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Linear stability of solitary waves near transcritical bifurcations is analyzed for the generalized nonlinear
Schrödinger equations with arbitrary forms of nonlinearity and external potentials in arbitrary spatial
dimensions. Bifurcation of linear-stability eigenvalues associated with this transcritical bifurcation is
analytically calculated. Based on this eigenvalue bifurcation, it is shown that both solution branches
undergo stability switching at the transcritical bifurcation point. In addition, the two solution branches
have opposite linear stability. These analytical results are compared with the numerical results, and good
agreement is obtained.
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1. Introduction

The generalized nonlinear Schrödinger equations considered in
this Letter are a large class of Schrödinger-type equations which
contain arbitrary forms of nonlinearity and external potentials in
arbitrary spatial dimensions. This class of equations are physi-
cally important since they include theoretical models for nonlinear
light propagation in refractive-index-modulated optical media [1,2]
and for atomic interactions in Bose–Einstein condensates loaded in
magnetic or optical traps [3] as special cases. Given their physi-
cal importance, these equations have been heavily studied in the
physical and mathematical communities. These equations admit
a special but important class of solutions called solitary waves,
which are spatially localized and temporally stationary structures
of the system. These solitary waves exist for continuous ranges of
the propagation constant. At special values of the propagation con-
stant and under certain conditions, bifurcations of solitary waves
can occur. Indeed, various solitary wave bifurcations in these equa-
tions have been reported. Examples include saddle-node bifurca-
tions (also called fold bifurcations) [2,4–9], pitchfork bifurcations
(sometimes called symmetry-breaking bifurcations) [7,10–14], and
transcritical bifurcations [15]. These three types of bifurcations
have also been classified in [15], where analytical conditions for
their occurrence were derived.

Stability of solitary waves near these bifurcations is an im-
portant issue. In finite-dimensional dynamical systems, stability of
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fixed-point branches near these bifurcations is well known [16].
However, as was explained in [9,17], those stability results from
finite-dimensional dynamical systems cannot be extrapolated to
the generalized nonlinear Schrödinger equations, the reason being
primarily that the assumptions for the stability results in finite-
dimensional dynamical systems (see Ref. [16], Theorem 3.4.1, Hy-
pothesis SN1) are not met in the generalized nonlinear Schrödinger
equations. Thus this stability in the generalized nonlinear Schrö-
dinger equations has to be studied separately. For saddle-node
bifurcations of solitary waves, this stability question has been ana-
lyzed in [8,9]. It was shown that no stability switching takes place
at a saddle-node bifurcation, which is in stark contrast with finite-
dimensional dynamical systems where stability switching generally
takes place [16]. For pitchfork bifurcations of solitary waves, this
stability has been analyzed in [11,12,14,17]. It was shown that
this stability possesses novel features which have no counterparts
in finite-dimensional dynamical systems as well. For instance, the
base and bifurcated branches of solitary waves (on the same side
of a pitchfork bifurcation point) can be both stable or both unsta-
ble [14,17], which contrasts finite-dimensional dynamical systems
where the bifurcated fixed-point branches generally have the op-
posite stability of the base branch [16]. For transcritical bifurca-
tions of solitary waves, the stability question is still open at this
time.

In this Letter, we analyze linear stability of solitary waves near
transcritical bifurcations in the generalized nonlinear Schrödinger
equations in arbitrary spatial dimensions. Our strategy is to ana-
lytically calculate bifurcations of linear-stability eigenvalues from
the origin when the transcritical bifurcation occurs. Based on this
eigenvalue bifurcation and assuming no other instabilities interfere,
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Fig. 1. (Color online.) Schematic diagrams of a transcritical bifurcation: (a) solution-
bifurcation diagram (plotted is the deviation function u(x0;μ)− u0(x0) versus μ at
a representative x0 position); (b) power-bifurcation diagram. The same color repre-
sents the same solution branch.

linear stability of solitary waves near the transcritical bifurca-
tion point is then obtained. We show that both solution branches
undergo stability switching at the transcritical bifurcation point.
In addition, the two solution branches have opposite linear sta-
bility. These stability properties closely resemble those for trans-
critical bifurcations in finite-dimensional dynamical systems. Thus,
among the three major bifurcations (i.e., saddle-node, pitchfork
and transcritical bifurcations), the transcritical bifurcation is the
only one where stability properties in the generalized nonlinear
Schrödinger equations closely resemble those in finite-dimensional
dynamical systems. In the end, we also present a numerical exam-
ple which confirms our analytical predictions.

