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Abstract

Vector-soliton collisions in birefringent nonlinear optical fibers are investigated. The underlying mathematical model is the
non-integrable coupled nonlinear Schrödinger equations. It is shown that the exit velocity versus collision velocity graph has a
fractal structure. When we zoom into different positions of this fractal, we get structures which are either a copy, a horizontal
reflection or vertical reflection of the original structure. Collision dynamics in the zoomed-in windows and that in the original
graph follow simple and well-defined patterns as well. We explain this fractal dependence of the collision by a novel resonance
mechanism between translational motion of vector solitons and radiation modes which cause internal oscillations inside a vector
soliton.  2001 Published by Elsevier Science B.V.
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1. Introduction

Solitary wave collisions are common phenomena
in physics and engineering. Water wave collisions in
the ocean and optical-soliton collisions in wavelength-
division-multiplexed fiber transmission systems are
well-known examples [1,2]. Solitary wave collisions
have been studied extensively for a great variety of
nonlinear wave equations in the past four decades.
If the equation is integrable, the pioneering work by
Zabusky and Kruskal [3] and subsequent develop-
ments [1] show that solitary wave collisions are elas-
tic, i.e., they simply pass through each other with-
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out change of shape or velocity. However, collisions
in non-integrable equations can be much more com-
plex. The most vivid demonstration of this complex-
ity is probably the φ4 model, where kink/antikink
collisions depend fractally on the collision velocity
[4,5]. The mechanism for this fractal dependence is
a resonance between translational motion and internal
(shape) modes of kink/antikinks. These internal modes
are discrete eigenfunctions (with non-zero eigenval-
ues) in the linearized φ4 equation expanded around
kink/antikink solutions.

In this Letter, we show that a fractal structure can
also be created in solitary wave collisions by a res-
onance between translational motion and radiation
modes of solitary waves. Since radiation modes exist
for all conservative evolution equations, while internal
modes exist only for some of them, it is then clear that
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our new resonance mechanism for fractal structures is
more universal.

The wave system we choose to study is the coupled
nonlinear Schrödinger (NLS) equations:

(1.1)iAt + Axx + (|A|2 + β|B|2)A = 0,

(1.2)iBt + Bxx + (|B|2 + β|A|2)B = 0,

where A and B are complex amplitudes of wave en-
velopes, and β is the cross-phase modulational (XPM)
coefficient. This system is well known in nonlinear
optics. It governs pulse propagation in birefringent
fibers [6]. For linearly birefringent fibers, β = 2/3. For
elliptically birefringent fibers, β can take other posi-
tive values [7]. Solitary waves in these equations are
often called vector solitons in the literature as they
generally contain two components. When β = 0, this
system reduces to two separate NLS equations; when
β = 1, the system is called Manakov equations. In
both cases, Eqs. (1.1) and (1.2) are integrable [8,9].
Thus vector-soliton collisions are elastic. We note that
in the Manakov case, polarization rotation occurs after
collision if colliding solitons are not parallelly or or-
thogonally polarized. But the total intensity and veloc-
ity of each vector soliton remains the same [9]. When
β is not 0 or 1, these equations are non-integrable.
Vector-soliton collisions for the non-integrable case
have been studied before in the literature [10–15]. It
has been shown that, in addition to passing-through
collision, vector solitons can also bounce off each
other or trap each other. However, what is still un-
known so far is that, this collision can be much more
complex and regular at the same time. In this Let-
ter, we will show that, in the non-integrable case, the
exit velocity versus collision velocity graph for vector-
soliton collisions has a fractal structure. When we
zoom into this graph, we can get a copy, a horizontal
reflection or vertical reflection of the original graph.
Collision dynamics in the zoomed-in windows bears
intimate relationships with that in the original graph
as well. We explain this fractal structure by a novel
resonance mechanism between translational motion of
vector solitons and radiation modes which cause in-
ternal oscillations inside a vector soliton. Lastly, we
show that the experimental verification of these results
in birefringent fibers is quite feasible.

