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We report the prediction of fully localized two-dimensional embedded solitons. These solitons are obtained
in a quasi-one-dimensional waveguide array which is periodic along one spatial direction and localized along
the orthogonal direction. Under appropriate nonlinearity, these solitons are found to exist inside the Bloch bands
(continuous spectrum) of the waveguide and thus are embedded solitons. These embedded solitons are fully
localized along both spatial directions. In addition, they are fully stable under perturbations.
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I. INTRODUCTION

Embedded solitons are nonlinear solitary waves whose fre-
quencies (or propagation constants) reside inside the continu-
ous spectrum of the underlying wave system [1]. The existence
of embedded solitons is quite counterintuitive, since inside the
continuous spectrum, only nonlocal waves with nonvanishing
oscillating tails are commonly expected [2]. However, under
certain conditions, these oscillating tails are absent, hence
truly localized embedded solitons appear inside the continuous
spectrum [1,3]. Since embedded solitons exist inside the
continuous spectrum and are thus resonant with linear radiation
modes, they exhibit some interesting dynamical properties.
For instance, isolated embedded solitons are often found to
be semistable, i.e., they would persist under energy-enhancing
perturbations but perish under energy-reducing perturbations
[1,4]. Nonisolated embedded solitons, on the other hand, can
be semistable or fully stable, depending on the underlying
wave system [5,6]. Embedded solitons have been linked to
other physical objects as well. For instance, moving discrete
solitary waves in lattices (if they exist) are also embedded
solitons [7–9]. So far, almost all embedded solitons reported
in the literature are one-dimensional (1D). The soliton trains
reported in Ref. [10] exist inside the continuous spectrum
and are two dimensional (2D), but these soliton trains are
localized only along one spatial direction and nonlocal along
the orthogonal direction. It has remained a challenge to
find 2D (and higher-dimensional) embedded solitons which
are localized in all spatial directions. The reason is that in
multidimensions, more stringent conditions need to be satisfied
in order for fully localized embedded solitons to exist, thus
such solitons are more difficult to find.

From a broader perspective, embedded solitons are inti-
mately related to linear bound states (i.e., localized eigen-
modes) embedded inside the continuous spectrum of a wave
system. These linear bound states in the continuum were
first predicted by von Neumann and Wigner in [11], who
showed that the 3D linear Schrödinger equation with certain
localized potentials could possess bound states above the
potential well (see also Ref. [12]). These predicted bound
states were later observed experimentally for electrons in
semiconductor heterostructures [13]. In optics, linear bound
states inside the continuum have also been predicted in
various settings, such as a semi-infinite 1D lattice [14], two
parallel dielectric gratings [15], two arrays of thin parallel
dielectric cylinders [15], and open 2D quantum dots or
optical waveguides [16,17]. Recently, linear 2D bound states

in the continuum were demonstrated both theoretically and
experimentally for light beams in a quasi-1D waveguide array
with two additional waveguides above and below it [18]. The
key idea in the construction of linear continuum bound states
in Refs. [16–18] is to seek bound states of certain parity which
are embedded inside the continuum bands of opposite parity.
This idea inspires us to construct fully localized 2D embedded
solitons in this article. The above theoretical and experimental
investigations on the counterintuitive nonlinear embedded
solitons and linear continuum bound states deepened our
fundamental understanding of linear and nonlinear wave
phenomena, and they could lead to unexpected applications
in diverse physical fields.

In this article, we construct fully localized 2D embedded
solitons. These solitons are obtained in a quasi-1D waveguide
array which is periodic along the horizontal direction and
localized along the vertical direction. Under self-defocusing
nonlinearity, we find 2D solitons which are symmetric along
the vertical direction, and they are embedded in the continuum
bands of odd symmetry in the vertical direction. These 2D
embedded solitons exist as continuous families, with their
propagation constants (or equivalently their powers) as a free
parameter. We further show that these embedded solitons
are fully stable against perturbations even though they exist
inside the continuum bands. In addition, we show how
2D embedded solitons of odd symmetry along the vertical
direction can be derived under self-focusing nonlinearity. This
construction method for 2D embedded solitons is general, thus
these embedded solitons are no longer rare objects but can
appear easily in diverse physical situations.

