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In this article, localized linear defect modes due to band gap guidance in two-dimensional photonic lattices
with localized or nonlocalized defects are investigated theoretically. First, when the defect is localized and
weak, eigenvalues of defect modes bifurcated from edges of Bloch bands are derived analytically. It is shown
that in an attractive �repulsive� defect, defect modes bifurcate out from Bloch-band edges with normal �anoma-
lous� diffraction coefficients. Furthermore, distances between defect-mode eigenvalues and Bloch-band edges
decrease exponentially with the defect strength, which is very different from the one-dimensional case where
such distances decrease quadratically with the defect strength. It is also found that some defect-mode branches
bifurcate not from Bloch-band edges, but from quasiedge points within Bloch bands, which is very unusual.
Second, when the defect is localized but strong, defect modes are determined numerically. It is shown that both
the repulsive and attractive defects can support various types of defect modes such as fundamental, dipole,
quadrupole, and vortex modes. These modes reside in various band gaps of the photonic lattice. As the defect
strength increases, defect modes move from lower band gaps to higher ones when the defect is repulsive, but
remain within each band gap when the defect is attractive, similar to the one-dimensional case. The same
phenomena are observed when the defect is held fixed while the applied dc field �which controls the lattice
potential� increases. Lastly, if the defect is nonlocalized �i.e., it persists at large distances in the lattice�, it is
shown that defect modes can be embedded inside the continuous spectrum, and they can bifurcate out from
edges of the continuous spectrum algebraically rather than exponentially.
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I. INTRODUCTION

Study of light propagation in periodic media such as pho-
tonic crystals and optically induced photonic lattices is of
great interest to both fundamental physics and applications
�1–4�. It is well known that the unique feature of such peri-
odic systems is the existence of band gap structures in its
linear spectrum. Inside the bands, eigenmodes of its spec-
trum are Bloch waves, while inside band gaps, wave propa-
gation is forbidden because of the repeated Bragg reflections.
To guide light in periodic media, one of the convenient ways
is to introduce a defect into the medium. The defect can
support linear localized modes �called defect modes� inside
band gaps of the periodic medium. Such modes could only
propagate along the defect direction �their propagation along
other directions is forbidden for being inside band gaps�,
thus defect guidance �or band gap guidance� of light is real-
ized.

Defects and the corresponding defect modes �DMs� have
been widely investigated in the field of photonic crystals
�1,2�, where band gaps and defect modes are in the temporal
frequency domains. Recently, reconfigurable optically in-
duced photonic lattices in photorefractive crystals with and
without defects were successfully generated �5–8�. In photo-
nic lattices, band gaps are in the spatial frequency domains.
Linear DMs in one-dimensional �1D� photonic lattices have
been analyzed both theoretically and experimentally in

�8–10�. Nonlinear defect solitons in 1D photonic lattices
have also been theoretically explored �11,12� �see also a
study of DMs and defect solitons in 1D waveguide arrays in
�13��. A more interesting subject is DMs in 2D photonic
lattices, where richer light-guiding possibilities can arise. Re-
cently, we have observed that a localized defect in 2D lat-
tices can guide not only fundamental modes, but also higher-
order modes with delicate tail structures �7�. However, our
theoretical understanding on such new types of 2D DM
structures is still far from satisfactory. For instance, it is still
unclear what types of DMs a 2D defect can possibly support,
and how localized these DMs can be in defects of various
depths. We should mention that in uniformly periodic photo-
nic lattices, a number of nonlinear localized modes such as
fundamental, dipole, vortex, dipole-array, and vortex-array
solitons have been reported �5,6,14–22�. Solitons in Bessel-
ring lattices and 2D quasi-periodic lattices have been re-
ported as well �23–25�. These nonlinear modes may be re-
garded as linear DMs of the defect induced by solitons
themselves. Hence studies of linear DMs in defective lattices
and nonlinear solitons in uniform lattices can stimulate each
other. Indeed, many types of linear DMs we will report in
this paper do resemble certain types of strongly localized
solitons in 2D uniform lattices �see �20–22��. However,
many differences exist between solitons in uniform lattices
and linear DMs in defective lattices. For instance, low-
amplitude solitons in uniform lattices are very broad and
occupy many lattice sites, thus the “defects” these solitons
generate are very different from the single-site defects as
created in the experiments of �7� and considered in several
sections of this paper. Another difference is that, in uniform*jyang@math.uvm.edu
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lattices, centers of solitons can be located at two positions
�on-site and off-site� in the 1D case �26� and four positions at
or between lattice sites in the 2D case �22�. However, in
defective lattices, linear DMs can only be centered at the
defect site. Due to these differences, previous results on soli-
tons in uniform lattices cannot be naively copied over for
linear DMs.

