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Abstract

In this Letter, we analyze the structure of linearization operators of the Korteweg–de Vries (KdV) hierarchy equations
expanded around single-soliton solutions. We uncover the remarkable property that these linearization operators can be factored
into the integro-differential operator which generates this hierarchy and the linearization operator of the KdV equation. An
important consequence of this operator structure is that the linearization operators of all KdV hierarchy equations expanded
around single-soliton solutions share thesame complete set of eigenfunctions. Furthermore, these eigenfunctions are simply
related to squared eigenstates of the Schrödinger operator with a soliton potential. Similar results hold for the adjoint
linearization operators of this hierarchy. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Integrable equations are nonlinear wave systems
which can be solved exactly by the inverse scatter-
ing method. Since the pioneering work of Gardner et
al. [1] which solved the Korteweg–de Vries (KdV)
equation, many other equations such as the nonlin-
ear Schrödinger (NLS), sine–Gordon, modified-KdV,
Benjamin–Ono and Manakov equations have been
solved (see references in [2]). The original work of
Ablowitz et al. [3] further enlarged the family of in-
tegrable equations, and introduced the concept of in-
tegrable hierarchy for the first time. Each hierarchy is
generated by an integro-differential operator and is as-
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sociated with the same eigenvalue problem. The equa-
tions inside a hierarchy are uniquely characterized by
their linear dispersion relations. The KdV and NLS hi-
erarchies are two familiar examples.

Integrable equations possess many remarkable prop-
erties such as infinite conservation laws and Painlevé
property [2,4]. In this Letter we reveal another surpris-
ing property on equations inside an integrable hier-
archy, i.e., linearization operators of all equations in
a hierarchy expanded around a single-soliton solution
can be decomposed into the integro-differential opera-
tor which generates the hierarchy and the linearization
operator of the lowest-order equation in the hierarchy.
An immediate consequence of this operator structure
is that the linearization operators of all equations in a
hierarchy share thesame complete set of eigenfunc-
tions, and these eigenfunctions are closely related to
the squared eigenstates of the associated eigenvalue
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problem. In this Letter, we establish these results only
for the KdV hierarchy. Extensions of these results to
other hierarchies such as the NLS and modified-KdV
hierarchies will be presented elsewhere. In the end of
this Letter, we discuss some applications of these re-
sults obtained. It is worth noting here that our analysis
is independent of the inverse scattering method, even
though connections to that method is still visible.

2. Structure of linearization operators in the KdV
hierarchy

The KdV hierarchy is of the form [3]

(2.1)qt +C
(
4L+

s

)
qx = 0,

whereC(k2) is the phase velocity of the linearized
equations, and the integro-differential operatorL+

s is

(2.2)L+
s = −1

4

∂2

∂x2
− q + 1

2
qx

∞∫
x

dy.

Here the subscripts in L+
s refers to Schrödinger, as

the associated eigenvalue problem for this hierarchy is
the Schrödinger equation [1,3]. The adjoint operator
of L+

s is

(2.3)Ls = −1

4

∂2

∂x2
− q + 1

2

x∫
−∞

dy qy.

In this Letter, we require the phase velocity function
C(z) to be entire. WhenC(z)= −z, Eq. (2.1) becomes
the KdV equation

(2.4)qt + 6qqx + qxxx = 0.

When C(z) = z2, Eq. (2.1) is the fifth-order KdV
hierarchy

(2.5)

qt + qxxxxx + 10qqxxx + 20qxqxx + 30q2qx = 0.

Other members in this hierarchy can be obtained
by choosing different functions for the phase veloc-
ity C(z).

In the rest of this section, occasions will arise where
we want to apply the operatorL+

s (and L+
0 to be

defined in Eq. (2.11)) on a functiong′(x), where
g(x) is related to continuous eigenfunctions and is

oscillatory at infinity. In such cases, we adopt the
following convention for the integral term involved:

(2.6)

∞∫
x

g′(y) dy ≡ −g(x).

This convention echoes the fact that, when we obtain
a particular KdV hierarchy equation from (2.1), terms
such as

∫ ∞
x
q ′(y) dy are always evaluated as−q(x)

and so on. This convention applies notably to the com-
mutability relation (2.18) and the factorization formula
(2.26) when they operate on continuous eigenfunc-
tions. It applies to the eigenfunction relation (2.35) as
well. We emphasize that this convention is only a tech-
nical issue. It does not affect our results at all.

