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General N-solitons in three recently-proposed nonlocal nonlinear Schrödinger equations are presented. 
These nonlocal equations include the reverse-space, reverse-time, and reverse-space–time nonlinear 
Schrödinger equations, which are nonlocal reductions of the Ablowitz–Kaup–Newell–Segur (AKNS) 
hierarchy. It is shown that general N-solitons in these different equations can be derived from the same 
Riemann–Hilbert solutions of the AKNS hierarchy, except that symmetry relations on the scattering data 
are different for these equations. This Riemann–Hilbert framework allows us to identify new types of 
solitons with novel eigenvalue configurations in the spectral plane. Dynamics of N-solitons in these 
equations is also explored. In all the three nonlocal equations, their solutions often collapse repeatedly, 
but can remain bounded or nonsingular for wide ranges of soliton parameters as well. In addition, it is 
found that multi-solitons can behave very differently from fundamental solitons and may not correspond 
to a nonlinear superposition of fundamental solitons.

© 2018 Published by Elsevier B.V.
1. Introduction

Integrable systems have been studied for many years [1–5]. 
Most such systems are local equations, i.e., the solution’s evolution 
depends only on the local solution value and its local space and 
time derivatives. The Korteweg–de Vries equation and the nonlin-
ear Schrödinger (NLS) equation are such examples.

A few years ago, a nonlocal reverse-space NLS equation

iqt(x, t) + qxx(x, t) + 2q2(x, t)q∗(−x, t) = 0, (1.1)

was proposed by Ablowitz and Musslimani [6]. Here the asterisk * 
represents complex conjugation. Although this equation is just a 
reduction of the Ablowitz–Kaup–Newell–Segur (AKNS) hierarchy, it 
is distinctive because the solution’s evolution at location x depends 
on not only the local solution at x, but also the nonlocal solu-
tion at the distant position −x. That is, solution states at distant 
locations x and −x are directly coupled, reminiscent of quantum 
entanglement between pairs of particles. Integrable equations of 
this type had not been paid attention before, which makes this 
nonlocal equation mathematically interesting. Regarding potential 
applications, this nonlocal equation was linked to an unconven-
tional system of magnetics [7]. In addition, since this equation is 
parity-time (PT ) symmetric, i.e., it is invariant under the joint 
transformations of x → −x, t → −t and complex conjugation, it 
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is thus related to the concept of PT symmetry — a hot research 
area of contemporary physics [8].

Following its introduction, this reverse-space NLS equation was 
actively studied [6,9–17]. In addition, many other nonlocal inte-
grable equations were reported and investigated [18–37]. These 
studies revealed interesting solution behaviors in nonlocal equa-
tions, such as finite-time solution blowup (i.e., collapsing) in fun-
damental solitons and general rogue waves of Eq. (1.1) [6,17] and 
the simultaneous existence of solitons and kinks in the nonlocal 
modified Korteweg–de Vries equation [30]. A connection between 
nonlocal and local equations was also discovered in [33], where it 
was shown that many nonlocal equations could be converted to 
local equations through transformations.

In this article, we study general N-solitons and their dynamics 
in the reverse-space NLS equation (1.1), as well as the reverse-time 
and reverse-space–time NLS equations,

iqt(x, t) + qxx(x, t) + 2q2(x, t)q(x,−t) = 0, (1.2)

and

iqt(x, t) + qxx(x, t) + 2q2(x, t)q(−x,−t) = 0. (1.3)

These equations can be derived from the following member of the 
AKNS hierarchy — the coupled Schrödinger equations [1,5]

iqt + qxx − 2q2r = 0, (1.4)

irt − rxx + 2r2q = 0. (1.5)
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Dynamics in these coupled Schrödinger equations without con-
straints between q and r has been analyzed in [5], and self-
collapsing solitons as well as amplitude-changing solitons have 
been reported. Under reductions

r(x, t) = −q∗(−x, t), (1.6)

r(x, t) = −q(x,−t), (1.7)

and

r(x, t) = −q(−x,−t), (1.8)

these coupled Schrödinger equations reduce to the reverse-space 
NLS equation (1.1), reverse-time NLS equation (1.2) and reverse-
space–time NLS equation (1.3) respectively [6,26].

This article is motivated by a number of reasons. First, while 
solitons in the reverse-space NLS equation (1.1) have been inves-
tigated before [6,9,11,13], only the fundamental solitons were re-
ported [6,9,11]. In [13], both fundamental and two-solitons were 
also reported; but those solutions are clearly incorrect, as was 
pointed out in [16]. In [10,15,16], “solitons” were also derived for 
Eq. (1.1); however, those solutions are not true solitons since they 
are not localized in space. Thus, despite the previous efforts, true 
multi-solitons in the reverse-space NLS equation (1.1) have never 
been found, which is surprising. This motivates us to derive gen-
eral multi-soliton solutions in this nonlocal equation. As we will 
show, multi-solitons in this equation admit novel eigenvalue con-
figurations in the spectral space, which give rise to new types of 
soliton structures, such as the two-soliton in Fig. 2 (bottom row). 
In addition, multi-solitons behave very differently from fundamen-
tal solitons.

Our second motivation is that, there has been no studies of 
solitons in the reverse-time NLS equation (1.2) and reverse-space–
time NLS equation (1.3) to our best knowledge. The T-symmetric 
and ST-symmetric NLS equations studied in [16] and the reverse-t
NLS equation studied in [37] are not the reverse-time and reverse-
space–time NLS equations (1.2) and (1.3). In fact, those equa-
tions are just the nonlocal nonlinear diffusion equations analyzed 
in [33].

Our third motivation is that, it is helpful to put N-solitons of 
the three nonlocal equations (1.1)–(1.3) in the framework of inverse 
scattering and Riemann–Hilbert solutions, because in this frame-
work, one can clearly see the novel symmetry relations in their 
scattering data, which strongly differ from those in the local (clas-
sical) NLS equation. In addition, this Riemann–Hilbert framework 
allows us to readily identify new types of solitons arising from new 
eigenvalue configurations in the spectral space, which can be more 
difficult to obtain by other methods (such as the Darboux transfor-
mation method and the bilinear method [11,13,15,16,37]).

In this article, we derive general N-solitons in the reverse-
space, reverse-time and reverse-space–time NLS equations
(1.1)–(1.3) using the inverse scattering and Riemann–Hilbert meth-
od. We show that N-solitons in these different equations can be 
derived from the same Riemann–Hilbert solutions of the AKNS hi-
erarchy, except that symmetry relations on their scattering data 
differ from each other (and from those of the local NLS equation). 
From this Riemann–Hilbert framework, we discover new types of 
multi-solitons with novel eigenvalue configurations in the spec-
tral plane. Since these eigenvalue configurations may not be split 
into groups of eigenvalues of fundamental solitons, we conclude 
that these multi-solitons may not be viewed as nonlinear super-
positions of fundamental solitons. Dynamics of these solitons is 
further analyzed. In all the three nonlocal equations, we show that 
their solutions often collapse repeatedly, but can remain bounded 
or nonsingular for wide ranges of soliton parameters as well. In 
addition, we report that multi-solitons can behave very differently 
from fundamental solitons. For instance, in the reverse-time NLS 
equation (1.2), a two-soliton can move in opposite directions and 
repeatedly collapse, while the fundamental soliton is always sta-
tionary and nonsingular.