2. Stability results for transcritical bifurcations of solitary waves

We consider the generalized nonlinear Schrödinger (GNLS)
equations with arbitrary forms of nonlinearity and external po-
tentials in arbitrary spatial dimensions. These equations can be
written as

iUt + ∇2U + F
(|U |2,x

)
U = 0, (2.1)

where ∇2 = ∂2/∂x2
1 + ∂2/∂x2

2 +· · ·+ ∂2/∂x2
N is the Laplacian in the

N-dimensional space x = (x1, x2, . . . , xN ), and F (· , ·) is a general
real-valued function which includes nonlinearity as well as exter-
nal potentials. These GNLS equations include the Gross–Pitaevskii
equations in Bose–Einstein condensates [3] and nonlinear light-
transmission equations in linear potentials and nonlinear lattices
[1,2,18,19] as special cases. Notice that these equations are conser-
vative and Hamiltonian.

For a large class of nonlinearities and potentials, this equation
admits stationary solitary waves

U (x, t) = eiμt u(x), (2.2)

where u(x) is a real and localized function in the square-integrable
functional space which satisfies the equation

∇2u − μu + F
(
u2,x

)
u = 0, (2.3)

and μ is a real-valued propagation constant. In these solitary
waves, μ is a free parameter, and u(x) depends continuously on μ.
Under certain conditions, these solitary waves undergo bifurca-
tions at special values of μ. Three major types of bifurcations,
namely, saddle-node, pitchfork and transcritical bifurcations, have
been classified in [15]. In addition, linear stability of solitary waves
near saddle-node and pitchfork bifurcations has been determined
in [8,9,11,12,14,17]. In this Letter, we determine the linear stability
of solitary waves near transcritical bifurcations in the GNLS equa-
tions (2.1).

A transcritical bifurcation in the GNLS equations (2.1) is where
there are two smooth branches of solitary waves u±(x;μ) which
exist on both sides of the bifurcation point μ = μ0, and these
two branches cross each other at μ = μ0. A schematic solution-
bifurcation diagram of transcritical bifurcations is shown in
Fig. 1(a). Analytical conditions for transcritical bifurcations in
Eq. (2.1) were derived in [15]. To present these conditions, we
introduce the linearization operator of Eq. (2.3),

L1 = ∇2 − μ + ∂u
[

F
(
u2,x

)
u
]
, (2.4)

which is a linear Schrödinger operator. We also introduce the stan-
dard inner product of functions,

〈 f , g〉 =
∞∫

−∞
f ∗(x)g(x)dx,

where the superscript * represents complex conjugation. In addi-
tion, we define the power of a solitary wave u(x;μ) as

P (μ) = 〈u, u〉 =
∞∫

−∞
u2(x;μ)dx,

and denote the power functions of the two solitary-wave branches
as

P±(μ) ≡ 〈
u±(x;μ), u±(x;μ)

〉
.

If a bifurcation occurs at μ = μ0, by denoting the correspond-
ing solitary wave and the L1 operator as

u0(x) ≡ u(x;μ0), L10 ≡ L1|μ=μ0, u=u0 ,

then L10 should have a discrete zero eigenvalue. This is a necessary
condition for all bifurcations. In [15], the following sufficient condi-
tions for transcritical bifurcations were derived. In this derivation,
it was assumed implicitly that the function F (u2,x) is infinitely
differentiable with respect to u.