II. TWO-DIMENSIONAL EMBEDDED SOLITONS
IN A WAVEGUIDE ARRAY

In this section, we construct 2D embedded solitons. The
theoretical model we use is the following 2D nonlinear
Schrödinger (NLS) equation with a potential,

iUz + Uxx + Uyy + n(x,y)U + σ |U |2U = 0. (1)

In spatial optics, this equation models paraxial light trans-
mission in a waveguide under cubic nonlinearity [19]. In
this context, U is the complex envelope function of the
light’s electric field, z is the transmission distance, (x,y)
are the transverse coordinates, n(x,y) is the refractive
index variation of the waveguide, and σ = ±1 represent
self-focusing and self-defocusing nonlinearity respectively
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(self-focusing nonlinearity is common in most optical ma-
terials, and self-defocusing nonlinearity can be realized in
certain special materials such as photorefractive crystals [20]).
In Bose-Einstein condensates, Eq. (1) models the collective
behavior of condensate atoms in a magnetic or optical
trap under nonlinear atom-atom interaction (it is called the
Gross-Pitaevskii equation in the literature) [21]. In this context,
U is the the collective wave function of the condensate, z

is time, (x,y) are 2D spatial coordinates, −n(x,y) is the
trap potential, and σ = ±1 represent attractive and repulsive
atom-atom interaction respectively. Static solitary waves in
Eq. (1) are sought in the form

U (x,y,z) = u(x,y)e−iµz, (2)

where µ is the propagation constant and u(x,y) is a real-valued
localized function which satisfies the equation

uxx + uyy + n(x,y)u + σu3 = −µu. (3)

To construct a concrete example of 2D embedded solitons, we
take a quasi-1D waveguide array

n(x,y) = 6 cos2x e−y2/4, (4)

which is periodic along the x direction and localized along the
y direction. This waveguide is shown in Fig. 1 (left panel).
Such a waveguide has been experimentally demonstrated in
photorefractive crystals through optical induction [22,23]. We
also take σ = −1 (for self-defocusing nonlinearity). In order
to find embedded solitons, we first need to determine the linear
continuous spectrum of Eq. (3). For this purpose, we drop the
nonlinear term in (3). Since n(x,y) is periodic in x with π

period, according to the Bloch theorem, linear eigenmodes
of (3) are of the form

u(x,y) = eikxq(x,y), (5)

where k is the wave number in the first Brillouin zone −1 �
k � 1 and q(x,y) is an x-periodic function with period π .
Inserting (5) into the linear part of (3), we obtain the linear
equation for q(x,y) as

qxx + 2ikqx − k2q + qyy + n(x,y)q = −µq. (6)

The continuous spectrum of Eq. (6) consists of the positive axis
µ ∈ [0, +∞), where u(x,y) is nonlocal along the y direction,
and Bloch bands with µ < 0, where u(x,y) is localized along
the y direction. To determine the Bloch bands with µ < 0,
we expand q(x,y) into a Fourier series in both x and y

and then insert the expansion into Eq. (6) and turn it into a
matrix eigenvalue problem, with µ being the eigenvalue and
the Fourier coefficients of q(x,y) being the eigenvector [19].
This matrix eigenvalue problem is then solved by conventional
algorithms. The resulting diffraction relation µ = µ(k) for
these Bloch bands is shown in Fig. 1 (right panel). We see that
three Bloch bands are obtained. At the edges of the lowest two
bands, the corresponding Bloch modes u(x,y) are displayed in
Fig. 2. It is important to note that the Bloch modes in the lowest
band µ ∈ [−2.9711,−2.7226] are symmetric in y, while the
Bloch modes in the second band µ ∈ [−1.3030,−0.9260] are
antisymmetric in y. The existence of different Bloch bands
with opposite y parity is important for our construction of 2D
embedded solitons.
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FIG. 1. (Color online) (Left) The quasi-1D waveguide array
n(x,y) in our model. (Right) The Bloch bands in this waveguide.
The edges of the lowest two Bloch bands are marked by the letters
a–d.

When nonlinearity is present, locally confined solitons
will bifurcate out from infinitesimal (linear) Bloch modes of
band edges [19,24]. Under self-defocusing nonlinearity, these
solitons will bifurcate from the upper band edges upward into
band gaps. Here we consider the solitons bifurcating from the
upper edge of the lowest Bloch band (i.e., point b in Fig. 1).
Near edge b, the soliton is a low-amplitude broad packet
which decays slowly along the x direction [see Fig. 3(A)].
This soliton is a regular gap soliton since it exists in a band
gap. As µ moves further away from the edge b, the soliton
becomes more narrow, and its amplitude as well as power
becomes higher (see Fig. 3). Here the power P is defined
as the integral of u2 over the xy plane. The most interesting
phenomenon about this family of solitons is that, when µ

enters into the second Bloch band [−1.3030,−0.9260], the
soliton still persists, and it remains fully localized in both x