2. N-solitons for general coupled Schrödinger equations

Our basic idea to derive N-solitons in the reverse-space, 
reverse-time and reverse-space–time NLS equations (1.1)–(1.3) is 
to recognize that these equations are reductions of the cou-
pled Schrödinger equations (1.4)–(1.5). Thus, we will start with 
the Riemann–Hilbert solutions of N-solitons for these coupled 
Schrödinger equations for given scattering data, then impose ap-
propriate symmetry relations on this scattering data, which will 
yield N-solitons for the underlying nonlocal equations. Follow-
ing this approach, we first consider N-solitons for the coupled 
Schrödinger equations (1.4)–(1.5), which will be done in this sec-
tion.

The coupled Schrödinger equations (1.4)–(1.5) are a member of 
the AKNS hierarchy, and their Lax pairs are [38,39]

Yx = MY , Yt = NY , (2.1)

where

M =
( −iζ q

r iζ

)
, N =

( −iqr − 2iζ 2 iqx + 2ζq
−irx + 2ζ r iqr + 2iζ 2

)
. (2.2)

For localized functions q(x, t) and r(x, t), the inverse scattering 
transform was developed in [38,39], and its modern Riemann–
Hilbert treatment was developed in [2,40]. Following this Rie-
mann–Hilbert treatment, N-solitons in this system were explicitly 
written down in [5] as

q(x, t) = 2i

⎛
⎝ N∑

j,k=1

v j
(
M−1)

jk v̄k

⎞
⎠

12

, (2.3)

and

r(x, t) = −2i

⎛
⎝ N∑

j,k=1

v j
(
M−1)

jk v̄k

⎞
⎠

21

, (2.4)

where

vk(x, t) = e−iζk�x−2iζ 2
k �t vk0, (2.5)

v̄k(x, t) = v̄k0 eiζ̄k�x+2iζ̄ 2
k �t, (2.6)

M is a N × N matrix whose ( j, k)-th element is given by

M jk = v̄ j vk

ζ̄ j − ζk
, 1 ≤ j,k ≤ N, (2.7)

� = diag(1, −1), ζk are complex numbers in the upper half 
plane C+ , ζ̄k are complex numbers in the lower half plane C− , 
and vk0, ̄vk0 are constant column and row vectors of length two 
respectively.

The above solutions can be written in a more compact form. 
Let us denote

vk0 =
[

ak
bk

]
, v̄k0 =

[
āk, b̄k

]
, (2.8)

where ak, bk, ̄ak, ̄bk are complex constants, and

θk = −iζkx − 2iζ 2
k t, θ̄k = iζ̄kx + 2iζ̄ 2

k t. (2.9)

Notice that M−1 in solutions (2.3)–(2.4) can be expressed as the 
transpose of M ’s cofactor matrix divided by det M . Also recall that 
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the determinant of a matrix can be expressed as the sum of its 
elements along a row or column multiplying their corresponding 
cofactors. Hence solutions (2.3)–(2.4) can be rewritten as ratios of 
determinants [3,5]

q(x, t) = −2i
det F

det M
, r(x, t) = 2i

det G

det M
, (2.10)

where F and G are the following (N + 1) × (N + 1) matrices:

F =

⎛
⎜⎜⎜⎝

0 a1eθ1 . . . aN eθN

b̄1e−θ̄1 M11 . . . M1N
...

...
...

...

b̄N e−θ̄N MN1 . . . MN N

⎞
⎟⎟⎟⎠ , (2.11)

and

G =

⎛
⎜⎜⎜⎝

0 b1e−θ1 . . . bN e−θN

ā1eθ̄1 M11 . . . M1N
...

...
...

...

āN eθ̄N MN1 . . . MN N

⎞
⎟⎟⎟⎠ . (2.12)

The reverse-space, reverse-time and reverse-space–time NLS 
equations (1.1)–(1.3) were obtained from the coupled system 
(1.4)–(1.5) under reductions (1.6)–(1.8). Each reduction leads to its 
own symmetry relations on the discrete scattering data {ζk, ̄ζk,

vk0, ̄vk0, 1 ≤ k ≤ N}. For reasons which will become apparent in 
the next section, we call ζk, ̄ζk eigenvalues and vk0, ̄vk0 eigenvec-
tors in this paper. By deriving these symmetry relations for the 
eigenvalues and eigenvectors of the scattering data, N-soliton so-
lutions of nonlocal equations (1.1)–(1.3) will be obtained directly 
from the above general N-soliton formulae (2.10). This will be 
done in the next section.

3. Symmetry relations of scattering data in the nonlocal NLS 
equations

We first present symmetry relations of the scattering data for 
the reverse-space, reverse-time and reverse-space–time nonlocal 
NLS equations (1.1)–(1.3), followed by their proofs. For this pur-
pose, we introduce some notations. We define

σ1 =
[

0 1
1 0

]
,

which is a Pauli spin matrix, and use the superscript ‘T ’ to repre-
sent the transpose of a matrix. In addition, we use R± to represent 
the sets of positive and negative real numbers respectively.

Theorem 3.1. For the reverse-space NLS equation (1.1), if ζ is an eigen-
value, so is −ζ ∗ . Thus, non-purely-imaginary eigenvalues appear as 
pairs (ζ, −ζ ∗), which lie in the same half of the complex plane. Sym-
metry relations on the eigenvectors are given as follows.

1. For a pair of non-purely-imaginary eigenvalues (ζk, ̂ζk) ∈ C+ , 
(ζk, ̂ζk) /∈ iR+ , with ζ̂k = −ζ ∗

k , their column eigenvectors vk0 and 
v̂k0 are related as v̂k0 = σ1 v∗

k0 .
2. For a purely imaginary eigenvalue ζk ∈ iR+ , its eigenvector is of the 

form vk0 = [
1, eiθk

]T
, where θk is a real constant.

3. For a pair of non-purely-imaginary eigenvalues (ζ̄k, ̂̄ζk) ∈ C− , 
(ζ̄k, ̂̄ζk) /∈ iR− , with ˆ̄ζk = −ζ̄ ∗

k , their row eigenvectors v̄k0 and ˆ̄vk0

are related as ˆ̄vk0 = v̄∗
k0σ1 .

4. For a purely imaginary eigenvalue ζ̄k ∈ iR− , its eigenvector is of the 
form v̄k0 = [

1, eiθ̄k
]
, where θ̄k is a real constant.
Theorem 3.2. For the reverse-time NLS equation (1.2), if ζ is an eigen-
value, so is −ζ . Thus, eigenvalues appear as pairs (ζ, −ζ ), which lie on 
the opposite halves of the complex plane. For a pair of such eigenvalues 
(ζk, ̄ζk) with ζk ∈ C+ and ζ̄k = −ζk ∈ C− , their eigenvectors vk0 and 
v̄k0 are related as v̄k0 = v T

k0 .

