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Stability of soliton families in one-dimensional nonlinear Schrödinger equations with non-parity-time 
(PT )-symmetric complex potentials is investigated numerically. It is shown that these solitons can 
be linearly stable in a wide range of parameter values both below and above phase transition. In 
addition, a pseudo-Hamiltonian–Hopf bifurcation is revealed, where pairs of purely-imaginary eigenvalues 
in the linear-stability spectra of solitons collide and bifurcate off the imaginary axis, creating oscillatory 
instability, which resembles Hamiltonian–Hopf bifurcations of solitons in Hamiltonian systems even 
though the present system is dissipative and non-Hamiltonian. The most important numerical finding is 
that, eigenvalues of linear-stability operators of these solitons appear in quartets (λ, −λ, λ∗, −λ∗), similar 
to conservative systems and PT -symmetric systems. This quartet eigenvalue symmetry is very surprising 
for non-PT -symmetric systems, and it has far-reaching consequences on the stability behaviors of 
solitons.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Parity-time (PT ) symmetry is currently at the forefront of 
research in physics and applied mathematics (see [1,2] for re-
views). This concept started out in quantum mechanics, where it 
was observed that complex potentials with parity-time symme-
try could still exhibit all-real spectra even though the underly-
ing Schrödinger operator is non-Hermitian [3]. Later, this concept 
spread to optics, where it was realized that optical waveguides 
with even refractive-index profiles and odd gain-loss distributions 
constitute PT -symmetric systems [4]. In this optical setting, PT
symmetry was observed for the first time [5–7]. In addition, it has 
been introduced into many other physical disciplines such as Bose–
Einstein condensates, electronic circuits and mechanical systems 
[8–13]. PT systems feature a unique property — phase transi-
tion, where the linear spectrum changes from all-real to partially-
complex when the system parameters cross a certain threshold [3,
4,14,15]. This phase transition has led to interesting applications 
such as single-mode PT lasers and unidirectional reflectionless 
optical devices [16–18]. A surprising property of PT systems is 
that, even though they are dissipative due to the gain and loss, 
they exhibit many properties of conservative systems, such as all-
real linear spectra and continuous families of stationary nonlinear 
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modes [3,4,9,14,15,19–26]. Thus, PT systems break the bound-
ary between conservative and dissipative systems and offer novel 
wave-guiding possibilities. In addition, PT systems make loss use-
ful, which is enlightening.

The downside of PT symmetry stems from the restrictive 
conditions set on the gain-loss profile, which must be odd. To 
overcome this restriction, non-PT -symmetric dissipative systems 
sharing the properties of PT -symmetric systems have been pur-
sued. For instance, wide classes of non-PT -symmetric potentials 
with all-real spectra were reported in [27–29,31,32]. In addition, 
it was discovered that in a certain class of such potentials with 
the form g2(x) + ig′(x), where g(x) is an arbitrary real function, 
solitons also appear as continuous families, which is very counter-
intuitive [31,33–35]. Furthermore, it was argued in [35] that po-
tentials of the form g2(x) + ig′(x) are the only one-dimensional 
(1D) non-PT -symmetric potentials which support soliton fami-
lies. However, stability properties of these soliton families are still 
largely unknown, except for some evolution simulations of per-
turbed simple-shaped solitons in a certain non-PT -symmetric po-
tential below a phase transition in [31], which suggest that those 
simple solitons could be stable.

In this paper, we systematically study the linear stability of 
various soliton families in 1D nonlinear Schrödinger (NLS) equa-
tions with non-PT -symmetric complex potentials both below 
and above phase transition. This study is performed by numeri-
cally computing the linear-stability spectra of these solitons. We 
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show that both simple-shaped and multi-humped soliton fam-
ilies can be linearly stable in a wide range of parameter val-
ues below and above a phase transition. In addition, a pseudo-
Hamiltonian–Hopf bifurcation is revealed, where pairs of purely-
imaginary eigenvalues in the linear-stability spectra of solitons 
collide and bifurcate off the imaginary axis, creating oscillatory 
instability, which resembles Hamiltonian–Hopf bifurcations of soli-
tons in Hamiltonian systems even though the present system is 
non-Hamiltonian. Our most important numerical finding is that, 
eigenvalues of the linear-stability operator of these solitons appear 
in quartets (λ, −λ, λ∗, −λ∗), similar to conservative systems and 
PT -symmetric systems. This quartet eigenvalue symmetry is very 
surprising for non-PT -symmetric dissipative systems, and its con-
sequences on the linear stability of these solitons are explained.