Theorem 1. Assume that zero is a simple discrete eigenvalue of L10 at
μ = μ0 . Denoting the real localized eigenfunction of this zero eigenvalue
as ψ(x), and denoting

G(u;x) ≡ F
(
u2;x

)
u, G2(x) ≡ ∂2

u G|u=u0 , (2.5)

then if

〈u0,ψ〉 = 0,
〈
G2,ψ

3〉 �= 0,

and

Δ ≡ 〈
1 − G2L−1

10 u0,ψ
2〉2

− 〈
G2,ψ

3〉〈G2
(
L−1

10 u0
)2 − 2L−1

10 u0,ψ
〉
> 0,

a transcritical bifurcation occurs at μ = μ0 .

Perturbation series for the two solution branches u±(x;μ) near
a transcritical bifurcation point were also derived in [15]. It was
found that

u±(x;μ) = u0(x) + (μ − μ0)u±
1 (x) + O

{
(μ − μ0)

2}, (2.6)

where

u±
1 = L−1

10 u0 + b±
1 ψ, (2.7)

and

b±
1 ≡ 〈1 − G2L−1

10 u0,ψ
2〉 ± √

Δ

〈G2,ψ3〉 . (2.8)

From these perturbation series solutions, power functions P±(μ)

near the bifurcation point can be calculated. In particular, one finds
that
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P ′+(μ0) = P ′−(μ0),

thus power curves P±(μ) of the two solution branches u±(x;μ)

have the same slope at the bifurcation point. Because of this, the
two power curves P±(μ) are tangentially touched at a transcritical
bifurcation. This feature of the power-bifurcation diagram is shown
schematically in Fig. 1(b). Notice that this power-bifurcation dia-
gram of the transcritical bifurcation looks quite different from the
solution-bifurcation diagram in Fig. 1(a).

The above conditions and power diagrams for transcritical bi-
furcations have been derived in [15], but the stability of solitary
waves near transcritical bifurcations has not been studied yet.

The goal of this Letter is to analytically determine the linear
stability of solitary waves near a transcritical bifurcation point.
To study this linear stability, we perturb the solitary waves by nor-
mal modes and obtain the following eigenvalue problem (see [2],
p. 176)

LΦ = λΦ, (2.9)

where

L = i

[
0 L0
L1 0

]
, Φ =

[
v
w

]
, (2.10)

L0 = ∇2 − μ + F
(
u2,x

)
, (2.11)

and L1 has been defined in Eq. (2.4). In the later text, operator
L will be called the linear-stability operator. If this linear-stability
eigenvalue problem admits eigenvalues λ whose real parts are pos-
itive, then the corresponding normal-mode perturbation exponen-
tially grows, hence the solitary wave u(x) is linearly unstable. Oth-
erwise it is linearly stable. Notice that eigenvalues of this linear-
stability problem always appear in quadruples (λ,−λ,λ∗,−λ∗)
when λ is complex, or in pairs (λ,−λ) when λ is real or purely
imaginary.

Using the operator L0, the solitary-wave equation (2.3) can be
written as

L0u = 0. (2.12)

In particular, when we denote L0 at the bifurcation point as

L00 ≡ L0|μ=μ0, u=u0 ,

then

L00u0 = 0, (2.13)

thus zero is a discrete eigenvalue of L00.
The main result of this Letter is the following theorem on

linear-stability eigenvalues of solitary waves near a transcritical bi-
furcation point.

Theorem 2. At a transcritical bifurcation point μ = μ0 in the GNLS
equation (2.1), suppose zero is a simple discrete eigenvalue of operators
L00 and L10 , and〈
ψ, L−1

00 ψ
〉 �= 0, P ′±(μ0) �= 0, (2.14)

where ψ is the real discrete eigenfunction of the zero eigenvalue in L10
(see Theorem 1), then a single pair of non-zero eigenvalues ±λ in the
linear-stability operator L bifurcate out along the real or imaginary axis
from the origin when μ �= μ0 . In addition, the bifurcated eigenvalues λ±
on the two solution branches u±(x;μ) are given asymptotically by(
λ±)2 → ∓γ (μ − μ0), μ → μ0, (2.15)

where the real constant γ is

γ =
√

Δ

〈ψ, L−1
00 ψ〉 . (2.16)
Fig. 2. (Color online.) Schematic diagrams of a transcritical bifurcation with stability
information indicated: (a) solution-stability diagram; (b) power-stability diagram.
The same color represents the same solution branch, and solid (dashed) lines are
stable (unstable).

