of the probe beam.
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nonlinearity or single (normal or anomalous) diffrac-
tion, but rather it results from a perfect balance be-
tween bi-diffraction and hybrid nonlinearity. Since
the induced structure depends strongly on the bias
condition due to enhanced photorefractive anisotropy,
such a balance is realized in the setting illustrated in
Fig. 1(a) but can change under other conditions.
These results are also corroborated with our numeri-
cal simulations [shown in Figs. 2(e) and 2(h)] using
parameters close to those from experiment as initial
condition. Furthermore, beam propagation to even
longer distances (beyond experimental crystal
length) shows that the saddle soliton remains stable
[Figs. 2(i) and 2(j)].

When the intensity of the lattice-inducing beam is
reduced, the bandgap of the 2D ionic lattice becomes
narrower or not fully open, as found before for sinu-
soidal or “backbone” lattices [13]. In this case, quasi-
localized saddle soliton solutions can exist with their
propagation constant residing even in the Bloch
band. A typical example is shown in Fig. 3, which is
obtained at V0=0.5 while keeping all other param-
eters unchanged. It can be seen from Fig. 3(a) that
the propagation constant resides in the first band
rather than in gap, akin to 2D embedded solitons [6].
These modes have similar phase structure and spa-
tial spectrum [Figs. 3(c) and 3(d)] as compared with
that of the in-gap saddle solitons [Figs. 1(f) and 1(g)].
However, they are not fully localized in the trans-
verse plane, as they have weak cw tails afar from the
center. Thus, these 2D in-band modes are only quasi-
localized. If one takes the localized part of these
modes as initial condition for propagation, radiation
due to leakage to the continuous spectrum is ex-
pected. Indeed, long distance propagation [Figs. 3(e)
and 3(f)] reveals that they are not stable. Within the
experimental crystal length �1 cm�, we can still ob-
serve them simply at a reduced lattice potential with
a single Gaussian beam excitation. The experimental
results along with corresponding simulations are de-
picted in Fig. 4, but the spectrum of the self-trapped
state [Fig. 4(d)] extends along the edges of the first
BZ instead of condensing at the two X points as in
Fig. 2(d), implying their complex constituting mode

Fig. 3. (Color online) Numerical solutions for quasi-
localized in-band saddle soliton at V0=0.5. Other descrip-

tion for Figs. 3(a)–3(f) is the same as that for Figs. 1(d)–1(i).
structures.
In conclusion, we have demonstrated spatial gap

solitons due to the perfect balance between hybrid
nonlinearity and saddle-shaped diffraction. The exis-
tence of saddle solitons may broaden our understand-
ing of soliton phenomena in optics and beyond.

This work was supported by the 973 program
(2007CB613203), National Science Foundation of
China (NSFC), Program for Changjiang Scholars and
Innovation Research Team (PCSIRT), National Sci-
ence Foundation (NSF), and the U.S. Air Force Office
of Scientific Research (AFOSR).

References

1. F. Lederer, G. Stegeman, D. N. Christodoulides, G.
Assanto, M. Segev, and Y. Silberberg, Phys. Rep. 463, 1
(2008).

2. J. Fleischer, M. Segev, N. Efremidis, and D. N.
Christodoulides, Nature 422, 147 (2003).

3. H. Martin, E. Eugenieva, Z. Chen, and D. N.
Christodoulides, Phys. Rev. Lett. 92, 123902 (2004).

4. C. Lou, X. Wang, J. Xu, Z. Chen, and J. Yang, Phys.
Rev. Lett. 98, 213903 (2007).

5. J. Hudock, N. K. Efremidis, and D. N. Christodoulides,
Opt. Lett. 29, 268 (2004).

6. X. Wang, Z. Chen, J. Wang, and J. Yang, Phys. Rev.
Lett. 99, 243901 (2007).

7. J. Yang, B. A. Malomed, and D. J. Kaup, Phys. Rev.
Lett. 83, 1958 (1999).

8. P. Zhang, J. Zhao, C. Lou, X. Tan, Y. Gao, Q. Liu, D.
Yang, J. Xu, and Z. Chen, Opt. Express 15, 536 (2007).

9. Y. Hu, C. Lou, S. Liu, P. Zhang, J. Zhao, J. Xu, and Z.
Chen, Opt. Lett. 34, 1114 (2009).

10. P. Zhang, C. Lou, S. Liu, F. Xiao, J. Zhao, J. Xu, and Z.
Chen, Opt. Photonics News 19(12), 25 (2008).

11. R. Fischer, D. Träger, D. N. Neshev, A. A. Sukhorukov,
W. Krolikowski, C. Denz, and Y. S. Kivshar, Phys. Rev.
Lett. 96, 023905 (2006).

12. G. Bartal, O. Cohen, H. Buljan, J. Fleischer, O.
Manela, and M. Segev, Phys. Rev. Lett. 94, 163902
(2005).

13. N. K. Efremidis, J. Hudock, D. N. Christodoulides, J.
W. Fleischer, O. Cohen, and M. Segev, Phys. Rev. Lett.

Fig. 4. (Color online) (a)–(d) Experimental and (e)–(h) nu-
merical results of in-band saddle soliton. Other description
for Figs. 4(a)–4(h) is the same as that for Figs. 2(a)–2(h).
91, 213906 (2003).


