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Abstract

In this Letter, we report two new discoveries in vector-soliton collisions of the nonintegrable coupled nonlinear Schrödinger
equations. The first discovery is that, at low cross-phase-modulational coefficients, a sequence of reflection windows similar to
that in theφ4 model appears in the collision of two orthogonally polarized and equal-amplitude solitons. This window sequence
is caused by a resonance between the translational motion and width oscillations of vector solitons. Analytically, we explain
these collision behaviors by a variational model which qualitatively reproduces this window sequence. The second discovery is
that, when initial solitons are not orthogonally polarized, their collision can generate a different sequence of reflection windows.
This window sequence is induced by the collision’s dependence on solitons’ phase differences. Our analytical formula for the
locations of these phase-induced windows agrees well with our numerics. To our knowledge, this is the first report ofphase-
induced window sequences in solitary-wave collisions in the literature. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Collision of vector solitons in the coupled nonlinear
Schrödinger (NLS) equations arises in many impor-
tant physical situations. Examples include pulse prop-
agation in birefringent fibers and wavelength-division-
multiplexed systems [1,2], operation of optical logic
gates [3], and beam steering in Kerr or photo-refractive
crystals [4–6]. Theoretically, vector-soliton collisions
have been studied intensively in the past ten years.
It has been shown that soliton transmission, reflec-
tion, trapping and spiraling can all occur [6,7]. More
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surprisingly, a fractal structure has been found where
transmission, reflection and trapping occur in an in-
tertwined, fractal manner [8]. In this Letter, we report
yet two new discoveries on vector-soliton collisions.
The first one is that, at low cross-phase-modulational
(XPM) coefficients, a sequence of reflection windows
similar to that in theφ4 model appears in the collision
of two orthogonally polarized and equal-amplitude
solitons. We will show that this window sequence is
caused by a resonance between the translational mo-
tion and width oscillations of vector solitons. Its re-
appearance in our model suggests its “universality”
in solitary-wave collisions. Recalling the fractal struc-
ture at moderate XPM coefficients in the same sys-
tem [8], we see that this window sequence in the cou-
pled NLS equations can bifurcate into more compli-
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cated resonance structures by tuning the XPM coeffi-
cient. The second discovery is that, when initial soli-
tons are not orthogonally polarized, their collision can
generate a different sequence of reflection windows.
We will show that this window sequence is induced by
the collision’s dependence on the two solitons’ phase
differences. The existence of this phase-induced win-
dow sequence in solitary-wave collisions is very novel,
and does not appear to have been reported before in the
literature.

2. Collision of orthogonally polarized solitons at
small XPM coefficients

We cast the coupled NLS equations in the birefrin-
gent fiber context as [1,2]

(1)iAz +Att +
(|A|2 + β|B|2)A= 0,

(2)iBz +Btt +
(|B|2 + β|A|2)B = 0,

whereA andB are envelopes of the electrical fields
in the two orthogonal polarizations of the fiber,t
is the retarded time,z is the propagation distance,
and β is the XPM coefficient. All variables have
been nondimensionalized. Whenβ = 0, the system is
decoupled into two NLS equations; whenβ = 1, the
system is called the Manakov model. Both cases are
integrable [7,9]. The system is nonintegrable for other
β values.

In this section, we study the collision of two orthog-
onally polarized and equal-amplitude solitons at small
but nonzero XPM coefficientβ . For this purpose, we
takeβ = 0.2, and the initial condition as

(3)A(t,0)= √
2sech

(
t + 1

2
∆0

)
e(1/4)iV0t ,

(4)B(t,0)= √
2sech

(
t − 1

2
∆0

)
e−(1/4)iV0t .

HereV0 (> 0) is the collision velocity, and∆0 (�
1) is the initial pulse separation. Note that in this
case, the collision outcome is independent of the
initial separation∆0 as long as∆0 is large enough.
In our numerical simulations, we take∆0 = 20. We
simulated Eqs. (1) and (2) by a split-step method. We
also checked its results independently by a Fourier/
Runge–Kutta 4 method.