2. Fractal structure and its collision dynamics

For simplicity, we only consider the collision of two
orthogonally polarized and equal-amplitude vector
solitons in this Letter. Such collisions often arise
in fiber transmission systems, optical switching and
planar waveguides [13,16–18]. The initial conditions
for these collisions can be written as

(2.1)A(x,0) = √
2 sech

(
x + 1

2
∆

)
e(1/4)iV0x,

(2.2)B(x,0) = √
2 sech

(
x − 1

2
∆

)
e−(1/4)iV0x,

where A(x,0) and B(x,0) each is a NLS soliton, V0
is the collision velocity, and ∆ (� 1) is the initial
pulse separation. The amplitudes of these colliding
solitons have been normalized to be

√
2. Their phases

have been removed since Eqs. (1.1) and (1.2) are
phase-invariant in both A and B components. We
note that for these initial conditions, solutions possess
a symmetry: B(x, t) = A(−x, t). When β = 0 or 1
(integrable case), these two NLS solitons will simply
pass through each other without change in amplitude,
velocity or polarization. In the Manakov case (β = 1),
polarization rotations do not occur here because the
colliding solitons (2.1) and (2.2) are orthogonally
polarized [9]. When β �= 0 or 1 (non-integrable case),
amplitudes, velocities and polarizations of colliding
solitons will all change after collision. This non-
integrable collision will be the focus of our present
study. Throughout this Letter, we choose β = 2/3,
as this is the XPM coefficient for fibers of linear
birefringence [6].

We simulated Eqs. (1.1) and (1.2) extensively for
initial conditions (2.1) and (2.2), using collision veloc-
ity V0 as a control parameter. The initial pulse separa-
tion ∆ should be large enough so that the initial pulse
overlap is negligible. In our simulations, we used ∆ =
20. We employed two different numerical schemes: (1)
a third-order split-step method; (2) the pseudo-spectral
method coupled with the fourth-order Runge–Kutta
integration along time direction. Results of these two
schemes were compared closely to guarantee consis-
tency. We also took a large x interval and used damp-
ing conditions at its boundaries. These measures were
to ensure that radiation emitted into the far field does
not interfere with pulse collisions in the center field.
In our simulations, the x interval was 160 units wide.



J. Yang, Y. Tan / Physics Letters A 280 (2001) 129–138 131

The x-grid points were 1024, and the t-stepsize was
0.01 (split-step method) and 0.004 (pseudo-spectral
method). We also ran our simulations on selective V0
values with longer x intervals, wider initial pulse sep-
arations, more grid points and smaller t-stepsize, and
were assured that the results did not change. All our
simulations used double precision (about 16 signifi-
cant digits).

Our simulations identified three collision scenarios:
transmission, reflection and trapping. In a transmis-
sion scenario, most of the energy in each pulse passes
through; in a reflection scenario, most of the energy is
reflected back; in a trapping scenario, the two pulses
trap each other and form a single new pulse. In trans-
mission and reflection scenarios, polarizations of exit
pulses generally are rotated to various degrees, a phe-
nomenon called shadow formation in the literature.
Exit pulses generally also have a small amount of chirp
which decays as pulses escape to the far field (it is
noted that chirp causes width and amplitude oscilla-
tions to vector solitons). If we define the “exit veloc-
ity” V as the difference between velocities of the two
exit pulses, then the exit velocity is positive in a trans-
missional collision, negative in a reflectional collision,
and zero in a trapping collision. Numerically, the exit
velocity is determined as follows. We let the pulses
propagate for a long time after collision. If they still
do not separate, we assign the exit velocity as zero.
If they do separate, we wait until they have separated
far apart and their velocities have stabilized. Then we
locate the positions of maximum pulse amplitudes at
two different time values. The difference of average
velocities of the two pulses in this time interval is as-
signed as the exit velocity. The sign of the exit veloc-
ity is determined by whether most of the pulse energy
passes through or is reflected back. In Fig. 1, we show
these three collision scenarios for V0 = 1.3, 1.205 and
1.05, respectively. In this figure, only the |A| compo-
nents are plotted, as the |B| components are simply
horizontal reflections of the |A| components due to
symmetry B(x, t) = A(−x, t). In Fig. 1(a), the col-
lision is transmissional with exit velocity V = 0.68.
The two component amplitudes in exit pulses are 1.19
and 0.57, respectively. The collision in Fig. 1(b) is re-
flectional with V = −1.01 and component amplitudes
of exit pulses as 1.38 and 0.05. Collision scenario in
Fig. 1(c) is trapping. In each collision, some radiation
is emitted too.