A direct consequence of Theorem 2 is the following Theorem 3
which summarizes the qualitative linear-stability properties of soli-
tary waves near a transcritical bifurcation point.

Theorem 3. Suppose at a transcritical bifurcation point μ = μ0 , the
solitary wave u0(x) is linearly stable; and when μ moves away from μ0 ,
no complex eigenvalues bifurcate out from non-zero points on the imagi-
nary axis. Then under the same assumptions of Theorem 2, both solution
branches u±(x;μ) undergo stability switching at the transcritical bifur-
cation point. In addition, the two solution branches have opposite linear
stability.

Based on this theorem, schematic stability diagrams for a trans-
critical bifurcation are displayed in Fig. 2. The stability behavior in
Fig. 2(a) (for solution bifurcation) closely resembles that for trans-
critical bifurcations of fixed points in finite-dimensional dynamical
systems [16]. But the power-bifurcation diagram (with stability in-
formation) in Fig. 2(b) has no counterpart in finite-dimensional
dynamical systems.

Note that for positive solitary waves in the GNLS equations
(2.1), linear-stability eigenvalues are all real or purely imaginary
(see [2], Theorem 5.2, p. 176). In addition, zero is always a sim-
ple eigenvalue of L00 [20]. In this case, if zero is also a simple
eigenvalue of L10 and the solitary wave u0(x) at the bifurcation
point is linearly stable, then under the generic conditions (2.14),
Theorem 3 applies, thus both solution branches u±(x;μ) undergo
stability switching at a transcritical bifurcation point, and the two
solution branches have opposite linear stability. Such an example
will be given in Section 4.

3. Proofs of stability results

Proof of Theorem 2. First we see from Eqs. (2.10) and (2.12) that
zero is a discrete eigenvalue of L for all μ values. At the bifurca-
tion point μ = μ0, we further have L10ψ = 0, thus

L0

[
0

u0

]
= L0

[
ψ

0

]
= 0. (3.1)

Following the same analysis as in [17], we can readily show that
the algebraic multiplicity of the zero eigenvalue in L is four at
μ = μ0 and drops to two when 0 < |μ − μ0|  1, thus a pair
of eigenvalues bifurcate out from the origin when μ �= μ0. This
pair of eigenvalues must bifurcate along the real or imaginary axis
since eigenvalues of L would appear as quadruples if this bifur-
cation were not along these two axes. Next we calculate this pair
of eigenvalues near the bifurcation point μ = μ0 by perturbation
methods.

The bifurcated eigenmodes on the solution branches u±(x;μ)

have the following perturbation series expansions,

v±(x;μ) =
∞∑

(μ − μ0)
k v±

k (x), (3.2)

k=0
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Fig. 3. (Color online.) Stability switching at a transcritical bifurcation in example (4.1). (a) The asymmetric double-well potential (4.2); (b) the power diagram; (c) profiles
of solitary waves at locations c1 (solid) and c2 (dashed) of the upper power curve in (b); (d) profiles of solitary waves at locations d1 (dashed) and d2 (solid) of the lower
power curve in (b). (c1, c2,d1,d2) stability spectra for solitary waves at locations of the same letters on the power diagram (b).
w±(x;μ) = λ±
0 (μ − μ0)

1/2
∞∑

k=0

(μ − μ0)
k w±

k (x), (3.3)

λ±(μ) = iλ±
0 (μ − μ0)

1/2

(
1 +

∞∑
k=1

(μ − μ0)
kλ±

k

)
. (3.4)

We also expand L0 and L1 on the solution branches u±(x;μ) into
perturbation series

