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We demonstrate theoretically and experimentally that the transverse instability of coherent soliton stripes can be
greatly suppressed or totally eliminated when the soliton stripes propagate in a one-dimensional photonic lattice
under self-defocusing nonlinearity. © 2012 Optical Society of America
OCIS.codes: 190.4420, 160.5293.

It is well known that in homogeneous nonlinear optical
media, a bright soliton stripe, uniform along the trans-
verse stripe (say, y) direction but localized along the
orthogonal transverse (say, x) direction, is unstable upon
propagation along the longitudinal z direction when
transverse perturbations are present [1–9]. When a
one-dimensional (1D) optical lattice is introduced along
the x or y direction, the soliton stripe is still transversely
unstable under self-focusing nonlinearity [10,11]. To sup-
press this transverse instability, some ideas have been
proposed. For instance, this instability can be completely
eliminated if the soliton stripe is made sufficiently inco-
herent along the transverse direction [12]. This instability
can also be significantly reduced by nonlinearity satura-
tion or incoherent mode coupling [13,14]. The introduc-
tion of two-dimensional (2D) square lattices can also
suppress transverse instability, but the transversely
stable structures in such media are soliton trains (com-
prising an infinite array of intensity peaks) rather than
soliton stripes [15,16].
In this Letter we demonstrate, both theoretically and

experimentally, that transverse instability of coherent so-
liton stripes is greatly suppressed or totally eliminated
when the soliton stripes propagate in a 1D lattice under
self-defocusing nonlinearity.
Our theoretical model is the 2D NLS equation with a 1D

lattice:

iUz � Uxx � Uyy � n�x�U � σjUj2U � 0; (1)

where σ � �1 denotes self-focusing and self-defocusing
nonlinearity, and n�x� is a 1D lattice. For definiteness, we
take

n�x� � −6 sin2 x

in this Letter [see Fig. 1(a)]. Stripe (1D) solitons in this
model are of the form U�x; y; z� � u�x�e−iμz, where u�x�
is a real-valued localized function and μ is the propaga-
tion constant. When σ � −1 (defocusing nonlinearity),
there is a stripe-soliton family in the first bandgap of
the lattice. The power curve of this family is shown in
Fig. 1(b). Here, the power P is defined as

R
∞
−∞

juj2dx.
The intensity profile of the soliton at μ � 4.5 is displayed
in Fig. 1(c) (the peak intensity is approximately 3.2). To

determine the transverse stability of these stripe solitons,
we perturb them as

U�x; y; z� � e−iμzfu�x� � �v�x� �w�x��eiky�λz

��v��x� −w��x��e−iky�λ�zg;

where v, w ≪ 1 are normal-mode perturbations and k is
the transverse wavenumber. Substituting this perturbed
solution into Eq. (1) and neglecting higher order terms of
(v, w), we obtain the linear-stability eigenvalue problem

L0w � −iλv; L1v � −iλw;

where

L0 � ∂xx � n�x� � μ − k2 � σu2;

L1 � ∂xx � n�x� � μ − k2 � 3σu2;

and λ is the eigenvalue. The full spectrum of this eigen-
value problem can be obtained numerically by the Four-
ier collocation method [9]. For the stripe soliton at
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Fig. 1. (Color online) (a) 1D lattice, (b) power curves of stripe
solitons (dashed red indicates instability, solid blue indicates
stability, and shaded regions are Bloch bands), (c) intensity
profile of a stripe soliton in the first gap (at μ � 4.5) under
defocusing nonlinearity, (d) intensity profile of a stripe so-
liton in the semi-infinite gap (at μ � 1) under focusing non-
linearity, (e), (f) stability spectra of stripe solitons in (c), (d),
respectively.
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μ � 4.5 [see Fig. 1(c)], its stability spectrum is displayed
in Fig. 1(e). This spectrum lies entirely on the imaginary
axis, indicating that this stripe soliton is transversely
stable under defocusing nonlinearity! In contrast, when
the nonlinearity is self-focusing (σ � 1), stripe solitons
will remain transversely unstable and this instability is
strong. To demonstrate, a family of stripe solitons in
the semi-infinite gap under focusing nonlinearity is ob-
tained, and its power curve is plotted in Fig. 1(b). At μ �
1 of the power curve, the soliton is shown in Fig. 1(d) (its
peak intensity is roughly 1.7). The linear-stability spec-
trum of this soliton is displayed in Fig. 1(f). This spectrum
contains large positive eigenvalues (with the maximum
1.25), indicating strong instability.
Next we consider the linear stability of other stripe

solitons in the solution families of Fig. 1(b). When the
solitons are near an edge μ0 of a Bloch band, these soli-
tons under perturbations are low-amplitude Bloch-wave
packets:

U�x; y; z� � e−iμ0z�ϵΨ�X; Y; Z�p�x� � ϵ2U2 � 	 	 	�;

where p�x� is the Bloch wave at edge μ0, 0 < ϵ ≪ 1,
X � ϵx, Y � ϵy, Z � ϵ2z, and Ψ�X; Y; Z� satisfies

iΨZ � DΨXX �ΨYY � σαjΨj2Ψ � 0; (2)

with D being the diffraction coefficient of the 1D
lattice at edge μ0 and α > 0 being a constant [9]. Stripe
solitons in Eq. (1) correspond to stripe envelope solu-
tions Ψ�X; Y; Z� � A�X�e−iτZ , where sgn�τ� � −sgn�σ� �
−sgn�D�, and A�X� is a sech function [9]. It is well known
that this stripe envelope solution is transversely unstable
in the envelope equation (2) [1,7,9]. Thus, low-amplitude
soliton stripes in Eq. (1) are all transversely unstable. In
particular, for the stripe-soliton family in the semi-infinite
gap, D > 0, thus the transverse instability is of the neck-
type (due to positive eigenvalues); while for the soliton
family in the first gap, D < 0, thus the transverse instabil-
ity is of the snake type (due to both positive and complex
eigenvalues) [9]. The magnitude of these unstable eigen-
values is proportional to

����������������
jμ − μ0j

p
[16].

Away from band edges, we have tracked these trans-
verse-instability eigenvalues for the two soliton families
in Fig. 1(b). We find that for the soliton family in the semi-
infinite gap (under focusing nonlinearity), as μ moves
away (decreases) from the band edge μ0 � 2.06, the mag-
nitude of the largest positive eigenvalue keeps increasing
[at μ � 1, this magnitude has reached 1.25; see Fig. 1(f)].
Thus, all stripe solitons in this family are transversely un-
stable. This instability is of the neck type and is strong
when μ is not near the band edge.
However, for the soliton family in the first gap under

defocusing nonlinearity, the story is very different. In this
case, as μ moves away (increases) from the band edge
μ0 � 2.27, the positive eigenvalues of the snake instabil-
ity quickly disappear when μ > 2.3. Meanwhile, the real
parts of the complex eigenvalues in the snake instabil-
ity first saturate quickly to a very low level when
2.4 < μ < 4.3. After μ > 4.3, these complex eigenvalues
then totally disappear; hence, stripe solitons in this μ
range are all stable! To demonstrate, the most unstable

eigenvalue λmax versus μ is plotted in Fig. 2. It is seen that
the real part of λmax (the maximum growth rate) is under
0.03 for all stripe solitons, indicating that the transverse
instability is extremely weak. In addition, when μ > 4.3,
the real part of λmax becomes zero, hence those stripe so-
litons are linearly stable. These results show that under
defocusing nonlinearity, transverse instability of stripe
solitons is either greatly suppressed or totally eliminated.

The above linear-stability results are also corroborated
by nonlinear-evolution simulations of these stripe soli-
tons under random-noise perturbations. For the soliton
in Fig. 1(c), its initial perturbed state (with 2% ran-
dom-noise perturbations) is shown in Fig. 3(a), and evo-
lution output of this perturbed soliton under defocusing
nonlinearity at z � 100 is shown in Fig. 3(b). It is seen
that even after such a long evolution, this stripe soliton
still remains robust and does not break up. In contrast,
when the soliton in Fig. 1(d) is perturbed by the same
amount of perturbations, after evolution under focusing
nonlinearity, this stripe quickly breaks up into filaments
at z � 3 [see Fig. 3(c)]. Thus suppression of transverse
instability under defocusing nonlinearity and persistence
of transverse instability under focusing nonlinearity hold
for nonlinear evolutions as well.