and y directions. To demonstrate, this soliton at µ = −1.1 in
the middle of the second Bloch band is displayed in Fig. 3(B).
Since this soliton exists inside the continuous spectrum (Bloch
bands), it is a fully localized 2D embedded soliton. Likewise,
its nearby solitons with µ still inside the second Bloch band
are all 2D embedded solitons as well. In other words, this
is a continuous family of 2D embedded solitons with its
propagation constant µ or power P as a free parameter.
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FIG. 2. (Color online) Bloch modes at edges a–d of the lowest
two Bloch bands in Fig. 1 respectively.
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FIG. 3. (Color online) A soliton family under self-defocusing
nonlinearity (σ = −1). (Upper left panel) The power curve; the
shaded stripes indicate Bloch bands, and the band edges marked
by a–d on top of the panel correspond to the edges of the same
marker in Fig. 1. [(A)–(C)] Soliton profiles u(x,y) at locations marked
by the same letters on the power curve. The soliton at location B
is an embedded soliton which is fully localized in both x and y

dimensions.

Why do these 2D embedded solitons exist? Note that
these solitons bifurcate out from edge b of the first Bloch
band, thus they are symmetric in y (see Fig. 3). Note also
that the second Bloch band consists of Bloch modes which
are all antisymmetric in y (see Fig. 2). Thus when this
y-symmetric soliton branch enters the second Bloch band of
y-antisymmetric Bloch modes, even though µ lies in the Bloch
band, the soliton does not excite those Bloch modes of opposite
y parity, thus it remains fully localized. However, if this soliton
moves into the third band µ ∈ [−0.2488,0] (see Fig. 3), since
the Bloch modes in this third band are also symmetric in y, this
soliton will excite these y-symmetric Bloch modes and become
delocalized [evidence of this can be seen in Fig. 3(C), where
the soliton becomes broad again near the third Bloch band].
Thus one can not find y-symmetric 2D embedded solitons in
the third band.

III. STABILITY OF TWO-DIMENSIONAL
EMBEDDED SOLITONS

Stability of these 2D embedded solitons in Fig. 3 is an
important issue. In previous studies of 1D embedded solitons,
since the embedded soliton is in resonance with the continuous
spectrum, it could excite the continuum radiation and perish
under certain perturbations [1]. Those 1D embedded solitons
could also be linearly unstable, leading to their destruction
under any generic perturbation [3]. For the 2D embedded
solitons in Fig. 3, we have found that they are all linearly stable,
i.e., their linear-stability spectra do not contain any eigenvalues
with positive real parts. This linear stability for the embedded
soliton in Fig. 3(B) is demonstrated in Fig. 4(i). Regarding the
question of nonlinear stability, we note that these 2D embedded
solitons lie inside the second Bloch band whose Bloch modes
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FIG. 4. (Color online) Demonstration of stability for the embed-
ded soliton in Fig. 3(B). (i) The linear-stability spectrum, showing
that this soliton is linearly stable; (ii) an initially perturbed embedded
soliton (7) with ε = 0.2; (iii) evolution of the perturbed soliton in
(ii) at z = 50; plotted in (ii, iii) are |U | fields; (iv) peak-amplitude
evolutions of the perturbed embedded soliton (7) for ε = 0.2 and
−0.2.

are antisymmetric in y. Thus if the perturbation is y symmetric
as the embedded soliton itself, then since the waveguide n(x,y)
is also y symmetric, the solution of Eq. (1) will remain
y-symmetric for all distances z. Hence the perturbed soliton
would not excite y antisymmetric second-band modes, i.e., the
soliton would be stable under y symmetric perturbations. A
less trivial question is what would happen if the perturbation
is not symmetric in y. In this case, the perturbed soliton would
excite y-antisymmetric second-band modes since it is resonant
with those modes. Then could these y-antisymmetric radiation
break up the embedded soliton? Intuitively, we can expect
that when the y-antisymmetric component in the perturbation
is weak, then these weak antisymmetric components would
disperse away through resonance with the second-band modes,
and the other dominant y-symmetric component of the solution
would adjust its shape into a nearby (y-symmetric) embedded
soliton. If so, then these 2D embedded solitons would be
nonlinearly fully stable. However, this expectation is under
the assumption that energy in the y-symmetric component
would not transfer to the y-antisymmetric component during
evolution. Since Eq. (1) is nonlinear, this assumption may not
hold, because the symmetric and antisymmetric components
could couple each other and transfer energy between them.
Thus in principle, it is possible for the perturbed soliton to
lose a significant amount of radiation to the resonant second-
band modes and break up. To clarify this question, we have
performed numerical simulations of these embedded solitons
under various asymmetric perturbations and found that they
are always nonlinearly fully stable. Two typical simulation
results are shown in Figs. 4(ii)–4(iv). In these simulations,
the embedded soliton u(x,y) is the one in Fig. 3(B), and the
perturbed initial state is