L±
0 = L00 + (μ − μ0)L±

01 + (μ − μ0)
2L±

02 + · · · , (3.5)

L±
1 = L10 + (μ − μ0)L±

11 + (μ − μ0)
2L±

12 + · · · . (3.6)

Substituting the above perturbation expansions into the linear-
stability eigenvalue problem (2.9) and at various orders of μ − μ0,
we get a sequence of linear equations for (vk, wk):

L10 v±
0 = 0, (3.7)

L00 w±
0 = v0, (3.8)

L10 v±
1 = (

λ±
0

)2
w0 − L±

11 v0, (3.9)

and so on.
First we consider the v±

0 equation (3.7). In view of the as-
sumption in Theorem 2, the only solution to this equation (after
eigenfunction scaling) is

v±
0 = ψ. (3.10)

For the inhomogeneous w±
0 equation (3.8), it admits a single ho-

mogeneous solution u0 due to (2.13) and the assumption in The-
orem 2. Since L00 is self-adjoint and 〈u0,ψ〉 = 0 for transcritical
bifurcations (see Theorem 1), the Fredholm condition for Eq. (3.8)
is satisfied, thus this equation admits a real localized particular so-
lution L−1

00 ψ , and its general solution is

w±
0 = L−1

00 ψ + c±
0 u0, (3.11)

where c±
0 is a constant to be determined from the solvability con-

dition of the w±
1 equation later.

For the v±
1 equation (3.9), it is solvable if and only if its right

hand side is orthogonal to the homogeneous solution ψ . Utilizing
the v±

0 and w±
0 solutions derived above and recalling 〈u0,ψ〉 = 0,

this orthogonality condition yields the formula for the eigenvalue
coefficient λ±

0 as

(
λ±

0

)2 = 〈ψ, L±
11ψ〉

〈ψ, L−1ψ〉 . (3.12)

00
Due to notations (2.5) and the definition (2.4) for L1, it is easy to
see that L±

11 in the expansion (3.6) is

L±
11 = G2u±

1 − 1, (3.13)

where u±
1 is given in Eq. (2.7). Inserting this L±

11 into (3.12), we
find that

(
λ±

0

)2 = ±
√

Δ

〈ψ, L−1
00 ψ〉 . (3.14)

Substituting this formula into (3.4), we then obtain the asymptotic
expression for the eigenvalues (λ±)2 as (2.15) in Theorem 2. This
completes the proof of Theorem 2. �
Proof of Theorem 3. Under conditions of Theorem 3, when μ
moves away from μ0, the only instability-inducing eigenvalue bi-
furcation is from the origin. We have shown in Theorem 2 that
this zero-eigenvalue bifurcation creates a single pair of eigenval-
ues whose asymptotic expressions are given by Eq. (2.15). This
formula shows that on the same solution branch (i.e., u+(x;μ)

or u−(x;μ)), if the bifurcated eigenvalues are real (unstable) on
one side of μ = μ0, then they are purely imaginary (stable) on
the other side of μ = μ0. Thus stability switching occurs at the
bifurcation point μ = μ0 for both solution branches. This formula
also shows that at the same μ value, if the bifurcated eigenvalues
are real on one solution branch, then they would be purely imagi-
nary on the other solution branch. Thus the two solution branches
always have opposite linear stability. This completes the proof of
Theorem 3. �
4. A numerical example

An example of transcritical bifurcations in the GNLS equa-
tion (2.1) has been reported in [15]. This example is

iUt + Uxx − V (x)U + |U |2U − 0.2|U |4U + κc|U |6U = 0, (4.1)

where V (x) is an asymmetric double-well potential

V (x) = −3.5 sech2(x + 1.5) − 3 sech2(x − 1.5), (4.2)