2. Preliminaries

The mathematical model we consider is the following NLS 
equation with an external potential

i�t + �xx + V (x)� + σ |�|2� = 0, (2.1)

where V (x) is a complex potential, and σ = ±1 is the sign of 
nonlinearity. This model governs nonlinear light propagation in an 
optical medium with gain and loss [4,36,37], as well as dynam-
ics of Bose–Einstein condensates in a double-well potential with 
atoms injected into one well and removed from the other well 
[11,12,38]. If the potential V (x) is real, Eq. (2.1) is conservative 
and Hamiltonian, and its properties have been investigated in nu-
merous articles for many decades [36,37]. If V (x) is complex but 
PT -symmetric, i.e., V ∗(x) = V (−x), where the superscript * rep-
resents complex conjugation, then this PT -symmetric system has 
been heavily studied in the last eight years [1,2]. If V (x) is complex 
and non-PT -symmetric, this equation is currently at the frontier 
of research. For non-PT -symmetric potentials of the form

V (x) = g2(x) + 2γ g(x) + ig′(x), (2.2)

where g(x) is a real asymmetric function and γ a real constant, 
the linear spectrum of the potential can be all-real, which is un-
usual [30–32]. Note that this form of the potential is equivalent to 
g2(x) + ig′(x) under a shift g(x) + γ → g(x) and a gauge trans-
formation to Eq. (2.1). It is used in this article since it is more 
convenient to induce a phase transition by varying the param-
eter γ while keeping the function g(x) fixed. A more impor-
tant phenomenon with the potential (2.2) is that, Eq. (2.1) un-
der this potential admits continuous families of solitons [31,34,
35]. This is surprising since, in typical dissipative systems, soli-
tons exist as isolated solutions with discrete power levels due to 
the requirement of balance between gain and loss [39]. Dissipa-
tive but PT -symmetric systems admit soliton families with con-
tinuous power levels, which is interesting [9,14,19–24]. However, 
the existence of such soliton families can be easily understood 
due to the PT symmetry, which assures the balancing of gain 
and loss for all PT -symmetric solitons [40]. Soliton families in 
non-PT -symmetric systems, on the other hand, are much less ob-
vious, and their existence has yet to be fully understood.

Solitons in Eq. (2.1) are of the form

�(x, t) = e−iμtψ(x), (2.3)

where μ is a real propagation constant, and ψ(x) is a localized 
function satisfying the equation

ψxx + μψ + V (x)ψ + σ |ψ |2ψ = 0. (2.4)

For the complex non-PT -symmetric potential (2.2), these solitons 
exist as continuous families, and they can be computed by vari-
ous numerical methods such as the squared-operator method and 
the Newton-conjugate-gradient method [36]. To study their linear 
stability, we perturb these solitons by infinitesimal normal modes,

�(x, t) = e−iμt
[
ψ(x) + f1(x)eλt + f ∗

2 (x)eλ∗t
]
, (2.5)

where | f1|, | f2| � |ψ |. Substituting this perturbation into Eq. (2.1)
and linearizing, we obtain a linear-stability eigenvalue problem

L

(
f1
f2

)
= λ

(
f1
f2

)
, (2.6)

where

L =
(

L11 L12
L∗

12 L∗
11

)
, (2.7)

and

L11 = i
[
∂xx + μ + V (x) + 2σ |ψ |2

]
, L12 = iσψ2.

This eigenvalue problem can be computed by the Fourier collo-
cation method (for the full spectrum) or the Newton-conjugate-
gradient method (for individual discrete eigenvalues) [36]. If eigen-
values with positive real parts exist, the soliton is linearly (spec-
trally) unstable; otherwise it is linearly (spectrally) stable.