Theorem 3.3. For the reverse-space–time NLS equation (1.3), eigenval-
ues ζk can be anywhere in C+ , and eigenvalues ζ̄k can be anywhere 
in C− . However, their eigenvectors must be of the forms

vk0 = [1,ωk]T , v̄k0 = [1, ω̄k] ,

where ωk = ±1, and ω̄k = ±1.

To put these results in perspective, we recall that for the lo-
cal NLS equation, which is obtained from the coupled Schrödinger 
equations (1.4)–(1.5) under the reduction of r(x, t) = −q∗(x, t), the 
symmetries of its scattering data are ζ̄k = ζ ∗

k and v̄k0 = v∗T
k0 [1,2,5]. 

Thus, symmetry relations for the nonlocal NLS equations are very 
different from those of the local NLS equation. In particular, for the 
reverse-space and reverse-space–time NLS equations, eigenvalues 
in the upper and lower halves of the complex plane are completely 
independent. This independence allows for novel eigenvalue con-
figurations, which will give rise to new types of multi-solitons. This 
will be demonstrated in the next section.

Before proving these theorems, we first establish a connection 
between the discrete scattering data for N-solitons, {ζk, ̄ζk, ak, bk,

āk, ̄bk, 1 ≤ k ≤ N}, and discrete eigenmodes in the eigenvalue prob-
lem Yx = MY and its adjoint eigenvalue problem Kx = −K M , i.e.,

Yx = −iζ�Y + Q Y , (3.1)

and

Kx = iζ K� − K Q , (3.2)

where the potential matrix Q is

Q (x) =
[

0 q(x,0)

r(x,0) 0

]
, (3.3)

and q(x, 0), r(x, 0) are the initial conditions of functions q(x, t) and 
r(x, t). Indeed, it is known, from [5] for instance, that each subset 
{ζk, ak, bk} of the discrete scattering data, with ζk ∈ C+ , corre-
sponds to a discrete eigenvalue ζk in the eigenvalue problem (3.1), 
whose discrete eigenfunction Yk(x) has the following asymptotics

Yk(x) −→
[

ake−iζkx

0

]
, x → −∞, (3.4)

Yk(x) −→
[

0
−bkeiζkx

]
, x → +∞. (3.5)

Analogously, each subset {ζ̄k, ̄ak, ̄bk} of the discrete scattering data, 
with ζ̄k ∈ C− , corresponds to a discrete eigenvalue ζ̄k in the adjoint 
eigenvalue problem (3.2), whose discrete eigenfunction Kk(x) has 
the following asymptotics

Kk(x) −→
[
ākeiζ̄kx, 0

]
, x → −∞, (3.6)

Kk(x) −→
[

0, −b̄ke−iζ̄kx
]
, x → +∞. (3.7)

In view of this connection, in order to derive symmetry relations 
on the (discrete) scattering data, we will use symmetry relations of 
discrete eigenmodes in the eigenvalue problems (3.1)–(3.2), as we 
will do below. This symmetry derivation is easier than the stan-
dard one in [1,2,5], because it does not use details of the scattering 
theory for the underlying integrable equations.
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Proof of Theorem 3.1. The reverse-space NLS equation (1.1) was 
derived from the coupled Schrödinger equations (1.4)–(1.5) under 
the reduction (1.6). With this reduction, the potential matrix Q is

Q (x) =
[

0 q(x,0)

−q∗(−x,0) 0

]
, (3.8)

which features the following symmetry,

Q ∗(−x) = −σ−1
1 Q (x)σ1. (3.9)

Taking the complex conjugate to the eigenvalue equation (3.1), re-
versing x to −x, and utilizing the above potential symmetry, we 
get

Ŷ x = −iζ̂�Ŷ + Q Ŷ , (3.10)

where

ζ̂ = −ζ ∗, Ŷ (x) = ασ1Y ∗(−x), (3.11)

and α is an arbitrary complex constant. This equation shows that, 
if ζk ∈ C+ is an eigenvalue of the scattering problem (3.1), so is 
ζ̂k ≡ −ζ ∗

k ∈ C+ . In addition, the eigenfunction Yk(x) of ζk and the 
eigenfunction Ŷk(x) of ζ̂k are related as in (3.11). Recall that the 
large-x asymptotics of ζk ’s eigenfunction Yk(x) has been given in 
Eqs. (3.4)–(3.5), and the large-x asymptotics of ζ̂k ’s eigenfunction 
Ŷk(x) is the same as (3.4)–(3.5) but with ζk , ak and bk replaced by 
ζ̂k , âk and b̂k . Utilizing these asymptotics, the eigenfunction rela-
tion in Eq. (3.11) reveals that

âk = −αb∗
k , b̂k = −αa∗

k , (3.12)

i.e.,

v̂k0 = −ασ1 v∗
k0. (3.13)

If ζk is not purely imaginary, then its counterpart ζ̂k = −ζ ∗
k is a 

different eigenvalue. In this case, when the above v̂k0 expression is 
inserted into the N-soliton formulae (2.10), the constant −α can-
cels out and does not contribute to the solution. Thus, we can set 
−α = 1 without loss of generality. Then, v̂k0 = σ1 v∗

k0, and part 1 
of Theorem 3.1 is proved.

If ζk is purely imaginary, then ζ̂k = ζk . Thus, their eigenvectors 
are also the same, i.e., v̂k0 = vk0. Without loss of generality, we 
can scale the eigenvector vk0 so that its first element ak = 1. Then, 
inserting v̂k0 = vk0 into Eq. (3.13), we find that |α| = 1 and vk0 =
[1, −α]T . Denoting −α = eiθk , where θk is a real constant, we get 
vk0 = [1, eiθk ]T ; hence part 2 of Theorem 3.1 is proved.