and κc ≈ 0.01247946. The potential (4.2) is displayed in Fig. 3(a),
and the power diagram of this bifurcation is shown in Fig. 3(b).
We see that two smooth power branches, namely the upper c1–c2
branch and the lower d1–d2 branch, tangentially connect at the
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bifurcation point (μ0, P0) ≈ (3.278,14.36). This tangential con-
nection agrees with the analytical result on the power diagram
(see Fig. 1(b)). Profiles of solitary waves at the marked c1, c2, d1, d2
locations on this power diagram are displayed in Fig. 3(c)–(d), and
their linear-stability spectra are shown in Fig. 3(c1), (c2), (d1), (d2)
respectively. These spectra indicate that the solitary waves at c1
and d2 of the power diagram are linearly stable, whereas the other
two solitary waves at c2 and d1 of the power diagram are linearly
unstable. Thus both the upper c1–c2 branch and the lower d1–d2
branch switch instability at the bifurcation point, and the c1–c2
and d1–d2 branches have opposite linear stability. These numeri-
cal results confirm the analytical results in Theorem 3 (see also
Fig. 2(b)).

5. Summary and discussion

In summary, linear stability of solitary waves near transcritical
bifurcations was analyzed for the GNLS equations (2.1) with arbi-
trary forms of nonlinearity and external potentials in arbitrary spa-
tial dimensions. It was shown that both solution branches undergo
stability switching at the transcritical bifurcation point. In addi-
tion, the two solution branches have opposite stability. Analytical
formulae for the unstable eigenvalues were also derived. These an-
alytical stability results were compared with a numerical example
and good agreement was obtained.

The above stability properties closely resemble those in finite-
dimensional dynamical systems, where it is well known that the
stability of fixed-point branches near a transcritical bifurcation
point exhibits the same behaviors as above [16]. However, this
happy resemblance, which we proved in this Letter, should not
be taken for granted. Indeed, it has been shown that for saddle-
node and pitchfork bifurcations, stability properties in the GNLS
equations differ significantly from those in finite-dimensional dy-
namical systems [8,9,17]. For instance, at a saddle-node bifur-
cation point, there is no stability switching in the GNLS equa-
tions (2.1) [8,9], but any dynamical-system textbook would say that
such stability switching takes place [16]. Thus it may be more ap-
propriate to view this similar stability on transcritical bifurcations
in the GNLS equations and finite-dimensional dynamical systems
as a happy surprise rather than a trivial expectation.

Another approach to qualitatively study the linear stability of
nonlinear waves in Hamiltonian systems is the Hamiltonian–Krein
index theory [21–25]. In this approach, the number of unstable
eigenvalues in the linear-stability operator L is related to the num-
ber of positive eigenvalues in operators L0 and L1 under appropri-
ate conditions. Near a transcritical bifurcation point μ = μ0, we
can show that the zero eigenvalue in L10 bifurcates out as

Λ±(μ) → ±√
Δ

〈ψ,ψ〉 (μ − μ0), μ → μ0,

where Λ±(μ) is the eigenvalue of L1 on the u±(x;μ) solution
branch. Using this formula, the qualitative stability results in Theo-
rem 3 can be reproduced by the index theory (as was done in [17]
for pitchfork bifurcations). However, this index-theory approach re-
quires more restrictive conditions on the spectra of L0 and L1 op-
erators [17,21,24], and it cannot yield quantitative linear-stability
eigenvalue formula (2.15) either.
It should be recognized that transcritical bifurcations in the
GNLS equations (2.1) occur less frequently than saddle-node or
pitchfork bifurcations. Indeed, in the example (4.1), if the seventh-
power coefficient κ is not equal to that special value κc , this tran-
scritical bifurcation would either turn into a pair of saddle-node
bifurcations or disappear, depending on whether κ is less than κc

or greater than κc . Due to this less frequent occurrence, one might
wonder how useful the stability results in this Letter are. To ad-
dress this concern, it is helpful to view a transcritical bifurcation
as the limit when two saddle-node bifurcations coalesce with each
other (such as when κ → κ−

c in the example (4.1)). In this con-
nection, the stability results obtained in this Letter for transcritical
bifurcations can also be used to help determine stability properties
of nearby saddle-node solution branches. Thus the stability results
in this Letter can be useful beyond transcritical bifurcations.
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