Symmetry properties of the linear-stability operator L and its 
eigenvalues are important since they strongly influence the sta-
bility results. If the potential V (x) is real [i.e., when Eq. (2.1) is 
Hamiltonian], then L satisfies the following two symmetry rela-
tions,

L∗ = σ1Lσ−1
1 , (2.8)

L† = −σ3Lσ−1
3 , (2.9)

where the superscript † represents the Hermitian (conjugate trans-
pose) of a matrix operator, and

σ1 =
[

0 1
1 0

]
, σ3 =

[
1 0
0 −1

]

are the first and third Pauli spin matrices. The similarity relation 
(2.8) shows that L∗ and L share the same spectrum. Then, since 
the spectrum of L∗ is also the complex conjugate of the spec-
trum of L, we see that eigenvalues of L must come in conjugate 
pairs (λ, λ∗). The symmetry relation (2.9) shows that the spec-
trum of L† is negative of the spectrum of L. Since the spectrum 
of L† is also complex conjugate of the spectrum of L, eigenval-
ues of L then must come in pairs of (λ, −λ∗). Combining these 
two eigenvalue symmetries, we conclude that for real potentials 
(Hamiltonian systems), complex eigenvalues of L must come in 
quartets (λ, −λ, λ∗, −λ∗), which is a well-known fact. In the spe-
cial case when the eigenvalue λ is real or purely-imaginary, this 
quartet symmetry reduces to a pair symmetry (λ, −λ).

It is noted that in a real potential V (x), if the soliton ψ(x) is 
also real (which is generally the case), then L∗ = −L. Using this 
symmetry, instead of (2.9), one can also show that eigenvalues of L
come in pairs of (λ, −λ∗). However, for real potentials V in higher 
spatial dimensions, if the soliton ψ is complex (such as a vortex 
soliton), then the symmetry L∗ = −L would not hold, but (2.9) still 
does.

If the potential V (x) is complex but PT -symmetric, then the 
symmetry relation (2.8) persists, but the other relation (2.9) breaks 
down. In this case, if the soliton ψ(x) is also PT -symmetric, i.e., 
ψ∗(x) = ψ(−x), then another symmetry relation

L∗ = −PLP−1 (2.10)

is valid, where P is the parity operator, i.e., P f (x) ≡ f (−x). Uti-
lizing the two symmetry relations (2.8) and (2.10) and repeating 
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Fig. 1. (Color online.) The complex potential (2.2) with g(x) given in (2.11) and 
γ = 0 (left) and its linear spectrum (right).

the above arguments, we conclude that for PT -symmetric soli-
tons in PT -symmetric potentials, complex eigenvalues of L must 
also come in quartets (λ, −λ, λ∗, −λ∗). This fact has been pointed 
out in [41] although it may not be widely known.

If the potential V (x) is complex and non-PT -symmetric, the 
symmetry relation (2.8) still holds, but we cannot see any ad-
ditional symmetry for L. This suggests that in this case, com-
plex eigenvalues of L may only appear in conjugate pairs (λ, λ∗), 
but not in quartets. However, a remarkable discovery from our 
numerics in the later text is that for non-PT -symmetric po-
tentials of the form (2.2), eigenvalues of L still appear as quar-
tets (λ, −λ, λ∗, −λ∗), just as in Hamiltonian and PT -symmetric 
systems. This quartet eigenvalue symmetry has important conse-
quences on the stability of solitons, which will be described later 
in this article.

Our stability analysis will be performed by numerically comput-
ing the spectrum of the linear-stability operator L. This spectrum 
will be obtained by the Fourier-collocation method [36]. Discrete 
eigenvalues in this spectrum are further checked by the Newton-
conjugate-gradient method [36]. Both methods can yield eigenval-
ues with accuracy of 10−10 or higher. These linear-stability re-
sults will also be corroborated by direct evolution simulations of 
these solitons under initial random-noise perturbations using the 
pseudo-spectral method [36]. In our numerical examples, we take

g(x) = tanh 2(x + 2.5) − tanh(x − 2.5), (2.11)

which is an asymmetric single-hump function. For this choice of 
g(x), a phase transition occurs at γ = γc ≈ −0.1806, where the 
linear spectrum of the potential is all-real when γ > γc and be-
comes partially complex when γ < γc .

3. Linear stability of solitons below phase transition

First, we consider the linear stability of soliton families below 
phase transition. For this purpose, we take γ = 0. The resulting 
potential V (x) and its linear spectrum are displayed in Fig. 1. No-
tice that the real part of V (x) is not even, and its imaginary part 
not odd, thus this potential is non-PT -symmetric, but its spec-
trum is all-real. In addition, this spectrum contains three discrete 
eigenvalues,

μ1 ≈ −3.4484, μ2 ≈ −2.1899, μ3 ≈ −0.7044.