Our numerical simulations reveal that, at high colli-
sion velocities, solitons (3) and (4) pass through each
other, and small shadows are created. At low collision
velocities, these solitons trap each other and form a
bound state. At certain windows of moderate collision
velocities, the solitons are reflected back. In each col-
lision, some radiation is emitted as well. We define the
exit velocityV of a transmissional or reflectional colli-
sion as the relative separation velocity of the exit soli-
tons. For transmissional collision,V is positive. For
reflectional collision,V is negative. In a trapping col-
lision, we simply assignV as zero. Numerically, we
have determined the exit velocities (by tracking the
positions of|A| and |B|’s maximum values) at vari-
ous collision velocities. The results are displayed in
Fig. 1(a). A very interesting phenomenon in this figure
is the appearance of a large number of reflection win-
dows converging to a critical velocityVc = 0.93563.
Here the critical velocity is the smallest collision ve-
locity above which all collisions are transmissional. In
these reflection windows, solitons (3) and (4) always
pass each other only twice: the first pass occurs when
they come together, and the second pass occurs when
they escape from each other. But the distance between
these two passes varies from one window to another.
In addition, solitons between passes show a significant
amount of width and amplitude oscillations. To illus-
trate, we pick the bottom pointV0 = 0.9214 of the sec-
ond reflection window in Fig. 1(a), and plot the|A|
contour of the collision in Fig. 1(b) (the|B| contour is
just a horizontal reflection of the|A| contour about the
t = 0 axis). Collisions in other reflection windows are
similar, except that the numbers of width oscillations
between passes increases consecutively from one win-
dow to the next. If we define the collision distanceZn
as the distance between two passes when the collision
velocity is at the bottom of thenth window, then we
find thatZn is almost a perfect linear function of the
window indexn as

(5)ωZn = 2nπ + δ,

where the least-square linear fit givesω = 0.7976 and
δ = 0.9764. Hereω is the width oscillation frequency
of solitons between passes. We also find that the
locations of these reflection windows are very well ap-
proximated by the formula

(6)
(
V 2
c − V 2

n

)−1/2 = µn+ θ,
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Fig. 1. Collision results forβ = 0.2: (a) exit velocity graph; (b)|A| contour atV0 = 0.9214 (bottom of the second window in (a)).

whereVn is the center position of thenth window,Vc
is the critical velocity mentioned above, and the least-
square linear fit givesµ= 2.0588 andθ = 0.0375.

The exit velocity graph 1(a) and relations (5) and (6)
are very similar to those of kink-antikink collisions in
theφ4-type models [10]. Even though vector solitons
are localized entities, while kinks and antikinks are
not, these similarities are remarkable. They suggest
that reflection windows ofφ4 models are somewhat
“universal” in solitary-wave collisions. In theφ4-
type models, the window sequence was attributed
to a resonance between kink/antikink’s translational
motion and internal modes or impurity modes [10]. In
the present case, this window sequence is induced by a
resonance between the translational motion and width
oscillations of vector solitons, as Fig. 1(b) clearly
suggests. Specifically, when the collision distance is
multiples of the width oscillation period (2π/ω) plus
an offset parameter, energy stored in width oscillations
of solitons during the first pass is released back into
the translational motion of solitons during the second
pass, and reflectional collision is then obtained. Note
that width oscillations are caused by radiation modes,
not internal modes [11]. This is a minor difference
between resonance mechanisms in theφ4 and our sys-
tems.

To analytically explain the above collision results,
we employ a variational model with ansatz

A(t, z)= √
2a sech

(
t +∆/2

w

)

× exp

{
i

[
v

4

(
t + ∆

2

)

(7)+ b

2w

(
t + ∆

2

)2

+ σ

]}
,

B(t, z)= √
2a sech

(
t −∆/2

w

)

× exp

{
i

[
−v

4

(
t − ∆

2

)

(8)+ b

2w

(
t − ∆

2

)2

+ σ

]}
.

This ansatz was suggested by Fig. 1(b), and it incorpo-
rates soliton position (∆), velocity (v), amplitude (a),
width (w), chirp (b) and phase (σ ) variations through-
out collisions. We note that this same variational ap-
proach has been used by Ueda and Kath [12] in the
study of internal oscillations of vector solitons. Here
we apply it to the soliton-collision problem. Substi-
tuting the above ansatz into the Lagrangian form of
Eqs. (1) and (2), and variations with respect to each
of the soliton parameters taken, the following system
of ordinary differential equations (ODEs) will be de-
rived [12]:

(9)
d2∆

dz2
= 16Kβ

w2
F ′(α),

(10)
d2w

dz2
= 16

π2w2

{
1

w
−K − 3βK

[
αF(α)

]′
}
.
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Fig. 2. Collision results of the variational model forβ = 0.2: (a) exit velocity graph; (b)|A|-ansatz contour atV0 = 0.8352 (bottom of the
second window in (a)).