Fig. 1. Three scenarios of vector-soliton collisions: (a) transmission
(V0 = 1.3); (b) reflection (V0 = 1.205); (c) trapping (V0 = 1.05).
Only |A| components are shown. The |B| components are horizontal
reflections of |A|.

Fig. 2. Collision results for β = 2/3 with initial conditions (2.1),
(2.2) and various collision velocities V0: (a) exit velocity V graph;
(b) graph of two component amplitudes in exit pulses.

Next, we systematically investigate the collision
outcome as the collision velocity V0 continuously
vary. The results are shown in Fig. 2, where the exit
velocity and two component amplitudes of exit pulses
are plotted in (a) and (b), respectively. As we can
see from this graph, when V0 � 1.1024, the collision
is always trapping. When 1.1024 � V0 � 1.1734 and
V0 � 1.2076, the collision is always transmissional.
But in the interval 1.1734 � V0 � 1.2076, transmis-
sional, reflectional and trapping collisions all occur in
an intertwined way. Notice from Fig. 2(b) that polar-
izations of initial pulses are clearly rotated after col-
lision. This rotation is generally greater in transmis-
sional collisions than in reflectional collisions.

The surprising feature about Fig. 2 is that, it embeds
in itself a fractal structure! To reveal this structure,
we will focus on the exit velocity graph Fig. 2(a)
in the remainder of this Letter. When we isolate the
interval [1.15,1.23], this graph becomes Fig. 3(a).
Our finding is that Fig. 3(a) is a fractal. Before
we substantiate this claim, we describe some main
features of Fig. 3(a) first. At its left and right ends,
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Fig. 3. Fractal structure and collision dynamics of vector solitons. The upper row are graphs of exit velocity V versus collision velocity V0.
(b) and (c) are successive amplifications of (a) in intervals marked by vertical solid lines. The lower row are collision dynamics of vector
solitons with velocities V0 at bottoms of the N-valleys in the upper row (marked by vertical dashed lines). Specifically, in (I), V0 = 1.205; in
(II), V0 = 1.207562; in (III), V0 = 1.20758002. Plotted here are positions of maximum |A| and |B| amplitudes at each time (solid for |A| and
dashed for |B|).

there are two “hills” where V > 0. Between these
hills, there are two prominent intervals where V < 0
(“valleys”). The left valley is approximately [1.1755,
1.1932], which is wider. We call it the “W-valley”.
The right valley, [1.2013, 1.2065], is narrower. We call
it the “N-valley”. Between these two valleys, there
are even narrower “hills” and “valleys”. In addition,
intervals of trapping collisions (V = 0) scatter around
between these hills and valleys.

To show that Fig. 3(a) is a fractal, we zoom into
the tiny V0 window [1.20732, 1.20769] lying between
the N-valley and the right-most hill. This window
is marked by two vertical solid lines in Fig. 3(a)
(the two lines are so close by that they are almost
indistinguishable). This window, when enlarged, is
shown in Fig. 3(b). But Fig. 3(b) is qualitatively the
same as Fig. 3(a)! In Fig. 3(b), the graph also has two
“hills” at the left and right ends. In between, there
are also two prominent valleys which are counterparts
of the W-valley and N-valley in Fig. 3(a). The W-
valley here, [1.207434, 1.207490], is to the left, and
the N-valley, [1.207548, 1.207571], is to the right, just
like Fig. 3(a). Between these valleys, narrower hills
and valleys as well as trapping intervals can be found
intertwined too. Some differences also exist between

Figs. 3(a) and (b). The most notable difference is that
Fig. 3(b) has less narrower hills and valleys between
its W-valley and N-valley. Another difference is that
the vertical heights of hills and valleys in Fig. 3(b)
are generally lower than their counterparts in Fig. 3(a).
But these differences are relatively minor.