Repeating the above arguments on the adjoint eigenvalue prob-
lem (3.2), parts 3 and 4 of Theorem 3.1 can be similarly proved. �
Proof of Theorem 3.2. The reverse-time NLS equation (1.2) was de-
rived from the coupled Schrödinger equations (1.4)–(1.5) under the 
reduction (1.7). With this reduction, the potential matrix Q is

Q (x) =
[

0 q(x,0)

−q(x,0) 0

]
, (3.14)

which features the following symmetry,

Q T (x) = −Q (x). (3.15)

Then, taking the transpose of the eigenvalue problem (3.1) and uti-
lizing the above potential symmetry, we get

Y x = iζ̄ Y � − Y Q , (3.16)
where

ζ̄ = −ζ, Y (x) = Y T (x). (3.17)

Eq. (3.16) means that 
[
ζ̄ , Y (x)

]
satisfies the adjoint eigenvalue 

equation (3.2). Thus, if ζk ∈ C+ is an eigenvalue of the scattering 
problem (3.1), then ζ̄k = −ζk ∈ C− is an eigenvalue of the adjoint 
scattering problem (3.2), and their eigenfunctions are related as 
in Eq. (3.17). Utilizing this eigenfunction relation as well as the 
large-x asymptotics of the eigenfunctions and adjoint eigenfunc-
tions in Eqs. (3.4)–(3.7), we readily find that āk = ak and b̄k = bk , 
i.e., v̄k0 = v T

k0. Theorem 3.2 is then proved. �
Proof of Theorem 3.3. The reverse-space–time NLS equation (1.3)
was derived from the coupled Schrödinger equations (1.4)–(1.5)
under the reduction (1.8). With this reduction, the potential ma-
trix Q is

Q (x) =
[

0 q(x,0)

−q(−x,0) 0

]
, (3.18)

which features the symmetry,

Q (−x) = −σ−1
1 Q (x)σ1. (3.19)

Reversing x to −x in the eigenvalue problem (3.1) and utilizing the 
above potential symmetry, we get

Ŷ x = −iζ�Ŷ + Q Ŷ , (3.20)

where

Ŷ (x) = σ1Y (−x). (3.21)

This equation means that for any eigenvalue ζk ∈ C+ , if Yk(x) is 
its eigenfunction, so is Ŷk(x) = σ1Y (−x); thus Ŷk(x) and Yk(x) are 
linearly dependent, i.e.,

Yk(x) = −ωkσ1Yk(−x), (3.22)

where ωk is some constant. Utilizing this relation and the large-x
asymptotics of the eigenfunction Yk(x) in Eqs. (3.4)–(3.5), we find 
that ak = ωkbk and bk = ωkak; thus ωk = ±1. Without loss of gen-
erality, we scale the eigenvector vk0 so that ak = 1. Then, bk = ωk , 
and vk0 = [1, ωk]T .

Since Eq. (3.21) also means that for any eigenvalue ζ̄k ∈ C− , if 
Kk(x) is its adjoint eigenfunction, so is K̂k(x) = σ1 Kk(−x). Hence 
utilizing this relation and the large-x asymptotics of the adjoint 
eigenfunction Kk(x) in Eqs. (3.6)–(3.7), we can similarly show that 
v̄k0 = [1, ω̄k], where ω̄k = ±1. Theorem 3.3 is then proved. �

Before concluding this section, we point that it is also possible 
to impose (q, r) reductions (1.6)–(1.8) directly on the determinant 
solutions (2.10) in order to extract symmetry relations on the scat-
tering data {ζk, ̄ζk, vk0, ̄vk0, 1 ≤ k ≤ N}. However, our derivation of 
these relations above is easier. In addition, this derivation is more 
insightful since it is in the inverse-scattering and Riemann–Hilbert 
framework.

4. Dynamics of N-solitons in the reverse-space NLS equation

To obtain general N-solitons in the reverse-space NLS equa-
tion (1.1), we only need to substitute the symmetry relations of the 
discrete scattering data in Theorem 3.1 into the general N-soliton 
formulae (2.10). The only thing we want to add is that, for a pair 
of non-imaginary eigenvalues (ζk, −ζ ∗

k ) ∈ C+ , since we can scale 
the eigenvector vk0 of ζk so that ak = 1 in Eq. (2.8), then using 
Theorem 3.1, we get
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Fig. 1. A fundamental soliton (4.3) in the reverse-space NLS equation (1.1) with 
parameters (4.4). Left panel: locations of eigenvalues in the complex plane. Right 
panel: solution graph.

vk0 = [1,bk]T , v̂k0 = [b∗
k ,1]T , (4.1)

where v̂k0 is the eigenvector of eigenvalue ζ̂k ≡ −ζ ∗
k , and bk is a 

complex constant. Similarly, for a pair of non-imaginary eigenval-
ues (ζ̄k, −ζ̄ ∗

k ) ∈C− , we can set their eigenvectors as

v̄k0 = [1, b̄k], ˆ̄vk0 = [b̄∗
k ,1], (4.2)

where b̄k is another complex constant.

4.1. Fundamental solitons

First, we consider the fundamental (simplest) soliton solutions. 
These solutions correspond to a single pair of purely imaginary 
eigenvalues, ζ1 = iη1 ∈ iR+ , and ζ̄1 = iη̄1 ∈ iR− , where η1 > 0 and 
η̄1 < 0. Eigenvectors v10 and v̄10 of these eigenvalues are as given 
in Theorem 3.1, i.e., v10 = [

1, eiθ1
]T

, and v̄10 = [
1, eiθ̄1

]
, where 

θ1, θ̄1 are real constants. Substituting these expressions into the 
N-soliton formulae (2.10), we obtain the expression for the funda-
mental soliton in the reverse-space NLS equation (1.1) as

q(x, t) = 2(η1 − η̄1)e2η̄1x+4iη̄2
1t+iθ̄1

1 + e−2(η1−η̄1)x−4i(η2
1−η̄2

1)t+i(θ1+θ̄1)
, (4.3)

which agrees with that derived in [6,9]. This soliton has four free 
real parameters, η1, η̄1, θ1 and θ̄1 — the same number of free 
parameters as the fundamental soliton in the local NLS equation. 
However, the present soliton can not move in space regardless of 
the choice of parameter values, which contrasts that in the local 
NLS equation. Another general feature of this solution is that, if 
η̄1 �= −η1, i.e., ζ̄1 �= −ζ1, then it would breathe and periodically 
collapse in time at position x = 0. The period of this collapse is 
π/[2(η2

1 − η̄2
1)]. To illustrate, we take parameter values

η1 = 1, η̄1 = −0.5, θ1 = π/4, θ̄1 = 0. (4.4)

In this case, the locations of eigenvalues ζ1 and ζ̄1 are shown in 
the left panel of Fig. 1, and the graph of the corresponding funda-
mental soliton is shown in the right panel of this figure.

If η̄1 = −η1, i.e., ζ̄1 = −ζ1, then as long as θ1 + θ̄1 �= (2n + 1)π
for any integer n, this soliton will not collapse, and its amplitude 
|q(x, t)| will not change with time [6,9].

4.2. Two-solitons

Now we consider two-solitons, which correspond to four eigen-
values, with ζ1, ζ2 ∈ C+ and ζ̄1, ̄ζ2 ∈ C− . From Theorem 3.1, we 
see that (ζ1, ζ2) in C+ and (ζ̄1, ̄ζ2) in C− are totally independent. 
Thus, these four eigenvalues can be arranged in 4 different config-
urations.

(1) ζ1, ζ2 ∈ iR+ , and ζ̄1, ̄ζ2 ∈ iR− .
Fig. 2. Three examples of collapsing two-solitons in the reverse-space NLS equa-
tion (1.1). Parameters for these solitons (from top to bottom) are given in equations 
(4.6)–(4.7), (4.8)–(4.9), and (4.10)–(4.11), respectively. Left column: eigenvalue con-
figurations; right column: solution graphs.