Continuous families of solitons can bifurcate out from each of 
these three discrete eigenvalues under either sign of nonlinear-
ity. We first consider the soliton family bifurcating from the first 
(lowest) eigenvalue μ = μ1 under focusing nonlinearity (σ = 1). 
Defining the power of a soliton as P = ∫ ∞

−∞ |ψ |2dx, the power 
curve of this soliton family is plotted in Fig. 2(a). At the marked 
point of this power curve (with μ = −5), the amplitude profile of 
the soliton is displayed in Fig. 2(b). It is seen that this amplitude 
profile is single-humped. Since this soliton family bifurcates from 
the lowest eigenvalue μ1, we call this family of solitons funda-
mental solitons. We have computed the linear-stability spectra for 
Fig. 2. (Color online.) (a) Power curve of fundamental solitons (bifurcating from the 
eigenvalue μ1) below phase transition under focusing nonlinearity. (b) Amplitude 
profile of the soliton at the marked point of the power curve. (c) Linear-stability 
spectrum for the soliton in (b). (d) Time evolution of the soliton in (b) under 1% 
random-noise perturbations.

these fundamental solitons, and found that their eigenvalues all lie 
on the imaginary axis. Thus, these fundamental solitons are lin-
early stable. As an example, the linear-stability spectrum for the 
soliton of Fig. 2(b) is shown in Fig. 2(c). This spectrum consists 
of three pairs of discrete non-zero eigenvalues and the continuous 
spectrum, all on the imaginary axis. Time evolution of this soli-
ton for 200 time units under initial 1% random noise perturbations 
is plotted in Fig. 2(d). It is seen that this soliton is robust against 
perturbations, consistent with its linear-stability result.

Next, we consider the soliton family bifurcating from the sec-
ond eigenvalue μ = μ2 under focusing nonlinearity. The power 
curve of this soliton family is displayed in Fig. 3(a). At the marked 
points ‘c, d’ of this power curve (with μ = −2.34 and −2.55
respectively), amplitude profiles of the solitons are shown in 
Fig. 3(b). These profiles are double-humped, indicating that this 
family of solitons are excited states. At low powers, these solitons 
are linearly stable. This is evidenced by the linear-stability spec-
trum shown in Fig. 3(c) for the lower-power soliton in Fig. 3(b), 
where all eigenvalues are purely imaginary. However, at higher 
powers, these excited-state solitons become linearly unstable. This 
can be seen from the linear-stability spectrum in Fig. 3(d) for the 
higher-power soliton in Fig. 3(b). In this spectrum, a quartet of 
complex eigenvalues appear, creating oscillatory instability. To cor-
roborate these linear-stability results, we have simulated the evo-
lutions of the two solitons in Fig. 3(b) under 1% random-noise per-
turbations, and the simulation results are displayed in Fig. 3(e, f). 
The panel (e) shows robust (stable) propagation, while the panel 
(f) shows the onset of oscillatory instability, consistent with the 
linear-stability results.

The change of linear stability in this family of excited-state soli-
tons occurs at μ = μc ≈ −2.440, where Pc ≈ 0.925. This instability 
arises when two pairs of imaginary eigenvalues bifurcate into a 
complex quartet. Below the critical power Pc , the stability spec-
trum of the soliton contains two pairs of imaginary eigenvalues 
(±iω1, ±iω2) [see Fig. 3(c)]. As the soliton’s power increases to Pc , 
eigenvalues ±iω1 and ±iω2 approach each other on the imagi-
nary axis. At the critical power Pc , these imaginary eigenvalues 
coalesce and form exceptional points with geometric multiplicity 
one and algebraic multiplicity two. Above the critical power Pc , 
these exceptional points bifurcate off the imaginary axis, creating 
a quartet of complex eigenvalues (and hence oscillatory instabil-
ity) [see Fig. 3(d)]. This instability mechanism is remarkably similar 
to Hamiltonian–Hopf bifurcations in Hamiltonian systems [such as 
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Fig. 3. (Color online.) (a) Power curve of excited-state solitons (bifurcating from 
the eigenvalue μ2) below phase transition under focusing nonlinearity (solid blue 
indicates stability, and dashed red indicates instability). (b) Amplitude profiles of 
solitons at the marked points ‘c, d’ of the power curve (lower for ‘c’ and upper 
for ‘d’). (c, d) Linear-stability spectra for the lower and upper solitons in panel (b) 
respectively. (e, f) Time evolutions of the lower and upper solitons in panel (b) un-
der 1% random-noise perturbations respectively.

when the potential V (x) in Eq. (2.1) is real] [42,43], even though 
the present system is non-Hamiltonian. Thus, we call this change 
of linear stability pseudo-Hamiltonian–Hopf bifurcation.