The surprise does not stop here. When we zoom
into the same relative position in Fig. 3(b) as in
Fig. 3(a), we get yet another structure which is similar
to Figs. 3(a) and (b). Specifically, we zoom into
the narrow interval [1.2075774, 1.2075814], which
lies between the N-valley and the right-most hill of
Fig. 3(b), the same relative position as the zoomed-
in window in Fig. 3(a). This window is marked in
Fig. 3(b) by two vertical solid lines. The amplified
window is shown in Fig. 3(c). This graph also has
two hills at the two ends of the interval. In between,
a wider valley is to the left (W-valley), and a narrower
valley is to the right (N-valley), just like Figs. 3(a)
and (b). These three graphs in Fig. 3 indicate that, the
structure in Fig. 3(a) is indeed a fractal! We would
like to remind the reader that the length of the V0
interval in Fig. 3(c) is 4 × 10−6. On such a fine
scale, the collision still has a rich structure, which
is truly remarkable. Fig. 3(c) can be zoomed in even
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further. But numerical simulations then become more
sensitive, and greater accuracy as well as larger initial
pulse separation would be required.

What described above is the geometrical structure
of the exit velocity graph. Dynamically, we have
found that collisions in Fig. 3(a) and its zoomed-in
windows (Figs. 3(b) and (c)) are intimately related.
Specifically, collisions at the same relative positions
in these figures follow simple and clear patterns.
To demonstrate, we select the bottom points of N-
valleys in these graphs, i.e., V0 = 1.205, 1.207562
and 1.20758002, respectively (marked in Figs. 3(a)–
(c) by vertical dashed lines). In each case, the collision
is reflectional (V < 0). When we plot the positions
of maximum |A| and |B| amplitudes at each time t

(solid for |A| and dashed for |B|), we get Figs. 3(I)–
(III), respectively. In the first graph, Fig. 3(I), the
colliding pulses first pass through each other, reach
finite separation, stop, return, and pass through each
other the second time, and then separate. In Fig. 3(II),
the colliding pulses first pass through each other, reach
finite separation, stop, oscillate around its position
once, then return and pass the second time and
separate. In Fig. 3(III), the collision is similar to
Figs. 3(I) and (II) except that, the two pulses oscillate
twice around their positions between two passes. The
clear patterns in these collisions are striking. At other
points of the same relative position in Figs. 3(a)–(c),
collisions show similar patterns. Specifically, collision
in the zoomed-in window is that, after the first pass, the
pulses oscillate one more time around their positions
than in the original window. The rest of the collision
pattern remains the same. We have also observed that
time between two passes in Figs. 3(I)–(III) are roughly
21.8, 42.3 and 62.3, respectively. Collision of the
same nature as Figs. 3(I)–(III) but with four “bumps”
occurs at V0 = 1.2075802182. This point would be the
bottom of the next N-valley when we zoom into the
narrow window between the N-valley and right-most
hill of Fig. 3(c). The time between two passes at this
velocity is about 81.1. An interesting fact is that these
collision times Tc can be fit nicely by the formula

(2.3)ωTc = δ + 2πn,

where ω = 0.316, δ = 0.68, and n is the number of
bumps. The relative error of this fit is less than 1%.
Similar relations have been found in kink-antikink

collisions as well [4,5]. In that context, ω was the
internal-mode frequency for the kink/antikink.