In this case, all four eigenvalues are purely imaginary. Thus, the 
two-soliton solution is obtained from the N-soliton formula (2.10)
with N = 2, and the eigenvectors are given by Theorem 3.1 as

vk0 =
[

1, eiθk

]T
, v̄k0 =

[
1, eiθ̄k

]
, k = 1,2, (4.5)

where θ1, θ2, θ̄1 and θ̄2 are free real constants. Together with the 
four free real constants in the eigenvalues, this two-soliton has 8 
free real parameters. We find that this soliton does not move, simi-
lar to the fundamental soliton. In addition, if ζ̄1 �= −ζ1 or ζ̄2 �= −ζ2, 
then it would repeatedly collapse, mostly at x = 0, but occasionally 
at pairs of other spatial locations symmetric with respect to x = 0
as well. An example is shown in Fig. 2 (top row), where the pa-
rameters are chosen as

ζ1 = i, ζ2 = 1.5i, ζ̄1 = −0.5i, ζ̄2 = −2i, (4.6)

θ1 = π/4, θ2 = 0, θ̄1 = 0, θ̄2 = π/2. (4.7)

One may notice that the present eigenvalue configuration can 
be split into two pairs, (ζ1, ̄ζ1) and (ζ2, ̄ζ2), with each pair corre-
sponding to the eigenvalue configuration of a fundamental soliton. 
This invites the view that the present two-soliton should describe 
the nonlinear superposition of two fundamental solitons. Indeed, 
the solution graph in the top row of Fig. 2 does more or less sup-
port this interpretation. However, this is not always the case. As 
we will see in the next section for the reverse-time NLS equa-
tion, even if a two-soliton’s eigenvalue configuration can be split 
into groups of eigenvalues of fundamental solitons, this two-soliton 
may behave very differently from fundamental solitons and may 
not describe the nonlinear superposition of two fundamental soli-
tons.

(2) ζ1, ζ2 /∈ iR+ , and ζ̄1, ̄ζ2 /∈ iR− .
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This is an interesting case, where all four eigenvalues are non-
imaginary. Then due to the eigenvalue symmetry of (ζ, −ζ ∗), we 
must have ζ2 = −ζ ∗

1 , and ζ̄2 = −ζ̄ ∗
1 , which make up an eigen-

value quartet. This eigenvalue configuration has been suggested 
in [12], but the corresponding solitons have not been studied. 
Unlike case (1) above, these eigenvalues cannot be split into 
groups of imaginary-eigenvalue pairs of fundamental solitons; thus 
they generate a different type of solitons. We find that when 
Im(ζ1 + ζ̄1) �= 0, these solitons generally collapse repeatedly at 
pairs of spatial locations which are symmetric with respect to 
x = 0. In addition, they move in two opposite directions as they 
collapse, which contrasts the stationary fundamental soliton in 
Fig. 1 and the stationary two-soliton in the top row of Fig. 2. To 
demonstrate, we take parameters as

ζ1 = −ζ ∗
2 = 0.7 + i, ζ̄1 = −ζ̄ ∗

2 = 0.6 − 0.5i, (4.8)

b1 = 1 + i, b̄1 = 1 − 0.5i, (4.9)

and the corresponding solution is plotted in the middle row of 
Fig. 2. Notice that in addition to moving and collapsing, another 
interesting feature of this soliton is that its amplitudes also change 
as it moves. Specifically, the amplitude of the right-moving wave 
decreases exponentially with time, while the amplitude of the left-
moving wave increases exponentially with time. This exponential 
increase or decrease of amplitudes is due to Re(ζ1) �= Re(ζ̄1). If 
Re(ζ1) = Re(ζ̄1), then this exponential change of amplitudes will 
disappear. Interestingly, the connections between eigenvalue rela-
tions (i.e., Im(ζ1 + ζ̄1) or Re(ζ1 − ζ̄1) being zero or not) and the 
two-soliton’s collapsing or exponential change of amplitudes here 
are very similar to those in fundamental solitons of the reverse-
space–time NLS equation, see the beginning of section 6.

(3) ζ1, ζ2 /∈ iR+ , and ζ̄1, ̄ζ2 ∈ iR− .

This is an even more interesting configuration, where the two 
eigenvalues in the upper half plane are non-imaginary, but the 
two eigenvalues in the lower half plane are imaginary. Due to the 
eigenvalue symmetry of (ζ, −ζ ∗), the upper two non-imaginary 
eigenvalues must be related as ζ2 = −ζ ∗

1 . This eigenvalue config-
uration has not been mentioned or reported before. Here again, 
the four eigenvalues cannot be split into groups of imaginary-
eigenvalue pairs of fundamental solitons, and they create a new 
type of two-solitons which differ from those in cases (1) and (2). 
To illustrate the dynamics of these new solitons, we choose param-
eter values

ζ1 = −ζ ∗
2 = 0.3 + 1.2i, ζ̄1 = −0.4i, ζ̄2 = −i, (4.10)

b1 = 1 + i, θ̄1 = −π/4, θ̄2 = −π. (4.11)

This eigenvalue configuration and the corresponding two-soliton 
are presented in the bottom row of Fig. 2. This soliton features 
two waves traveling in opposite directions, plus another station-
ary wave in the middle (at x = 0). Both the traveling waves and 
the stationary wave collapse repeatedly over time. In addition, 
the amplitudes of the two traveling waves are changing, with the 
right-moving one decreasing with time and the left-moving one 
increasing with time. This two-soliton visually looks like a non-
linear superposition of a fundamental soliton as in Fig. 1, and a 
quartet-eigenvalue two-soliton as in the middle row of Fig. 2, even 
though its eigenvalue configuration does not suggest this visual ap-
pearance. We have also tested other choices of parameter values 
for this type of two-solitons and found that the solution patterns 
are largely similar to the one in the bottom row of Fig. 2, except 
that the periodic collapsing along the two traveling directions may 
disappear for certain choices of those parameters.
(4) ζ1, ζ2 ∈ iR+ , and ζ̄1, ̄ζ2 /∈ iR− .

The fourth eigenvalue configuration is the opposite of case (3), 
where the upper two C+ eigenvalues are purely imaginary, and the 
lower two C− eigenvalues are non-imaginary. Due to the eigen-
value symmetry of (ζ, −ζ ∗), the lower two non-imaginary eigen-
values are related as ζ̄2 = −ζ̄ ∗

1 . It is easy to check that solutions 
in this case can be linked to solutions of case (3). Specifically, 
suppose q4(x, t) is a solution of this case (4) with scattering data 
S ≡ {ζk, ̄ζk, vk0, ̄vk0, 1 ≤ k ≤ 2}, and q3(x, t) is a solution with scat-
tering data S∗ . Since the conjugated eigenvalues ζ̄ ∗

1 , ̄ζ ∗
2 are in C+

and non-imaginary, and ζ ∗
1 , ζ ∗

2 are in C− and imaginary, the solu-
tion q3(x, t) then belongs to case (3). It is easy to recognize that 
q4(x, t) = −q∗

3(−x, −t). Thus, solution behaviors in case (4) can be 
inferred from those of case (3) without the need of separate anal-
ysis.