U (x,y,0) = u(x,y) + ε (1 + sin y)e−(x2+y2)/4, (7)
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FIG. 5. (Color online) 2D embedded solitons under self-focusing
nonlinearity (σ = 1). (Left panel) The power curve of this soliton
family (same notations as Fig. 3); (right panel) an embedded soliton
in the first Bloch band (at location A of the power curve).

where ε is the strength of perturbations. Note that this perturba-
tion contains both symmetric and antisymmetric components
in y. For ε = 0.2, this perturbed initial state is shown in
Fig. 4(ii). At propagation distance z = 50, the solution is
shown in Fig. 4(iii). It is seen that this embedded soliton
is stable under this perturbation. This stability can be seen
more clearly in Fig. 4(iv), where the peak amplitude |U |max

of the solution versus the propagation distance z is displayed.
We can see that the peak amplitude approaches a constant
value close to the amplitude of the unperturbed soliton at large
distances. If we take a different perturbation with ε = −0.2,
the result is similar, i.e., the peak amplitude of the solution
also approaches a constant value close to the amplitude of
the unperturbed soliton at large distances [see Fig. 4(iv)].
Thus this embedded soliton is nonlinearly fully stable. This
result resembles the full stability of 1D embedded solitons in
a generalized third-order NLS equation [6]. It contrasts some
other 1D embedded solitons which are semistable and perish
under certain types of perturbations [1,5].

It is important to recognize that the method in this article
for the construction of 2D embedded solitons is quite general,
and it can be used to construct many other fully localized mul-
tidimensional embedded solitons in various physical systems.
For instance, in the same quasi-1D waveguide array described
by Eqs. (1) and (4), if self-focusing nonlinearity is taken
(i.e., σ = 1), then a soliton family which is antisymmetric
in y will bifurcate downward from edge c of the second Bloch
band (see Figs. 1 and 2). This solution family passes through
the first Bloch band whose Bloch modes are symmetric in
y. Inside the first Bloch band, these solitons are also fully
localized 2D embedded solitons. To demonstrate, the power
curve of this soliton family is displayed in Fig. 5 (left panel).
At point A inside the first Bloch band, the embedded soliton is
shown in Fig. 5(A), which is fully localized in both dimensions.
Using similar methods, we can construct fully localized 3D
embedded solitons as well. Previously, embedded solitons
were generally regarded as rare objects which appear by

“accident.” Now we see that embedded solitons can arise
frequently in diverse physical situations, thus they are an
important physical object in nonlinear wave systems.

Now we address why the above results are of interest
to physics and mathematics. Intuitively, solitary waves are
only expected outside the continuous spectrum. In the past 10
years, the counterintuitive concept of solitons embedded inside
the continuous spectrum was proposed and demonstrated in
one dimension [1,3]. This concept significantly deepened
our general understanding of nonlinear wave phenomena. In
addition, it fostered the construction of other physical 1D
objects such as moving discrete solitons in lattices since those
objects are also embedded solitons under disguise [7–9]. In this
article, we demonstrated the existence of embedded solitons in
two dimensions and pointed out a way to construct embedded
solitons in even higher dimensions (such as three dimensions).
This significantly broadened the scope of embedded solitons.
It could also stimulate the construction of related objects
such as multidimensional moving discrete solitons. From the
viewpoint of physical applications, regular (nonembedded)
solitons have found applications in numerous situations. Now
with the demonstration of families of stable multidimensional
embedded solitons in this article, these embedded solitons may
find applications analogous to regular solitons in situations
where regular solitons do not exist.

IV. SUMMARY

In summary, we have predicted fully localized 2D embed-
ded solitons. These embedded solitons were obtained in a
quasi-1D waveguide array, and they exist inside the Bloch
bands whose Bloch modes have opposite parity from the
solitons themselves. These embedded solitons form solution
families with continuous ranges of power values. In addition,
they are fully stable under perturbations. The method of
construction in this article is general, and it can be used to
obtain multidimensional embedded solitons in diverse physical
systems.

Note added in proof. Recently, we learned of work [25,26]
where 2D embedded solitons were briefly reported in coupled
Bose-Einstein condensates supported by 2D optical lattices
[25], and 3D embedded solitons were briefly reported in
single-component Bose-Einstein condensates supported by 1D
optical lattices [26]. The 2D embedded solitons in Ref. [25]
appear to be stable, while the 3D embedded solitons in
Ref. [26] appear to be unstable.
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