In Figs. 3(a)–(c), we zoomed into the position
between the N-valley and the right-most hill. If we
zoom into certain other positions of this fractal (but
not any position), we will obtain other types of
fine structures. Next, we zoom into the tiny window
[1.17324, 1.17385] which lies in Fig. 3(a) between the
left hill and the W-valley. For presentation purpose,
we copy Fig. 3(a) into Fig. 4(a), then mark this tiny
window in Fig. 4(a) by two vertical solid lines. The
zoomed-in window is shown in Fig. 4(b). Observe that
Fig. 4(b) is just a horizontal reflection of Fig. 4(a)!
Here the W-valley, [1.173552, 1.173660], is to the
right, and the N-valley, [1.173429, 1.173461], is to
the left, just opposite of Fig. 4(a). Dynamically, we
found that collisions in the zoomed-in window are
also intimately related to those in the original graph.
To demonstrate this relationship, we again pick the
bottom points of N-valleys in Figs. 4(a) and (b) (this
bottom point in Fig. 4(b) is V0 = 1.173438), and
plot their collision dynamics in Figs. 4(I) and (II).
As we can see, in Fig. 4(II), the two pulses first
pass each other and reach finite separation. Then they
come back and collide the second time. But they
do not pass through each other this time. Instead,
they simply separate (bounce off each other), reach
finite separation, oscillate around their positions once,
collide for the third time, pass through each other, and
escape. Comparing the collision in Fig. 4(II) to that in
Fig. 4(I), we find that Fig. 4(II) has one more bounce
(using the terminology of [4]). In addition, it has one
more collision cell (the second piece) in the shape of
a double oval. This relationship turns out to be true
for collisions anywhere in Fig. 4(a) and its zoomed-
in window Fig. 4(b). Specifically, at the same relative
positions in these two graphs, the collision in Fig. 4(b)
is such that, after the first pass, the two pulses come
back and bounce one more time. It is followed by a
double-oval-shaped collision cell (see Fig. 4(II)). The
rest of the collision is the same as that in Fig. 4(a).

If we zoom into the middle part of Fig. 4(a) between
the W-valley and N-valley, we will get a structure
which is a vertical reflection of Fig. 4(a). This middle
interval, [1.190, 1.202], is marked by two vertical
dash-dotted lines in Fig. 4(a). The zoomed-in window
is shown in Fig. 4(c). We see that in Fig. 4(c), the
“W-valley” and “N-valley” are now upside-down. So
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Fig. 4. Fine structures obtained by zooming into two other positions of the fractal in (a). (b) and (c) are the amplifications of the interval in
(a) marked by two vertical solid/dash-dotted lines. Lower row are collision dynamics of vector solitons with velocities at the “bottoms” of
“N-valleys” in the upper row (marked by vertical dashed lines). Specifically, in (I), V0 = 1.205; in (II), V0 = 1.173438; in (III), V0 = 1.201053.
Plotted are positions of maximum |A| and |B| amplitudes at each time (solid for |A| and dashed for |B|).

are the “hills” at the two ends of the graph. Note
that here “valleys” are not really valleys, and “hills”
are not really hills, as they are now upside-down.
But we choose to keep using these names so that
these structures can be directly related to those in
Fig. 4(a). Dynamically, we find that, at the same
relative positions in Figs. 4(a) and (c), the collision
in Fig. 4(c) is the same as that in Fig. 4(a) except in
the end, where instead of escaping, the pulses come
back and pass through each other one more time, then
escape. An example is shown in Fig. 4(III), where the
collision at the “bottom” of the “N-valley” in Fig. 4(c)
is plotted. The collision velocity at this bottom is
V0 = 1.201053, and it is marked by a vertical dashed
line. Compared to Fig. 4(I), pulses in Fig. 4(III) collide
one more time in the end, pass through each other, and
escape.