4.3. Nonsingular and bounded two-solitons

The two-soliton solutions illustrated in Fig. 2 all repeatedly col-
lapse and develop singularities. It is important to recognize that 
many other two-solitons do not collapse at all and can also re-
main bounded for all time. The existence of regular two-soliton 
solutions in a nonlocal three-wave interaction system has been re-
ported in [22]. We will consider regular and bounded two-solitons 
in the reverse-space NLS equation (1.1) below.

For case (1) where all four eigenvalues are purely imaginary, we 
find that when ζ̄1 = −ζ1 and ζ̄2 = −ζ2, i.e., ζ̄k = ζ ∗

k (k = 1, 2), the 
soliton could be bounded for all time for a wide range of param-
eter values of θ1, θ2, θ̄1 and θ̄2. Indeed, we can show analytically 
that if θ̄1 = −θ1 and θ̄2 = −θ2 (where v̄k0 = v∗T

k0 ), the two-soliton 
is symmetric in x. Thus, this solution also satisfies the local NLS 
equation and is a NLS two-soliton, which is naturally bounded for 
all time. But if θ̄1 = −θ1 +π and θ̄2 = −θ2 +π (where v̄k0 = −v∗T

k0 ), 
the solution is singular for all time. For other θ1, θ2, θ̄1 and θ̄2 val-
ues, the solution can remain bounded for all time, or repeatedly 
collapse. As an example of a bounded solution, we choose param-
eter values

ζ1 = −ζ̄1 = i, ζ2 = −ζ̄2 = 2i, (4.12)

θ1 = 0, θ2 = π/2, θ̄1 = 0, θ̄2 = −π/3. (4.13)

The corresponding two-soliton is plotted in the top row of Fig. 3. 
This solution breathes periodically but does not collapse. In addi-
tion, it is asymmetric in x and thus only satisfies the nonlocal NLS 
equation (1.1) but not the local NLS equation.

For case (2) where the four complex eigenvalues form a 
(ζ1, −ζ ∗

1 , ̄ζ1, −ζ̄ ∗
1 ) quartet, we find that when Im(ζ1 + ζ̄1) = 0, the 

two-soliton does not collapse (i.e., is nonsingular) for a wide range 
of b1 and b̄1 values. As an example, we choose

ζ1 = −ζ ∗
2 = 0.7 + i, ζ̄1 = −ζ̄ ∗

2 = 0.6 − i, (4.14)

b1 = 1 + i, b̄1 = 1, (4.15)

and the corresponding soliton is shown in the middle row of Fig. 3. 
This soliton also features two waves moving in opposite directions 
(as in the middle row of Fig. 2), but remains regular and never 
collapses for all time. The two waves do become unbounded as 
t → ±∞ though, which is caused by Re(ζ1) �= Re(ζ̄1). If in addi-
tion, Re(ζ1) = Re(ζ̄1), so that ζ̄1 = ζ ∗

1 , then the soliton can become 
bounded for all time. To illustrate, we change ζ̄1 in (4.14) to ζ ∗

1 and 
keep the other parameters the same, i.e., we choose the following 
parameter values,
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Fig. 3. Three examples of bounded or nonsingular two-solitons in the reverse-space 
NLS equation (1.1). Parameters for these solitons (from top to bottom) are given 
in equations (4.12)–(4.13), (4.14)–(4.15), and (4.16)–(4.17), respectively. Left column: 
eigenvalue configurations; right column: solution graphs.

ζ1 = −ζ ∗
2 = 0.7 + i, ζ̄1 = −ζ̄ ∗

2 = 0.7 − i, (4.16)

b1 = 1 + i, b̄1 = 1, (4.17)

and the corresponding two-soliton is shown in the bottom row of 
Fig. 3. This solution describes the elastic collision of two solitary 
waves, where the solitary waves fully recover their initial ampli-
tudes and speeds after interaction. This behavior is very much like 
a two-soliton in the local NLS equation, even though the present 
solution is asymmetric in x and thus does not satisfy the local NLS 
equation. It is also noted that, unlike a two-soliton in the local NLS 
equation, each of the two solitary waves here does not satisfy the 
nonlocal reverse-space NLS equation (1.1). For other choices of pa-
rameter values, we can show analytically that when ζ̄1 = ζ ∗

1 and 
b̄1 = b∗

1, the resulting two-soliton is always bounded for all time 
(since it is symmetric in x and thus also satisfies the local NLS 
equation). If ζ̄1 = ζ ∗

1 but b̄1 �= b∗
1, the solution is often bounded 

(as in the bottom row of Fig. 3), but can also collapse for certain 
choices of b1 and b̄1 values.

For cases (3) and (4) with both non-imaginary and imaginary 
eigenvalues, we do not find nonsingular solutions.

From the above discussions, we see that two-solitons exhibit 
several new types of solutions which can repeatedly collapse or 
remain bounded, and their dynamics cannot be understood from 
the dynamics of fundamental solitons. Three- and higher-solitons 
can be studied similarly, and additional novel behaviors can be ex-
pected.

5. Dynamics of N-solitons in the reverse-time NLS equation

To obtain general N-solitons in the reverse-time NLS equa-
tion (1.2), we impose symmetry relations of discrete scattering data 
from Theorem 3.2 in the general N-soliton formulae (2.10). For a 
pair of discrete eigenvalues (ζk, ̄ζk) with ζk ∈ C+ and ζ̄k = −ζk ∈
Fig. 4. Two fundamental solitons (5.2) in the reverse-time NLS equation (1.2). The 
parameter values (ζ1, b1) are (0.1 + i, 1 +0.5i) in the upper row and (−0.2 +1.5i, 1)

in the lower row. Left column: eigenvalue configurations; right column: solution 
graphs.

C− , without loss of generality we scale the eigenvector vk0 of ζk

so that ak = 1 in (2.8). Then using Theorem 3.2, we get

vk0 = [1,bk]T , v̄k0 = [1,bk], (5.1)

where bk is a complex constant. This N-soliton has 2N free com-
plex constants, {ζk, bk, 1 ≤ k ≤ N}, with ζk ∈C+ .

The fundamental soliton is obtained when we set N = 1. In this 
case, simple algebra gives the analytical expression of this funda-
mental soliton as

q(x, t) = −4iζ1b1
e−4iζ 2

1 t

e−2iζ1x + b2
1e2iζ1x

, (5.2)

where ζ1 and b1 are free complex constants with ζ1 ∈ C+ . This 
soliton does not move nor collapse. In addition, its amplitude 
grows or decays exponentially when ζ1 is non-imaginary (it would 
grow/decay when ζ1 is in the first/second quadrant of the com-
plex plane C). For two sets of parameter values, (ζ1, b1) = (0.1 + i,
1 + 0.5i) and (−0.2 + 1.5i, 1), the graphs of this soliton are illus-
trated in Fig. 4.