In this article, linear localized DMs in 2D optically in-
duced photonic lattices with localized or nonlocalized de-
fects are systematically studied theoretically. For localized
defects, we show numerically that both the attractive and
repulsive defects can support various types of 2D DMs such
as fundamental, dipole, quadrupole, and vortex modes. These
modes reside in various band gaps of the photonic lattice.
When the defect is weak, DMs are further studied analyti-
cally by asymptotic methods. We show that in a weak repul-
sive defect; DMs bifurcate out from Bloch-band edges with
anomalous diffraction coefficients. The situation is opposite
for attractive defects. We also show that distances between
DM eigenvalues and Bloch-band edges decrease exponen-
tially with the defect strength, which is very different from
the 1D case where such distances decrease quadratically with
the defect strength. In addition, we find that some DM
branches bifurcate not from Bloch-band edges, but from
quasiedge points within Bloch bands, which is very unusual.
As the defect strength increases, DMs move from lower band
gaps to higher ones when the defect is repulsive, but remain
within each band gap when the defect is attractive. The same
phenomena are observed when the defect is held fixed while
the applied dc field �which controls the lattice potential� in-
creases. If the defect is nonlocalized �i.e., it does not disap-
pear at large distances in the lattice�, we show that DMs
exhibit some new features, such as that DMs can be embed-
ded inside the continuous spectrum, and they can bifurcate
out from edges of the continuous spectrum algebraically
rather than exponentially.

II. THEORETICAL MODEL

We begin our study by considering one ordinarily polar-
ized 2D square-lattice beam with a localized defect and one
extraordinarily polarized probe beam with very low intensity
launched simultaneously into a photorefractive crystal. The
two beams are mutually incoherent, and the defective lattice
beam is assumed to be uniform along the propagation direc-
tion �such defective 2D lattices have been created in our
earlier experiments �7��. In this situation, the dimensionless
governing equation for the probe beam is �5,10,27,28�

iUz + Uxx + Uyy −
E0

1 + IL�x,y�
U = 0. �2.1�

Here U is the slowly-varying amplitude of the probe beam,
�x ,y� are transverse distances �in units of D /� with D being
the lattice spacing�, z is the propagation distance �in units of
2k1D2 /�2�, E0 is the applied dc field �in units of
�2 / �k0

2ne
4D2r33��,

IL = I0 cos2�x�cos2�y��1 + �FD�x,y�� �2.2�

is the intensity function of the photonic lattice �normalized
by Id+ Ib, where Id is the dark irradiance of the crystal and Ib
the background illumination�, I0 is the peak intensity of the
otherwise uniform photonic lattice, FD�x ,y� describes the
shape of the defect, � controls the strength of the defect, k0
=2� /�0 is the wave number ��0 is the wavelength�, k1
=k0ne, ne is the unperturbed refractive index, and r33 is the
electro-optic coefficient of the crystal. Notice that the period
of the square lattice has been normalized to be �. For local-
ized defects which we are considering in this section as well
as Secs. III and IV, FD�x ,y� is a localized function �the case
of nonlocalized defects will be considered in Sec. V�. In our
numerical computations, for simplicity, we choose FD�x ,y�
to be �7,10�

FD�x,y� = exp�− �x2 + y2�4/128� , �2.3�

which describes a single-site defect. When ��0, the lattice
intensity IL at the defect site is higher than that at the sur-
rounding regions, and a defect like this is called an attractive
defect. Otherwise, the defect is called a repulsive one. The
defected lattice profiles with �= ±0.9 will be displayed later
in the text �see Figs. 5 and 7�. Throughout this paper �except
in Sec. V�, we will choose the lattice peak intensity to be
I0=6.

Localized defect modes in Eq. �2.1� are sought in the form
of

U�x,y ;z� = u�x,y�exp�− i�z� , �2.4�

where � is the propagation constant, and u�x ,y� is a local-
ized function in x and y. After substituting the above expres-
sion into Eq. �2.1�, a linear eigenvalue equation for u�x ,y� is
derived:

uxx + uyy + �� −
E0

1 + IL�x,y��u = 0. �2.5�

In the rest of this paper, we will comprehensively analyze
DMs in this 2D Schrödinger equation with defective lattice
potentials by both analytical and numerical techniques.