The above three zooming operations as shown in
Figs. 3(a) and 4(a) are all we found which are non-
trivial. Clearly, we can perform any one of these three
operations for each graph, and we can do it many
times. Do the geometrical and dynamical relation-
ships we have described above between an original
graph and its zoomed-in windows persist to all higher
zooming operations? Absolutely. To be more specific,
whenever we zoom into the position between the N-

valley and its adjacent hill (see Fig. 3(a)), we get a
copy of the original graph. Collisions in the zoomed-
in window are the same as those at the same relative
positions in the original graph, except that toward the
end of the collision, the pulses oscillate one more time
around their positions (see Figs. 3(I)–(III)). When-
ever we zoom into the position between the W-valley
and its adjacent hill (see Fig. 4(a)), we get a horizon-
tal reflection of the original graph. Collisions in the
zoomed-in window are the same as those at the same
relative positions in the original graph, except that to-
ward the end of collision, a double-oval-shaped col-
lision cell is added (see Fig. 4(II)). If we zoom into
the position between the W-valley and N-valley, we
always get a vertical reflection of the original graph.
Collisions in the zoomed-in window follow those at
the same relative positions in the original graph, ex-
cept in the end, where instead of escaping, the pulses
come back and pass through each other one more time
and escape. We would like to make several remarks
here. First, these zooming operations will produce four
qualitatively different fine structures altogether. The
first one is the original structure as in Fig. 3(a). The
second one is its horizontal reflection. The third one is
its vertical reflection. The last one is its horizontal and
vertical reflection. Second, each zoomed-in window
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has its own common collision signature. Furthermore,
each point in a window has its own individual collision
signature. These collision signatures are generated by
zooming operations in the manner we have just de-
scribed above. Given this collision signature, one can
tell where the collision velocity V0 must be located in
the fractal (Fig. 3(a)); conversely, when the location
of the collision velocity is specified in this fractal, one
can predict the collision dynamics from the above geo-
metrical and dynamical relationships between a graph
and its zoomed-in windows. This is analogous to the
quadratic map f (z) = z2 + c, where the geometry of
its Julia set can be predicted and classified by the loca-
tion of parameter c in the Mandelbrot set; conversely,
the location of c in the Mandelbrot set can be pin-
pointed by the geometric features of the Julia set [19].
Thirdly, zoomed-in windows may lose certain minor
features of the original graph (due to energy radiation,
for instance). At high zooming operations, even the W-
valley and N-valley can disappear. But if such struc-
tures do persist, they must obey the same geometrical
and dynamical guidelines as described above.

3. The resonance mechanism

An important question is how to theoretically ex-
plain the fractal structure and collision dynamics as
seen in Figs. 3 and 4. We notice that collision patterns
in Figs. 3(I)–(III) are the simplest, as pulses only col-
lide twice there. Therefore, in this section, we will fo-
cus on the theoretical explanation of those collisions.
The mechanism responsible for such collisions will be
suggestive for more complex collisions such as those
in Fig. 4 as well.

Let us first recall that fractal structures in the col-
lision of kinks and antikinks in sine–Gordon type
equations have been explained by a resonance be-
tween translational motion and internal modes of
kink/antikinks [4,5]. Could a similar mechanism be re-
sponsible for the present fractal? To answer this ques-
tion, we examine the collision in Fig. 3(III) in more de-
tail below. The |A| contour of this collision is shown in
Fig. 5(a) (the |B| contour is just a horizontal reflection
of the |A| contour). We see from this contour plot that
after the first pass, each pulse splits into two smaller
pulses. Thus roughly speaking, two vector solitons are
formed. At t ≈ 26 (shown in Fig. 5(a) as a horizontal

dashed line), these two solitons reach maximum sepa-
ration. The |A| and |B| profiles at this time are shown
in Fig. 5(b). We have checked the phases of A and B

solutions across each pulse span, and found that the
phases have a small amount of chirp, but are still close
to constants. The small chirp causes weak amplitude
and width oscillations inside each vector soliton. In-
deed, this oscillation can be seem clearly in Fig. 5(a).
It can also be noticed in Fig. 5(c), where the maximum
|A| value at each time is plotted. Small oscillations in
the lower part of the curve in Fig. 5(c) are due to phase
chirps. As these two vector solitons propagate, they
are attracted very close to each other, then their in-
dividual identities become blurred (this is responsible
for large oscillations in Fig. 5(c)). However, the two
solitons manage to move away from each other. This
process repeats three times until eventually, they col-
lide one last time, pass through each other, and escape.
The chirp, or amplitude and width oscillations, in exit
pulses is much weaker than that during the collision
(see Figs. 5(a) and (c)).