Two-solitons can be obtained from (2.10) under the above 
scattering-data relations. Surprisingly, even though the fundamen-
tal solitons never collapse, the two-solitons would collapse repeat-
edly if at least one of ζ1 and ζ2 is non-imaginary, and Im(ζ1) �=
Im(ζ2). In addition, even though the fundamental solitons are sta-
tionary, the two-solitons would move in two opposite directions 
if ζ1 and ζ2 are not both purely imaginary. As an example, we 
choose parameter values as those in the two fundamental solitons 
of Fig. 4, i.e.,

ζ1 = 0.1 + i, ζ2 = −0.2 + 1.5i, b1 = 1 + 0.5i, b2 = 1, (5.3)

and the corresponding two-soliton is plotted in Fig. 5. Its repeated 
collapsing and two-way motion can be seen. Meanwhile, along the 
directions of motion, the wave amplitudes also decrease over time.

One may notice that the eigenvalue configuration of this two-
soliton can be split into pairs of eigenvalues of fundamental soli-
tons in Fig. 4, but its dynamics is totally different from that of 
the fundamental solitons. Thus, dynamics of two-solitons in the 
reverse-time NLS equation (1.2) is not a nonlinear superposition of 
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Fig. 5. A collapsing two-soliton in the reverse-time NLS equation (1.2). The param-
eter values are given in Eq. (5.3). Left panel: eigenvalue configuration; right panel: 
solution graph.

Fig. 6. Nonsingular and bounded two-solitons in the reverse-time NLS equation (1.2). 
Parameters for these solitons (from top to bottom) are given in equations (5.4) and 
(5.5). Left column: eigenvalue configurations; right column: solution graphs.

two fundamental solitons and cannot be predicted from the dy-
namics of fundamental solitons. This is similar to two-solitons in 
the reverse-space NLS equation (1.1), see Figs. 1–3.

Nonsingular and bounded two-solitons also exist for a wide 
range of parameter values. If Im(ζ1) = Im(ζ2), then we find that 
the solitons often do not collapse. Such an example, with parame-
ter choices

ζ1 = 0.1 + i, ζ2 = −0.15 + i, b1 = 1 + 0.5i, b2 = 1, (5.4)

is shown in the upper row of Fig. 6. This solution is regular, 
and its amplitudes decay exponentially over time. If in addition, 
Re(ζ1 + ζ2) = 0, so that ζ2 = −ζ ∗

1 , then the amplitudes would 
no longer decay, and a solution bounded for all time could be 
obtained. Indeed, we find that when ζ2 = −ζ ∗

1 , the solution is 
bounded for almost all choices of b1 and b2 values. As an example, 
we change the above ζ2 value to −ζ ∗

1 , i.e.,

ζ1 = 0.1 + i, ζ2 = −0.1 + i, b1 = 1 + 0.5i, b2 = 1. (5.5)

The resulting two-soliton is plotted in the lower row of Fig. 6. This 
solution describes the elastic collision of two solitary waves and 
is bounded for all time, but each solitary wave itself is not a fun-
damental soliton since a fundamental soliton here does not move 
[see Eq. (5.2)].

Bounded two-solitons can also be obtained when ζ1 and ζ2 are 
both purely imaginary, and b1, b2 take certain ranges of complex 
values. For instance, the solution is bounded when ζ1 = i, ζ2 = 1.5i, 
b1 = b2 = 1.
6. Dynamics of N-solitons in the reverse-space–time NLS 
equation

To obtain general N-solitons in the reverse-space–time NLS 
equation (1.3), we impose symmetry relations of discrete scattering 
data from Theorem 3.3 in the general N-soliton formulae (2.10). 
Specifically, we let

vk0 = [1,ωk]T , v̄k0 = [1, ω̄k] , (6.1)

where ωk = ±1, and ω̄k = ±1. This N-soliton has 2N free com-
plex constants, {ζk, ̄ζk, 1 ≤ k ≤ N}, with ζk ∈ C+ and ζ̄k ∈ C− . In 
addition, each of ωk and ω̄k has two choices between ±1.

6.1. Fundamental solitons

For the fundamental soliton, we take N = 1. In this case, the 
analytical expression of this fundamental soliton is

q(x, t) = 2i(ζ̄1 − ζ1)
ω̄1e−2iζ̄1x−4iζ̄ 2

1 t

1 + ω1ω̄1e−2i(ζ̄1−ζ1)x−4i(ζ̄ 2
1 −ζ 2

1 )t
, (6.2)

where ω1 = ±1, ω̄1 = ±1, and ζ1 ∈C+ , ζ̄1 ∈ C− are free. This soli-
ton moves at velocity V = −2Im(ζ̄ 2

1 − ζ 2
1 )/Im(ζ̄1 − ζ1). On the line 

x = V t , its amplitude |q| changes as

|q(t)| = 2|ζ̄1 − ζ1| eβt

1 + ω1ω̄1eiγ t
, (6.3)

where

β = 2V Im(ζ̄1) + 4Im(ζ̄ 2
1 ), (6.4)

γ = −2V Re(ζ̄1 − ζ1) − 4Re(ζ̄ 2
1 − ζ 2

1 ). (6.5)

The expressions for β and γ can be written more explicitly as

β = −8
Im(ζ1) Im(ζ̄1)Re(ζ1 − ζ̄1)

Im(ζ1 − ζ̄1)
, (6.6)

γ = −4|ζ1 − ζ̄1|2 Im(ζ1 + ζ̄1)

Im(ζ1 − ζ̄1)
. (6.7)

Thus, when γ �= 0, i.e., Im(ζ1 + ζ̄1) �= 0, this soliton periodically 
collapses with period 2π/|γ |. When β �= 0, i.e., Re(ζ1 − ζ̄1) �= 0, its 
amplitude grows or decays exponentially (depending on the sign 
of β). For the two sets of parameters

ζ1 = −0.3 + 0.9i, ζ̄1 = −0.2 − 0.4i, ω1 = ω̄1 = 1, (6.8)

and

ζ1 = 0.4 + 0.9i, ζ̄1 = 0.3 − 0.6i, ω1 = 1, ω̄1 = −1, (6.9)

graphs of the two fundamental solitons are displayed in the up-
per and lower rows of Fig. 7 respectively. In the former case, 
the soliton moves at velocity V ≈ 1.0769 (to the right). Along 
the line x = V t , |q| decreases exponentially at the rate of eβt

with β ≈ −0.2215, and collapses repeatedly with collapsing period 
2π/|γ | ≈ 2.4024. In the latter case, the soliton moves at veloc-
ity V = −1.44 (to the left). Along the line x = V t , |q| increases 
exponentially at the rate of eβt with β = 0.288, and collapses re-
peatedly with collapsing period 2π/|γ | ≈ 3.4752.