We note that pseudo-Hamiltonian–Hopf bifurcations can appear 
in PT -symmetric systems as well. This fact has not been re-
ported in the literature yet, but we have seen it in our numerics of 
PT -symmetric systems [such as in Eq. (2.1) with a PT -symmetric 
potential].

A remarkable feature in the above stability results is that, 
although Eq. (2.1) in our consideration is non-Hamiltonian and 
non-PT -symmetric, and the gain and loss in the system are rather 
large, stability behaviors of solitons in our system are analogous 
to those in Hamiltonian systems. Examples include the stability 
of fundamental solitons and pseudo-Hamiltonian–Hopf bifurcations 
of excited-state solitons [42–44]. However, differences in behaviors 
between our system and Hamiltonian systems also exist. For in-
stance, in our system, low-amplitude fundamental solitons can be 
linearly unstable, and pseudo-Hamiltonian–Hopf bifurcations can 
occur on fundamental solitons at higher powers. These phenom-
ena would not happen in Hamiltonian systems. These differences 
will be shown in the next section.

4. Linear stability of solitons above phase transition

Now we consider the stability of solitons above phase tran-
sition. For this purpose, we take γ = −0.3. The resulting po-
tential (2.2) is displayed in Fig. 4. Clearly, this potential is also 
non-PT -symmetric. When compared to the potential in Fig. 1, the 
real part of this potential is significantly lower, while its imagi-
nary part remains the same. The linear spectrum of this potential, 
displayed also in Fig. 4, shows the presence of a pair of complex 
eigenvalues, indicating that this potential is above phase transition. 
It is noted that for complex potentials of the form (2.2), com-
Fig. 4. (Color online.) The complex potential (2.2) with g(x) given in (2.11) and 
γ = −0.3 (left) and its linear spectrum (right).

Fig. 5. (Color online.) (a) Power curve of fundamental solitons (bifurcating from 
the eigenvalue μ1) above phase transition under focusing nonlinearity (solid blue 
indicates stability, and dashed red indicates instability). (b) Amplitude profiles of 
solitons at the marked points ‘c, d’ of the power curve (lower for ‘c’ and upper 
for ‘d’). (c, d) Linear-stability spectra for the lower and upper solitons in panel (b) 
respectively. (e, f) Real and imaginary parts of linear-stability eigenvalues λ versus 
the propagation constant μ (the continuous spectrum is shown in light blue).

plex eigenvalues in the linear spectrum of the potential appear as 
conjugate pairs (μ, μ∗) [32]. This eigenvalue symmetry is clearly 
visible in Fig. 4.

In addition to the pair of complex eigenvalues, the spectrum in 
Fig. 4 also contains two discrete real eigenvalues,

μ1 ≈ −2.2740, μ2 ≈ −1.0787.

From these real eigenvalues, soliton families can bifurcate out un-
der either sign of nonlinearity. Here, we consider the soliton family 
bifurcating from the lowest eigenvalue μ1 under focusing nonlin-
earity (σ = 1). The power curve of this soliton family is plotted 
in Fig. 5(a), and the solitons at the marked points ‘c, d’ of the 
power curve, with μ = −2.5 and −3.3 respectively, are shown in 
Fig. 5(b). These solitons have a single-hump amplitude profile, and 
are fundamental solitons due to their bifurcation from the lowest 
eigenvalue μ1.

At low powers, these solitons are linearly unstable because the 
underlying potential is above phase transition. This is evidenced in 
Fig. 5(c), where the linear-stability spectrum for the lower-power 
soliton in Fig. 5(b) is displayed. This instability is due to a quartet 
of complex eigenvalues (λ0, λ∗, −λ0, −λ∗), which are directly re-
0 0
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lated to the pair of complex eigenvalues in the linear spectrum of 
the potential in Fig. 4. However, at higher powers, these solitons 
become linearly stable. This is evidenced in Fig. 5(d), where the 
linear-stability spectrum for the higher-power soliton of Fig. 5(b) 
is plotted. All eigenvalues in this spectrum are on the imaginary 
axis, indicating this soliton is linearly stable. The change of stabil-
ity occurs at μ = μc ≈ −2.86, where Pc ≈ 1.74.