We now consider single-soliton solutions of the
KdV hierarchy (2.1). One can check that the soliton
family

(2.7)q(x, t)= 2η2sech2η
{
x −C

(−4η2)t}
satisfy Eq. (2.1), whereη is a free amplitude pa-
rameter. By rescaling the variablesx and q by η

andη2, respectively, and by denotingC(η2z) asC(z),
we can normalizeη = 1 in the soliton solution (2.7)
while keeping the evolution equation (2.1) intact. We
also adopt the coordinate system moving with speed
C(−4), i.e.,

(2.8)x̄ = x −C(−4)t, t̄ = t .

When the bars are dropped, the KdV hierarchy (2.1)
finally becomes

(2.9)qt +
[
C

(
4L+

s

) −C(−4)
]
qx = 0,

where

(2.10)q0(x)= 2 sech2x

is its normalized single-soliton solution.
Two operators,L+

0 andL0, will be used frequently
in the rest of this section. They are defined asL+

s and
Ls with q(x, t) replaced byq0(x), i.e.,

(2.11)L+
0 = −1

4

∂2

∂x2 − q0 + 1

2
q0x

∞∫
x

dy

and

(2.12)L0 = −1

4

∂2

∂x2 − q0 + 1

2

x∫
−∞

dy q0y.



J. Yang / Physics Letters A 279 (2001) 341–346 343

Naturally,L0 is the adjoint operator ofL+
0 , just asLs

is the adjoint operator ofL+
s . Note that

(2.13)L+
0 q0x = −q0x.

This relation will be used later in Letter.
Next, we linearize the evolution equation (2.9)

around its soliton solution (2.10). We set

(2.14)q(x, t)= q0(x)+ q̃(x, t),

whereq̃ 	 1. When it is substituted into Eq. (2.9) and
higher-order terms discarded, the linearized equation
of (2.9) would be in the form

(2.15)q̃t +Lq̃ = 0,

whereL is the linearization operator. We denote the
adjoint operator ofL asLA. For the KdV equation,
C(z) = −z. In this case, linearization of Eq. (2.9)
around soliton (2.10) shows that the linearization
operator is

(2.16)Lkdv = ∂3

∂x3 + (6q0 − 4)
∂

∂x
+ 6q0x.

Its adjoint operator is

(2.17)LAkdv = − ∂3

∂x3 − (6q0 − 4)
∂

∂x
.

An important property is thatL+
0 andLkdv are com-

mutable, andL0 andLAkdv are commutable, i.e.,

(2.18)L+
0 Lkdv = LkdvL

+
0

and

(2.19)L0L
A
kdv = LAkdvL0.

These facts can be verified by direct calculations.
The main objective of this Letter is to determine

the structure of operatorsL and LA for any KdV
hierarchy equation (2.9). We first consider the case
where the phase velocityC(z) is a power function, i.e.,
C(z)= zn, wheren is any positive integer. In this case,
Eq. (2.9) becomes

(2.20)qt +
[(

4L+
s

)n − (−4)n
]
qx = 0.

When Eq. (2.14) is substituted into the operator 4L+
s ,

linearization of 4L+
s is

(2.21)4L+
s = 4L+

0 − 4q̃ + 2q̃x

∞∫
x

dy +O
(
q̃2).

Thus, linearization of(4L+
s )
n is(

4L+
s

)n = (
4L+

0

)n
+

n∑
i=1

(
4L+

0

)i−1

[
−4q̃ + 2q̃x

∞∫
x

dy

]

(2.22)× (
4L+

0

)n−i +O
(
q̃2).

When this equation is utilized, we find the lineariza-
tion operatorL of the evolution equation (2.20) as

Lq̃ = [(
4L+

0

)n − (−4)n
]∂q̃
∂x

+
n∑
i=1

(
4L+

0

)i−1

[
−4q̃ + 2q̃x

∞∫
x

dy

]

(2.23)× (
4L+

0

)n−i
q0x.

Recalling Eqs. (2.13) and (2.16), the above equation
becomes

Lq̃ =
n∑
i=1

(
4L+

0

)i−1
(−4)n−i

×
[(

4L+
0 + 4

)∂q̃
∂x

− 4q0xq̃ − 2q0q̃x

]

=
n∑
i=1

(
4L+

0

)i−1
(−4)n−i

× [−q̃xxx − (6q0 − 4)q̃x − 6q0xq̃
]

(2.24)= −
n∑
i=1

(
4L+

0

)i−1
(−4)n−iLkdvq̃.

Define the function

(2.25)M(z)≡ C(−4)−C(z)

4+ z
.

Recalling thatC(z) = zn, it is easy to see from
Eq. (2.24) that the linearization operatorL in this case
is simply

(2.26)L=M
(
4L+

0

)
Lkdv.

As for the adjoint operatorLA, we recall the fact
that, for any two operatorsP and Q, (PQ)A =
QAPA, where the superscriptA represents the adjoint
operator. SinceL0 is the adjoint operator ofL+

0 , thus
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from Eq. (2.24) we have

(2.27)LA = −
n∑
i=1

(−4)n−iLAkdv(4L0)
i−1.