Several oscillations are involved simultaneously in
the collision of Fig. 5. One is the oscillation of transla-
tional motion of vector solitons as shown in Fig. 3(III).
The other one is width oscillations of each vector soli-
ton as discussed above. The third is the oscillation
of two-components’ relative positions inside a vector
soliton. This third oscillation is not specifically shown
in Fig. 5. But we have examined the positions of max-
imum |A| and |B| amplitudes inside each vector soli-
ton, and found that they generally do not coincide with
each other. In fact, they oscillate about each other. The
oscillational amplitude of this position separation in-
side a vector soliton is about 0.1. Of these three os-
cillations, the frequency of the translational motion is
ω = 0.316 as in Eq. (2.3). The frequency for width
(amplitude) oscillations inside a vector soliton can be
inspected from Figs. 5(a) and (c), and it is approxi-
mately 0.77. The frequency for positional oscillations
inside a vector soliton was numerically determined as
about 0.61. We note that these numerical approxima-
tions were obtained when the two vector solitons were
near their maximal separations. If they are very close
to each other, identities of individual vector solitons
are ambiguous, thus width and positional oscillations
of each vector soliton are not well defined.

Frequencies for width and positional oscillations in-
side each vector soliton in Fig. 5 can be estimated the-
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Fig. 5. Detailed collision dynamics of Fig. 3(III) with V0 = 1.20758002. (a) Contour plot of |A(x, t)| at levels 0.2 : 0.15 : 1.1; the horizontal
dashed line is at t = 26, when the |A| and |B| profiles are shown in (b). (c) Maximum |A| value at each time t .

oretically as well. For this purpose, let us first recall
that when a single vector soliton is slightly perturbed,
it will undergo positional and width oscillations [20–
24]. If this vector soliton supports a discrete internal
mode, the eigenvalue of this internal mode will be the
frequency of positional oscillations. Otherwise, posi-
tional oscillations are caused by quasi-modes which
are located inside but close to the edge of the continu-
ous spectrum, and its frequency is about min{ω1,ω2},
where ω1 and ω2 are positive propagation constants
of the vector soliton [24,25]. Width oscillations are
caused by radiation modes, and its frequency is about
max{ω1,ω2}. Some of these facts are not obvious. But
they can be inferred from the work [26,27] for the sin-
gle NLS equation, from the work [20] on positional
oscillations inside a vector soliton, and from our nu-
merical experiments.

To theoretically estimate width and positional os-
cillation frequencies in Fig. 5, we assume that these
frequencies during the entire collision can be approx-
imated by internal-oscillation frequencies of vector
solitons at t ≈ 26, when the separation of these two
vector solitons is maximal. At this instant, the two
component amplitudes in each soliton are 1.10 and
0.71, respectively (see Fig. 5(b)). The vector soli-
ton with these amplitude values can be determined
uniquely, and its propagation constants are found to
be 0.776 and 0.628, respectively [20]. Since polariza-
tion angles of these two vector solitons, defined as the
arctangent of the amplitude ratios, are about 33◦ and
57◦, these solitons can not support discrete internal
modes [21]. Thus the positional oscillation frequency
of these solitons is 0.628, and the width oscillational

frequency is 0.776. We see these values are fairly close
to those obtained above from numerical inspections.