The reason for this stabilization of solitons at higher powers 
is that, as the power increases toward the critical power Pc , the 
quartet of complex eigenvalues (λ0, λ∗

0, −λ0, −λ∗
0) move toward 

the imaginary axis. At the critical power Pc , these complex eigen-
values collide on the imaginary axis and create a pair of excep-
tional points. Above the critical power, these exceptional points 
split along the imaginary axis and become two pairs of imaginary 
eigenvalues {±iω1, ±iω2}, thus the solitons become linearly stable. 
This stabilization process is more clearly depicted in Fig. 5(e, f), 
where the real and imaginary parts of the relevant linear-stability 
eigenvalues are plotted versus the propagation constant μ. This 
stabilization is a reverse pseudo-Hamiltonian–Hopf bifurcation as 
the power rises.

In this example, fundamental solitons at low powers are lin-
early unstable, and a reverse pseudo-Hamiltonian–Hopf bifurcation 
is seen. These phenomena will not occur in Hamiltonian systems, 
such as Eq. (2.1) with a real potential. In such Hamiltonian sys-
tems, fundamental solitons at low amplitudes are always linearly 
and nonlinearly stable because their Hamiltonian–Krein index is 
zero [44]. In addition, Hamiltonian–Hopf bifurcations cannot oc-
cur on fundamental solitons of any powers, because there are no 
imaginary eigenvalues with negative Krein signatures, but such 
imaginary eigenvalues are necessary for Hamiltonian–Hopf bifur-
cations [44].

5. Quartet eigenvalue symmetry and its consequences

The most surprising finding of the above stability analysis is 
that, linear-stability eigenvalues of solitons in non-PT -symmetric 
potentials (2.2) appear in quartets (λ, λ∗, −λ, −λ∗), i.e., if λ is 
an eigenvalue of the operator L, so are λ∗, −λ and −λ∗ . As we 
have pointed out in Sec. 2, in non-PT -symmetric potentials (2.2), 
linear-stability eigenvalues still appear in pairs (λ, λ∗), i.e., the 
spectrum is symmetric with respect to the real axis. But we cannot 
see another symmetry of the operator L which assures the appear-
ance of eigenvalues in (λ, −λ∗) pairs, i.e., the spectrum’s symmetry 
with respect to the imaginary axis. Because of this, we do not an-
ticipate the quartet eigenvalue symmetry in the spectrum of L. 
However, our numerical results in the earlier text show that these 
eigenvalues do come in quartets of (λ, λ∗, −λ, −λ∗), which is very 
remarkable.

The visual evidence of this quartet eigenvalue symmetry can 
already be seen in the stability spectra of Figs. 2, 3 and 5, where 
the spectra are always symmetric with respect to both the real and 
imaginary axes. Here, we establish this eigenvalue symmetry quan-
titatively. Since the (λ, λ∗) symmetry is already known, we focus 
on the (λ, −λ∗) symmetry below. To establish this latter symmetry, 
we first consider the two upper complex eigenvalues in Fig. 3(d). 
Numerical computations give these two eigenvalues (accurate to all 
twelve digits) as

λ1 = −0.08220738069... + 1.43969109965...i, (5.1)

λ2 = 0.08220738069... + 1.43969109965...i. (5.2)

Clearly, λ2 = −λ∗
1 to numerical accuracy. Using multi-precision 

computation, we have further checked that λ2 and −λ∗
1 match 

each other to many more digits. The eigenfunctions ( f1, f2) of 
these two eigenvalues are plotted in Fig. 6. Notice that these two 
Fig. 6. (Color online.) Eigenfunctions ( f1, f2) for the upper two complex eigenvalues 
in the spectrum of Fig. 3(d), with λ = λ1 in (a) and λ = λ2 in (b), where λ1,2 are 
given in (5.1)–(5.2). Solid blue lines are | f1| and dashed red lines | f2|.

eigenfunctions are not related to each other by any obvious sym-
metry. However, their eigenvalues are related as λ2 = −λ∗

1, which 
is quite intriguing.