But L0 andLAkdv are commutable (see Eq. (2.19)). So

(2.28)LA = −
n∑
i=1

(4L0)
i−1(−4)n−iLAkdv,

i.e.,

(2.29)LA =M(4L0)L
A
kdv.

The operator structures (2.26) and (2.29) were de-
rived above for power functions of the phase velocity
C(z). In the general case, whereC(z) is an entire func-
tion, we can expandC(z) into a power series. In that
way, we can easily prove that expressions (2.26) and
(2.29) still hold in the general case.

Eqs. (2.26) and (2.29) are the key results of this
Letter. They give the structure of linearization oper-
ators of all KdV hierarchy equations expanded around
a single-soliton solution. Specifically, these lineariza-
tion operatorsL (LA) can be factored into two simple
operatorsL+

0 andLkdv (L0 andLAkdv). The simplic-
ity of these results is quite remarkable. It is another
nice property of the KdV hierarchy in addition to those
which have been discovered before [2,4].

An immediate consequence of factorization results
(2.26) and (2.29) is thatL, L+

0 andLkdv are mutu-
ally commutable, andLA, L0 andLAkdv are mutually
commutable. This follows from Eqs. (2.26), (2.29) and
the fact thatL+

0 (L0) andLkdv (L
A
kdv) are commutable

(see Eqs. (2.18) and (2.19)). Since commutable oper-
ators share the same eigenfunctions, we conclude that
the linearization operatorL (LA) of any KdV hierar-
chy equation shares the same eigenfunctions of oper-
atorL+

0 (L0) or Lkdv (L
A
kdv). The eigenfunctions of

operatorsL+
0 , L0, Lkdv andLAkdv have been obtained

before [3,5–8]. Below, we simply present the eigen-
functions of operatorsL+

0 andL0, and determine their
corresponding eigenvalues under operatorsL andLA.

The eigenfunctions of operatorsL+
0 and L0 are

given in terms of squared eigenstates of the Schrö-
dinger equation

(2.30)vxx + [
ζ 2 + q0(x)

]
v = 0,

where q0(x) is the soliton potential (2.10). Using
conventional notations [3], we define the eigenstates

ψ(x, ζ ) andφ(x, ζ ) of Eq. (2.30) as

(2.31)ψ → eiζx, x → ∞,

(2.32)φ→ e−iζx , x → −∞.

It is easy to check that functionsψ andφ above are
simply

(2.33)ψ(x, ζ )= ζ + i tanhx

ζ + i
eiζx

and

(2.34)φ(x, ζ )= ζ − i tanhx

ζ + i
e−iζx.

For these eigenstates, we have [3,5]

(2.35)L+
0

(
ψ2)

x
= ζ 2(ψ2)

x

and

(2.36)L0φ
2 = ζ 2φ2.

In other words,(ψ2)x are eigenfunctions of operator
L+

0 , and φ2 are eigenfunctions ofL0. In the above
two equations,ζ is an arbitrary complex number. To
separate continuous and discrete eigenfunctions, we
define two sets

(2.37)

{
∂ψ2(x, ζ )

∂x
, ζ real;

∂ψ2

∂x

∣∣∣∣
ζ=i
,
∂2ψ2

∂x∂ζ

∣∣∣∣
ζ=i

}

and

(2.38)

{
φ2(x, ζ ), ζ real;φ2

∣∣
ζ=i ,

∂φ2

∂ζ

∣∣∣∣
ζ=i

}
.

Set (2.37) consists of the continuous and discrete
eigenfunctions of operatorL+

0 . The continuous eigen-
functions∂ψ2(x, ζ )/∂x satisfy Eq. (2.35). For the dis-
crete eigenfunctions, we have

(2.39)L+
0
∂ψ2

∂x

∣∣∣∣
ζ=i

= −∂ψ
2

∂x

∣∣∣∣
ζ=i

and

(2.40)L+
0
∂2ψ2

∂x∂ζ

∣∣∣∣
ζ=i

=
{

−∂
2ψ2

∂ζ ∂x
+ 2i

(
ψ2)

x

}
ζ=i
.

Note that(∂2ψ2/∂x∂ζ )|ζ=i is a “generalized” eigen-
function ofL+

0 . Set (2.38) consists of continuous and
discrete eigenfunctions of operatorL0. The contin-
uous eigenfunctionsφ2(x, ζ ) satisfy Eq. (2.36). The
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discrete eigenfunctions satisfy

(2.41)L0φ
2
∣∣
ζ=i = −φ2

∣∣
ζ=i

and

(2.42)L0
∂φ2

∂ζ

∣∣∣∣
ζ=i

=
(

−∂φ
2

∂ζ
+ 2iφ2

)∣∣∣∣
ζ=i
.