Here v = ∆′(z), b = w′(z)/2, F(α) = (α coshα −
sinhα)/sinh3α, α = ∆/w, andK = a2w = const.
Corresponding to the initial solitons (3) and (4), the
initial conditions for the above ODEs are

∆(0)= 20, ∆′(0)= V0,

(11)w(0)= 1, w′(0)= 0.

In addition,K = 1 andβ = 0.2. The exit velocityV of
the ODE model is thev(t) value after the collision has
completed and the solitons (7) and (8) have separated
far apart again [∆(t)� 1].

Our numerical simulations of the ODE model (9)
and (10) show that there is a critical velocityVc =
0.86338, above which all collisions are transmissional.
Below Vc, a sequence of two-pass reflection win-
dows appears, just like in the original partial differ-
ential equations (PDEs) (see Fig. 1(a)). This win-
dow sequence is shown in Fig. 2(a). At the bot-
tom V0 = 0.8352 of the second reflection window in
Fig. 2(a), the contour of the|A| ansatz (7) is shown in
Fig. 2(b). Obviously, this collision dynamics is qual-
itatively identical to that in Fig. 1(b). In other win-
dows of Fig. 2(a), collision contours are similar to
Fig. 2(a), except that numbers of width oscillations
change consecutively from one window to the next.
Collision distances at the bottoms of those reflection
windows in the ODE model also depend linearly on
window indexn in form (5) with a little different coef-
ficientsωv = 0.9993 andδv = 3.9494. Window loca-
tions in the ODE model are also well approximated by
Eq. (6) whileµv = 1.3234 andθv = 0.5496 now. The

above qualitative agreements indicate that our varia-
tional model has correctly captured the main collision
features of the PDE system. Since the key ingredient
of our variational ansatz is the inclusion of position
variation and width oscillations of solitons, the vari-
ational results thus reinforce our previous conclusion
that the mechanism for this window sequence is a res-
onance between the translational motion and width os-
cillations of solitons.

3. Collision of nonorthogonal vector solitons

In this section, we study the collision of two nonor-
thogonal vector solitons. For this purpose, we take the
initial condition as

A(t,0)= r1

(
t + ∆0

2

)
e(1/4)iV0t

(1)+ r2

(
t − ∆0

2

)
e−(1/4)iV0t ,

B(t,0)= r2

(
t + ∆0

2

)
e(1/4)iV0t

(2)+ r1

(
t − ∆0

2

)
e−(1/4)iV0t ,

where∆0 (� 1) is the initial vector-soliton separation,
V0 is the collision velocity, functions[r1(t), r2(t)]
are nondegenerate vector solitons with propagation
constants(ω2

1,ω
2
2), and they satisfy the ODE system

(3)r1t t −ω2
1r1 + (

r2
1 + βr2

2

)
r1 = 0,
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Fig. 3. Collision results for weakly nonorthogonal vector solitons atβ = 2/3. Parameters in the initial conditions (1) and (2) areω1 = 1,
ω2 = 0.78, and∆0 = 40. (a) The initial conditionsA(t,0) (solid) andB(t,0) (dashed); (b) the exit velocity graph; (c)|A| contour atV0 =
0.4781, center of the fourth reflection window in (b) (from the right); (d)(ω2

2 − ω2
1)∆0/Vn graph (circles), whereVn is the center position of

thenth reflection window in (b). The solid line is the least-square linear fit.

(4)r2t t −ω2
2r2 + (

r2
2 + βr2

1

)
r2 = 0.

For a detailed discussion of vector-soliton solutions
in this ODE system, see [13]. It is noted that colli-
sions of nonorthogonal vector solitons depend on ini-
tial phase differences between the two solitons. In our
initial conditions (1) and (2), we have set these phase
differences as zero for simplicity. This phase depen-
dence results in the collision’s dependence on initial
position separation∆0, no matter how large∆0 is.

We have carried out collision simulations of two
vector solitons (1) and (2) withβ = 2/3, initial sepa-
ration∆0 = 40, and propagation constants(ω1,ω2)=
(1,0.78) at various collision velocities. It is noted
thatβ = 2/3 is the XPM coefficient in linearly bire-
fringent fibers [1]. For these system parameters, the
initial vector solitons (1) and (2) are displayed in
Fig. 3(a). As we can see, each vector soliton here has

a wave-shadow structure, and the two vector solitons
are weakly nonorthogonal. In this case, the exit ve-
locity versus collision velocity graph is displayed in
Fig. 3(b). This graph is quite different from that in [8]
for the collision of two initially orthogonal vector soli-
tons at the same XPM coefficientβ . This indicates that
even a weak nonorthogonality has a significant effect
on the collision structure and dynamics.