As another example, we consider the two upper complex eigen-
values in the spectrum of Fig. 5(c). Numerical computations give 
these two eigenvalues (accurate to all twelve digits) as

λ1 = −0.12447936624... + 2.57218047717...i,

λ2 = 0.12447936624... + 2.57218047717...i.

Again, λ2 = −λ∗
1 to numerical accuracy.

We have examined the other eigenvalues in the spectra of 
Figs. 2, 3 and 5, and found them to lie exactly on the imaginary 
axis (to high numerical accuracy). Thus, these spectra are indeed 
symmetric with respect to both the real and imaginary axes, con-
firming the quartet eigenvalue symmetry of (λ, λ∗, −λ, −λ∗).

In addition to the stability spectra in Figs. 2, 3 and 5, we have 
examined the spectra of solitons in other non-PT -symmetric po-
tentials of the form (2.2), which are not included in this article. 
Those stability spectra respect the quartet eigenvalue symmetry as 
well.

This quartet eigenvalue symmetry in the linear-stability spec-
trum has far reaching consequences on the linear-stability behav-
iors of solitons. First, it assures the linear stability of low-power 
fundamental solitons (bifurcating from the lowest discrete eigen-
value of the potential) as long as the potential is below phase 
transition. This follows from the fact that a potential which is be-
low phase transition has all-real spectra and its discrete non-zero 
eigenvalues can be assumed to be all simple (which is the generic 
case). Then, in the limit of zero amplitude of fundamental solitons, 
the linear-stability spectrum (of operator L) is purely imaginary, 
and all discrete non-zero eigenvalues of L are simple. In addition, 
no discrete eigenvalues are embedded inside the continuous spec-
trum. When the amplitude of the soliton is non-zero but small, by 
virtue of the eigenvalue continuity and quartet eigenvalue symme-
try, the simple discrete imaginary eigenvalues of L cannot move off 
the imaginary axis. Meanwhile, the zero eigenvalue and the contin-
uous spectrum do not change. Thus, the spectrum remains on the 
imaginary axis, and low-amplitude fundamental solitons are lin-
early stable below phase transition. This analytically explains our 
numerical findings for low-power solitons in Fig. 2.

By a similar argument, we can also show that, in the pres-
ence of this quartet eigenvalue symmetry, low-power excited-state 
solitons (bifurcating from the higher discrete real eigenvalues μk
of the potential with k > 1) are also linearly stable if the po-
tential is below phase transition, and none of i(μk − μ j) ( j 	= k) 
is embedded inside the continuous spectrum of operator L when 
ψ(x) = 0. For the example in Fig. 3, the latter condition means 
|μ2 − μ j | < |μ2| ( j = 1, 3), which is satisfied. This analytically ex-
plains the linear stability of low-power excited-state solitons below 
phase transition in Fig. 3.

Another consequence of this quartet eigenvalue symmetry is 
that it makes pseudo-Hamiltonian–Hopf bifurcation possible in the 
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non-Hamiltonian system (2.1). If the linear-stability spectrum con-
tains two pairs of simple imaginary eigenvalues {±iω1, iω2} for a 
certain soliton, then when the propagation constant of the soliton 
continuously changes, these simple imaginary eigenvalues have to 
stay on the imaginary axis due to the quartet eigenvalue symme-
try. In this case, if these eigenvalues move toward each other and 
collide (ω1 → ω2), they could leave the imaginary axis and become 
a quartet of complex eigenvalues, creating a pseudo-Hamiltonian–
Hopf bifurcation. This is exactly what happens in Fig. 3 and Fig. 5.

One more consequence of this quartet eigenvalue symmetry is 
that it closely mimics that of solitons in Hamiltonian systems and 
of PT -symmetric solitons in PT -symmetric systems (see Sec. 2). 
This implies that non-PT -symmetric solitons in complex poten-
tials (2.2) are likely to share many stability properties of those 
other systems, as the results of this paper have shown.

6. Summary and discussion

In this paper, we have numerically analyzed the linear stability 
of soliton families in 1D NLS equations (2.1) with non-PT -sym-
metric complex potentials (2.2). We have shown that these solitons 
can be linearly stable in a wide range of parameter values both 
below and above phase transition. More importantly, we have dis-
covered that linear-stability eigenvalues of these solitons appear 
in quartets (λ, −λ, λ∗, −λ∗), similar to conservative systems and 
PT -symmetric systems. This quartet eigenvalue symmetry is very 
surprising for non-PT -symmetric systems, and it facilitates the 
existence of stable solitons and makes their pseudo-Hamiltonian–
Hopf bifurcation possible.