Both sets (2.37) and (2.38) are complete [5].
We have shown above thatL (LA) andL+

0 (L0)

share the same eigenfunctions. Indeed, using the
decomposition results (2.26) and (2.29), we can check
that for operatorL,

(2.43)

L
∂ψ2(x, ζ )

∂x
= 2iζ

{
C

(
4ζ 2) −C(−4)

}∂ψ2(x, ζ )

∂x
,

(2.44)L
∂ψ2

∂x

∣∣∣∣
ζ=i

= 0,

and

(2.45)L
∂2ψ2

∂x∂ζ

∣∣∣∣
ζ=i

= 16iM(−4)
∂ψ2

∂x

∣∣∣∣
ζ=i
.

For operatorLA, we have

(2.46)

LAφ2(x, ζ )= 2iζ
{
C

(
4ζ 2) −C(−4)

}
φ2(x, ζ ),

(2.47)LAφ2
∣∣
ζ=i = 0,

and

(2.48)LA
∂φ2

∂ζ

∣∣∣∣
ζ=i

= 16iM(−4)φ2
∣∣
ζ=i .

Thus, sets (2.37) and (2.38) are eigenfunctions of
operatorsL andLA as expected. In addition, these
eigenfunctions are complete.

3. Discussion

In this Letter, we determined the structure of lin-
earization operators of the KdV hierarchy equations
expanded around a single-soliton solution. We showed
that these operators can be decomposed into the
integro-differential operator which generates the hier-
archy and the linearization operator of the KdV equa-
tion. Similar decompositions apply to the adjoint lin-
earization operators. As a consequence, we established

that linearization operators (adjoint operators) of all
KdV hierarchy equations share the same complete set
of eigenfunctions, and these eigenfunctions are di-
rectly related to squared eigenstates of the Schrödinger
equation with a soliton potential. We comment that
these results can be extended to other integrable hier-
archies. These extensions will be reported elsewhere.

The simple linearization operator structures (2.26)
and (2.29) are an important property of the KdV hier-
archy. They are another indication of magic associated
with integrable hierarchies, or integrable equations in
general. Its consequence that all the linearization op-
erators of the KdV hierarchy share the same complete
set of eigenfunctions (see Eqs. (2.43)–(2.48)) have im-
portant physical and mathematical applications. The
first application is the development of a direct soliton
perturbation theory for perturbed KdV hierarchy equa-
tions. In this theory, complete eigenfunctions of the
linearized equation expanded around a single-soliton
solution are the key component. Historically, this the-
ory was developed only for the sine–Gordon, NLS,
KdV and Benjamin–Ono equations [7–13] (it was also
developed for the non-integrable cubic–quintic NLS
equation [14], but that theory was not complete). With
the result of this Letter, one can now develop a di-
rect soliton perturbation theory for any equation in the
KdV hierarchy. We note that the inverse-scattering-
based soliton perturbation theory for the KdV hierar-
chy has been developed for over twenty years [5,15].
But the direct soliton perturbation theory is preferred
by many people, since it does not rely on the inverse
scattering method and it has a simplistic appeal (see
also [16]). In the inverse-scattering soliton perturba-
tion theory for the KdV hierarchy, the expansion ba-
sis for the potential is the squared eigenstates of the
Schrödinger equation. Because of this, it has long been
suspected by people familiar with the inverse scatter-
ing method that these squared eigenstates must also
solve the linearized equation of any KdV hierarchy
equation. In this Letter, we showed for the first time
that this is indeed the case. Thus these squared eigen-
functions also form the expansion basis in the direct
soliton perturbation theory. These results indicate that,
at a deep level, the inverse-scattering soliton perturba-
tion theory and the direct soliton perturbation theory
are really equivalent.

Another application of the complete eigenfunctions
obtained in this Letter for the KdV hierarchy is in
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the stability analysis of solitary waves in perturbed
KdV hierarchy equations. In this analysis, an impor-
tant question is whether discrete eigenvalues of the lin-
earization operator expanded around a solitary wave
can bifurcate from the continuous spectrum. This cal-
culation could not be done without knowing the com-
plete eigenfunctions of the linearized KdV hierarchy
equations expanded around single-soliton solutions.
In the literature, this eigenvalue bifurcation analysis
was done only for the perturbed NLS, sine–Gordon
and Manakov equations [17–19]. With the results of
this Letter, it is now possible to perform this analysis
for any perturbed KdV hierarchy equation. Extension
of our results would make it possible to perform this
analysis for other perturbed hierarchy equations such
as the NLS hierarchy and modified-KdV hierarchy as
well.
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