Experimentally, we have confirmed the above theore-
tical predictions. The experiments were performed in a
10 mm long biased SBN:60 photorefractive crystal. The
optically induced 1D lattice (41 μm lattice spacing) is
shown in the upper row, first column of Fig. 4, while the
initial stripe beam (12 μm FWHM) is shown in the lower
first column. The peak intensity ratio between the probe
and lattice beams is about 1:5. In the presence of the lat-
tice, this probe beam exhibits strong discrete diffraction
during linear propagation (upper row, second column). It
breaks up due to strong transverse instability under
self-focusing nonlinearity at a bias field of 2 kV∕cm
(upper row, third column), but remains robust against
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Fig. 2. (Color online) The most unstable eigenvalue λmax
versus μ for stripe solitons in the first gap under defocusing
nonlinearity: (left) real part, (right) imaginary part.
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Fig. 3. (Color online) (a) Initial intensity pattern of the stripe
soliton in Fig. 1(c) under 2% perturbations, (b) output intensity
of the perturbed soliton in (a) after nonlinear evolution of z �
100 under defocusing nonlinearity, (c) output intensity of the
perturbed soliton in Fig. 1(d) after nonlinear evolution of z �
3 under focusing nonlinearity.
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transverse perturbations under defocusing nonlinearity
at a bias field of −1.6 kV∕cm (upper row, fourth column).
As a comparison, when no lattice is induced inside the
crystal, the corresponding results are shown in the lower
panels of Fig. 4. In this case, the stripe beam breaks up
strongly due to neck-type transverse instability under fo-
cusing nonlinearity [3], and broadens even more than lin-
ear diffraction under defocusing nonlinearity.
It is important to notice from Figs. 1(b) and 2 that

transversely stable stripe solitons (under defocusing non-
linearity) are located near the second Bloch band, imply-
ing that their stability is caused by mode coupling
between the first and second bands. This means that
the existence of these stable stripe solitons cannot be
predicted by the corresponding discrete NLS model

iUn;z � Un�1 − 2Un � Un−1 � Un;yy � σjUnj2Un � 0

since this discrete model is derived under a single-band
approximation and it does not incorporate mode cou-
pling between different Bloch bands [17]. To confirm
this, we seek stripe solitons in this discrete model as
Un�y; z� � une−iμz, where μ is the propagation constant.
The power curve of these solitons P � P junj2 versus μ
for σ � −1 (defocusing nonlinearity) is plotted in
Fig. 5(a), and the most unstable linear-stability eigenva-
lue of each soliton versus μ is plotted in Figs. 5(a)–5(c). It
is seen that when μ moves away (increases) from the
band edge μ0 � 4, the real part of the most unstable ei-
genvalue quickly saturates (to about 0.52) and then stays
at this level for all higher μ, thus transverse instability
persists for all these discrete stripe solitons under defo-
cusing nonlinearity.
In summary we have demonstrated both theoretically

and experimentally that the transverse instability of

coherent soliton stripes is totally eliminated or greatly
suppressed when the soliton stripes propagate in a 1D
photonic lattice under self-defocusing nonlinearity. This
elimination of transverse instability makes stripe solitons
applicable in physical settings.
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Fig. 4. (Color online) Experimental results. Upper row, first
column, 1D lattice; lower row, first column, initial probe beam;
upper row, results with lattice; lower row, results without lat-
tice; second column, linear diffraction; third column, output
with focusing nonlinearity; fourth column, output with defocus-
ing nonlinearity. The bias field and crystalline c axis are along
the vertical direction.

−20 0 20 40 60
0

20

40

60

µ

P

σ=−1(a)

0 20 40 60
0

0.2

0.4

0.6

0.8

µ

σ=−1(b)

0 20 40 60
0

20

40

µ

σ=−1(c)

Fig. 5. (Color online) (a) Power curve of discrete stripe soli-
tons under defocusing nonlinearity, (b), (c) real and imaginary
parts of the most unstable eigenvalue λmax versus μ.

May 1, 2012 / Vol. 37, No. 9 / OPTICS LETTERS 1573