If Im(ζ1 + ζ̄1) = 0, where γ = 0, then the above fundamental 
soliton will be regular (non-collapsing) when ω1ω̄1 = 1. If in ad-
dition, Re(ζ1) = Re(ζ̄1), where β = 0, then this soliton will have 
constant amplitude for all time, similar to fundamental solitons in 
the local NLS equation.
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Fig. 7. Two fundamental solitons (6.2) in the reverse-space–time NLS equation (1.3). 
The parameter values for the upper and lower rows are given in Eqs. (6.8) and (6.9)
respectively. Left column: eigenvalue configurations; right column: solution graphs.

Fig. 8. A collapsing two-soliton in the reverse-space–time NLS equation (1.3). The 
parameter values are given in Eqs. (6.10)–(6.11). Left panel: eigenvalue configura-
tion; right panel: solution graph.

6.2. Two-solitons

To get two-soliton solutions, we take N = 2 in the for-
mula (2.10). Using the same parameters as in the two fundamental 
solitons of Fig. 7, i.e.,

ζ1 = −0.3 + 0.9i, ζ̄1 = −0.2 − 0.4i, ω1 = ω̄1 = 1, (6.10)

ζ2 = 0.4 + 0.9i, ζ̄2 = 0.3 − 0.6i, ω2 = 1, ω̄2 = −1, (6.11)

the corresponding two-soliton is plotted in Fig. 8. This two-soliton 
moves in two directions, and collapses repeatedly as it moves. The 
amplitudes of the two moving waves change with time as well. 
When compared to the two fundamental solitons in Fig. 7, we 
see that this two-soliton does describe the nonlinear superposition 
between those two fundamental solitons, as the eigenvalue config-
uration of this two-soliton suggests (this eigenvalue configuration 
can be split into two groups corresponding to the eigenvalue con-
figurations of the two fundamental solitons in Fig. 7). Thus, the 
reverse-space–time NLS equation (1.3) is the only nonlocal equa-
tion in this paper where a two-soliton is indeed a nonlinear super-
position of two fundamental solitons.

The example shown in Fig. 8 is a repeatedly collapsing two-
soliton. As with fundamental solitons in the previous subsec-
tion, nonsingular and bounded two-solitons exist as well under 
certain conditions of the soliton parameters. Specifically, when 
Im(ζk + ζ̄k) = 0 and ωkω̄k = 1 (k = 1, 2), the two-solitons will not 
collapse. If in addition, Re(ζk) = Re(ζ̄k) (k = 1, 2), so that ζ̄k = ζ ∗

k , 
then the two-solitons will be bounded for all time. Notice that 
these conditions are the same as the conditions for individual 
Fig. 9. Nonsingular and bounded two-solitons in the reverse-space–time NLS equa-
tion (1.3). The parameter values for the upper and lower rows are given in 
Eqs. (6.12)–(6.13) and (6.14)–(6.15) respectively. Left column: eigenvalue configu-
rations; right column: solution graphs.

fundamental solitons to be regular and bounded. This is not sur-
prising, since in the reverse-space–time NLS equation (1.3), a two-
soliton is indeed a nonlinear superposition of two fundamental 
solitons, as we have mentioned earlier. As examples, we choose 
two sets of parameter values,

ζ1 = −0.3 + 0.9i, ζ̄1 = −0.3 − 0.9i, ω1 = ω̄1 = 1, (6.12)

ζ2 = 0.2 + 0.6i, ζ̄2 = 0.27 − 0.6i, ω2 = ω̄2 = 1, (6.13)

and

ζ1 = −0.3 + 0.9i, ζ̄1 = −0.3 − 0.9i, ω1 = ω̄1 = 1, (6.14)

ζ2 = 0.2 + 0.6i, ζ̄2 = 0.2 − 0.6i, ω2 = ω̄2 = 1, (6.15)

and the resulting two-solitons are displayed in the upper and 
lower rows of Fig. 9 respectively. For the first set of parameters 
where Im(ζk + ζ̄k) = 0 and ωkω̄k = 1 (k = 1, 2), the two-soliton 
does not collapse. Its right-moving wave does not decay in ampli-
tude while its left-moving wave does, because Re(ζ1) = Re(ζ̄1) but 
Re(ζ2) �= Re(ζ̄2). For the second set of parameters where ζ̄k = ζ ∗

k
(k = 1, 2), the two-soliton describes an elastic collision between 
two fundamental solitons and is bounded for all time.

7. Summary and discussion

In this article, we have derived general N-solitons in the 
reverse-space, reverse-time, and reverse-space–time nonlinear 
Schrödinger equations (1.1)–(1.3) from the Riemann–Hilbert so-
lutions of the AKNS hierarchy. We have shown that symmetry 
relations of the scattering data in these nonlocal equations differ 
greatly from those of the local NLS equation, which lead to dramat-
ically different solution behaviors in these nonlocal equations. We 
have found that solutions of these nonlocal equations often col-
lapse repeatedly, but can remain bounded or nonsingular for wide 
ranges of soliton parameters. In addition, we have revealed that 
multi-solitons often do not describe a nonlinear superposition of 
fundamental solitons, and they can exhibit distinctive solution pat-
terns which have not been seen before. These findings reveal the 
novel and rich soliton structures in the three nonlocal NLS equa-
tions (1.1)–(1.3), and they invite further investigations of solitons 
and multi-solitons in the other nonlocal equations.

The new symmetry properties of scattering data in these non-
local equations also help resolve some open questions left over 



J. Yang / Physics Letters A 383 (2019) 328–337 337
in previous Riemann–Hilbert derivations of solitons. In that treat-
ment, it was always assumed that the numbers of eigenvalues 
(known as zeros of the Riemann–Hilbert problem) in the upper 
and lower complex planes, counting multiplicity, were equal to 
each other [2,5,41]. A natural open question was: what would hap-
pen if the numbers of eigenvalues in C+ and C− are not equal 
to each other? This question could not be addressed in the lo-
cal (focusing) NLS equation, because in that case, eigenvalues al-
ways appear as conjugate pairs and thus always come in equal 
numbers in C+ and C− [1–5]. However, in the reverse-space NLS 
equation (1.1) and reverse-space–time NLS equation (1.3), eigen-
values in C+ and C− are totally independent (see Theorems 3.1
and 3.3). As a consequence, it is now possible for eigenvalues 
in C+ and C− to appear in unequal numbers. To address this 
question, let us consider the simplest case in the reverse-space 
NLS equation (1.1), where there is a single pair of purely imaginary 
eigenvalues (ζ1, ̄ζ1), but now both in C+ . It is easy to verify that 
the previous fundamental soliton (4.3) still satisfies the reverse-
space NLS equation (1.1) even though both ζ1 and ζ̄1 are in iR+ . 
But in this case, this “fundamental soliton” is unbounded in space 
for all times, because it grows exponentially in either the posi-
tive or negative x directions. This example tells us that, when the 
Riemann–Hilbert problem has unequal numbers of zeros (eigen-
values) in the upper and lower complex planes, it would produce 
solutions which are unbounded in space (thus never solitons).
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