A question closely related to the subject of this paper is the 
linear stability of asymmetric solitons in PT -symmetric poten-
tials. Earlier work has shown that in PT -symmetric potentials of 
the same form (2.2) [where g(x) is now an even function], sym-
metry breaking of solitons can occur [45]. That is, from the base 
branch of PT -symmetric solitons, a branch of asymmetric solitons 
can bifurcate out. The linearization operator L of these asymmet-
ric solitons only admits the symmetry (2.8), as far as one can 
see, similar to the present case. This L symmetry only assures its 
eigenvalue symmetry of (λ, λ∗). However, our numerical studies 
(not shown in this article) have revealed that, their linear-stability 
eigenvalues also appear in quartets of (λ, −λ, λ∗, −λ∗), closely re-
sembling the findings in this article for non-PT -symmetric po-
tentials (2.2). This quartet eigenvalue symmetry for asymmetric 
solitons in PT -symmetric potentials (2.2) is equally surprising.

Another question closely related to the subject of this paper is 
the linear stability of two-dimensional solitons in non-PT -sym-
metric complex potentials. Earlier work has shown that in two-
dimensional non-PT -symmetric complex potentials of certain 
forms, continuous families of solitons can also bifurcate out from 
linear modes [41]. Our numerical studies (not included in this 
article) have found that linear-stability eigenvalues of those 2D 
solitons only possess the conjugate-pair symmetry of (λ, λ∗), but 
NOT the quartet symmetry of (λ, −λ, λ∗, −λ∗). This result echoes 
that for linear-stability eigenvalues of asymmetric solitons in 2D 
partially-PT -symmetric potentials [41]. These results indicate that 
the quartet eigenvalue symmetry depends on the spatial dimen-
sion of the problem.

Many questions are still open regarding the findings of this pa-
per. The most important question is why the quartet eigenvalue 
symmetry appears for linear-stability eigenvalues of solitons in 
non-PT -symmetric complex potentials (2.2). A related question 
is why this quartet eigenvalue symmetry also appears for asym-
metric solitons in PT -symmetric potentials (2.2). In both cases, 
the linear-stability operator L seems to only admit the symmetry 
(2.8). Whether this operator also admits another hidden symme-
try which assures the eigenvalue symmetry of (λ, −λ∗) is an open 
question. If such a hidden L symmetry cannot be found, then how 
to explain the quartet eigenvalue symmetry of L remains to be 
seen.

Another important open question concerns the nonlinear sta-
bility of solitons in non-PT -symmetric complex potentials (2.2). 
In this paper, our focus was the linear (spectral) stability of these 
solitons, and we showed that these solitons can be linearly stable 
in a wide range of parameter values. However, it is well known 
that solitons can be nonlinearly unstable even if they are linearly 
stable. For instance, in Hamiltonian systems, linearly-stable soli-
tons are nonlinearly unstable if their linear-stability spectrum con-
tains imaginary eigenvalues with negative Krein signatures [43,44,
46] (these modes with negative Krein signatures are often called 
negative-energy modes in the physics literature [47]). In our non-
Hamiltonian system (2.1), whether these linearly-stable solitons are 
nonlinearly stable or not is still an open question. One might think 
that robust evolution simulations of such solitons under random-
noise perturbations in Figs. 2(d) and 3(e) should indicate that those 
solitons are also nonlinearly stable. Such a conclusion is too hasty, 
since nonlinear instability is often slower and may take longer 
time to develop [43,46]. Regarding the issue of nonlinear stabil-
ity, we should add that this question is also open for solitons in 
PT -symmetric systems. A little progress has been made in this 
direction. In a linear Schrödinger equation with a PT -symmetric 
potential, which arises when considering the stability of the zero 
state in Eq. (2.1), a PT -Krein signature theory was developed 
recently [48]. This theory can be readily extended to the linear 
Schrödinger equation with a non-PT -symmetric potential of the 
form (2.2) [32,48]. Whether a similar theory can be developed for 
solitons in the non-Hamiltonian system (2.1) remains to be seen.
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