The novel feature of Fig. 3(b) is the appearance
of a sequence of reflection windows on the left-hand
side of the graph. This window sequence is fundamen-
tally different from that in Fig. 1(a) on the geometri-
cal feature, dynamics and mechanism. Geometrically,
this window sequence converges toward the left. Dy-
namically, collisions in all these windows are simple
reflections. This is shown in Fig. 3(c) where the|A|
contour at the middle pointV0 = 0.4781 of the fourth
reflection window (from the right) is plotted. This sim-
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ple reflection is quite different from the two-pass col-
lision in Fig. 1(b). Collisions in other windows of this
sequence are nearly the same as Fig. 3(c).

What mechanism creates this sequence of reflec-
tion windows? Apparently, the mechanism here is not
the resonance as in Fig. 1(a). The similarity of colli-
sions in these windows offers the following answer. In
a moving vector soliton with positionξ0, velocity v,
propagation constants(ω2

1,ω
2
2), and phases(γ1, γ2),

theA andB components’ phases at the soliton cen-
ter are(ω2

1 + (1/4)v2)z + (1/2)vξ0 + γ1 and (ω2
2 +

(1/4)v2)z + (1/2)vξ0 + γ2, respectively [13]. Now
when the two vector solitons in the initial conditions
(1) and (2) move toward each other, their phase differ-
ences at soliton centers are(ω2

2 − ω2
1)z and−(ω2

2 −
ω2

1)z in theA andB components. We know that colli-
sions of nonorthogonal vector solitons depend on their
phase differences at the time of collision. With initial
separation∆0 and collision velocityV0, collision oc-
curs at distancez≈∆0/V0. Then phase differences of
soliton centers at collision are(ω2

2 − ω2
1)∆0/V0 and

−(ω2
2 − ω2

1)∆0/V0 in theA andB components. Our
key observation is that, at two collision velocities, if
the above phase differences at collision differ by a
multiple of 2π , then the collision outcomes should be
roughly the same. Mathematically, it means that at col-
lision velocitiesVn (n= 1,2, . . .) where

(5)
(ω2

2 −ω2
1)∆0

Vn
= τn+ φ,

slopeτ = 2π andφ is a constant, collision dynamics
should be similar. To check this formula, we have de-
termined the center pointsVn of those reflection win-
dows. When quantities(ω2

2 − ω2
1)∆0/Vn are plotted

in Fig. 3(d) versus window indexn (circles), we see
that the dependence is indeed linear! A least-square
linear fit (solid line in Fig. 3(d)) shows that the actual
slope isτ = 6.7525, which is rather close to the theo-
retical value 2π . These good agreements confirm that
this sequence of reflection windows is indeed caused
by the phase dependence of the collision as described
above. Furthermore, linear relation (5) does hold very
well. We emphasize that the phase-induced window
sequence in Fig. 3(b) is a new phenomenon asso-
ciated only with nonorthogonal vector-soliton colli-
sions. To our knowledge, such window sequences have
not been reported before in the literature. We also note
that these reflection windows are very wide, thus their

experimental verification is highly feasible. The sug-
gested experimental parameters for such verification
can be found in [1,8].

An important further question is how the window
sequences discovered in this Letter change as XPM
coefficientβ and polarizations of initial vector solitons
vary. This question is computation-intensive, and it
falls beyond the scope of the present Letter.

4. Conclusion

In summary, we have reported two new discoveries
on vector-soliton collisions in the nonintegrable cou-
pled NLS equations. The first one is a window se-
quence similar toφ4’s at low XPM coefficientβ . This
window sequence is caused by a resonance between
the translational motion and width oscillations of soli-
tons. Our variational model analytically explained
these collision results very well. The re-appearance of
this window sequence in the present system suggests
its “universality” in solitary-wave collisions. The sec-
ond discovery is a novel phase-induced window se-
quence in collisions of nonorthogonal vector solitons.
Our analytical formula for the locations of these win-
dows agrees well with the numerics. The experimental
verification of these results in optical fibers is highly
feasible.
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