The important fact we notice is that, both the
positional and width oscillation frequencies are fairly
close to twice the translational frequency (2ω). This
suggests that there is indeed a resonance present in
the collision of Fig. 5. This resonance is between the
translational motion of vector solitons and positional
and width oscillations of each vector soliton. It appears
that the positional oscillation frequency is closer
to 2ω. So positional oscillation might play a more
important role in the resonance mechanism. But Fig. 5
suggests that the resonance with the width oscillation
is also significant. Even though the width oscillation
frequency does not seem very close to 2ω, we have
to bear in mind that when two vector solitons move
very close to each other, the resonance dynamics may
work a little differently. Thus we have no strong
reason to dismiss width oscillations as less important
in the collision of Fig. 5. As we have indicated above,
both positional and width oscillations in Fig. 5 are
caused by radiation modes (quasi-modes is a special
case of radiation modes). Thus the resonance here is
between the translational motion and radiation modes,
rather than discrete internal modes. We have also
examined other collisions such as those in Fig. 4, and
it seems that the resonance mechanism remains the
same. We emphasize that the resonance mechanism in
our model is different from that in the φ4 model, where
the resonance is between the translational motion
and a true localized internal mode [4,5]. Given the
fact that radiation modes exist for all conservative
evolution equations, while internal modes exist only
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for a small number of them, we then expect that more
fractal structures may be uncovered where the present
resonance mechanism is held responsible. Recently,
an interesting Cantor fractal was reported for soliton
break-ups due to a sequence of abrupt changes in
the dispersion coefficient [28,29]. That fractal is of
a different nature as the underlying mechanism is
different.

The present Letter only considered collisions of or-
thogonally polarized and equal-amplitude vector soli-
tons for β = 2/3. An important question is how this
fractal structure changes when colliding vector soli-
tons are not orthogonally polarized, or they do not
have equal amplitudes, or β is different from 2/3.
A related question is whether the resonance mecha-
nism of this Letter becomes qualitatively different for
other β values or different collision configurations.
One other important question is what other physical
systems possess fractal structures which are generated
by the same resonance mechanism as in this Letter,
i.e., a resonance between translational motion and ra-
diation modes of solitary waves. All these questions lie
outside the scope of the present Letter. But they will be
investigated elsewhere.

Lastly, we discuss the possibility of experimental
observation of the fractal structure reported in this Let-
ter. It is known that the dimensionless collision veloc-
ity V0 in our model is related to physical parameters
as [6]

(3.1)V0 = 4π�n

λ2|D|
τ

1.763
,

where �n is the index difference of the fiber’s two
polarizations, τ is the pulse’s full width at half
maximum (FWHM), λ is the wavelength, and D is the
dispersion parameter (note that D is [6] was defined
differently). For step-index single-mode fibers, the
typical value for D is 15.6 ps/nm/km at wavelength
λ = 1.55 µm [30]. According to [31], �n varies
between 5 × 10−9 and 8 × 10−4. Typical values
concentrate in the range 10−6 to 10−5. If we let τ =
5 ps, then the total range for V0 is from 4.8 × 10−3 to
7.6 × 102, while typical values fall between 0.95 and
9.5. We see that our velocity interval for the fractal
structure in Fig. 3(a) falls entirely in the range of
typical experimental parameter regime. By fine-tuning
the wavelength, one can make V0 continuously scan
over the fractal interval, thus verifying the collision

results experimentally. Of course, experiments are
always subject to birefringence fluctuations along
the fiber. Thus it may not be very easy to confirm
the fractal nature of Fig. 3(a). However, if the two
wide reflection valleys (W-valley and N-valley) in
Fig. 3(a) can be verified, the resonance mechanism we
explained in this Letter will give us confidence that
similar structures in zoomed-in windows should also
exist. The experimental verification of the W- and N-
valleys in Fig. 3(a) should be much easier.

4. Conclusion

In this Letter, we have reported a fractal structure
in vector-soliton collisions in birefringent fibers. This
structure lies in the exit velocity versus collision ve-
locity graph. We have explained this structure by a
resonance mechanism between translational motion of
vector solitons and radiation modes which cause inter-
nal oscillations inside a vector soliton. These results
could have important applications to physical systems
where vector-soliton collisions arise. They also have
direct ramifications to solitary wave collisions in other
physical systems. The experimental confirmation of
these results in birefringent fibers is quite feasible.
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