Before the analysis of DMs, let us first look at the diffrac-
tion relation and band gap structure of Eq. �2.5� without
defects �i.e., �=0�. According to the Bloch theorem, eigen-
functions of Eq. �2.5� can be sought in the form of

u�x,y� = eik1x+ik2yG�x,y ;k1,k2�, � = ��k1,k2� , �2.6�

where �=��k1 ,k2� is the diffraction relation, wave numbers
k1, k2 are in the first Brillouin zone, i.e., −1�k1 ,k2�1, and
G�x ,y ;k1 ,k2� is a periodic function in x and y with the same
period � �in normalized units� as the uniform lattice of Eq.
�2.2�. By substituting the above Bloch solution into Eq. �2.5�
�with �=0�, we find that the diffraction relation ��k1 ,k2� of
our 2D uniform lattice will be obtained by solving the fol-
lowing eigenvalue problem

���x + ik1�2 + ��y + ik2�2 + V�x,y��G�x,y� = − �G�x,y�
�2.7�

with the uniform periodic potential
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V�x,y� = −
E0

1 + I0 cos2�x�cos2�y�
. �2.8�

Figure 1 shows the diffraction relation of Eq. �2.5� along
three characteristic high-symmetry directions ��→X→M
→�� of the irreducible Brillouin zone. It can be seen that
there exist three complete gaps which are named the semi-
infinite, first and second gaps respectively. They correspond
to the white areas in Fig. 1 from the bottom to the top,
separated by the shaded Bloch bands.

Loosely speaking, a lattice with an attractive defect is like
a uniform lattice superimposed with a bright beam �soliton�
under self-focusing nonlinearity, while a lattice with a repul-
sive defect corresponds to that under self-defocusing nonlin-
earity. It is well known that spatial solitons can be formed if
the diffraction of the medium is normal �corresponding to
���k��0 in our current notations�, and the nonlinearity of
the medium is self-focusing; or the diffraction is anomalous
����k��0� and the nonlinearity is self-defocusing. From Fig.
1�a�, we can see that the diffraction relation ��k1 ,k2� is nor-
mal at the lower edge of every band, and anomalous at the
upper edge of every band. Thus it can be anticipated that in

a weak attractive defect, DMs will bifurcate out from the
lower edge of every Bloch band; while in a weak repulsive
defect, DMs will bifurcate out from the upper edge of every
Bloch band. For 1D defects, this heuristic argument has been
fully confirmed in �10�. For 2D defects, it will be validated in
this paper as well. Of course, such heuristic arguments can-
not offer us any insight on quantitative behaviors of DM
bifurcations. In the 1D case, it has been shown that eigen-
values of DMs depend on the defect strength � quadratically
when the defect is weak �10�. For 2D defects, DM eigenval-
ues turn out to be exponentially small with the defect
strength � �see below�, which is distinctively different from
the 1D case. In the next section, we will study in detail how
DMs bifurcate from edges of Bloch bands both analytically
and numerically. Another interesting phenomenon which we
will demonstrate there is that some DM branches do not
bifurcate from Bloch-band edges. Rather, they bifurcate from
points inside Bloch bands.

III. DEPENDENCE OF DEFECT MODES ON THE
STRENGTH � OF LOCALIZED DEFECTS

In this section, we consider DMs in the model equations
�2.1� and �2.2� under localized defects, and investigate how
they depend on the defect strength �. First, we analytically
study how DMs bifurcate from edges of Bloch bands when
the defect is weak. The method we will use is analogous to
one used in �29� for eigenvalue bifurcations in the
Schrödinger equation with a weak radially symmetric poten-
tial. Second, we numerically determine various types of DMs
under both weak and strong defects of the form �2.3� by
directly solving the 2D eigenvalue problem �2.5�. The nu-
merical method we use is a power-conserving squared-
operator iteration method developed in �30�.

A. Bifurcations of defect modes from Bloch-band edges
in weak localized defects

Consider the general two-dimensional perturbed Hill’s
equation

	xx + 	yy + �� + V�x,y��	 = �f�x,y�	 , �3.1�

where the unperturbed potential function V�x ,y� is periodic
along both the x and y directions with periods T1 and T2
respectively, the perturbation to the potential, f�x ,y�, is a
2D-localized defect function in the �x ,y� plane �i.e., f�x ,y�
→0 as �x ,y�→
�, and ��1. Application of our general
results on Eq. �3.1� to the specific case of Eq. �2.5� will be
given in the end of this subsection. Note that the 2D-
localization assumption on the function f�x ,y� is important
for the analysis below. If f�x ,y� is not 2D-localized, then
DM bifurcation behaviors could be quite different �see Sec.
V�.

When �=0, Eq. �3.1� admits Bloch solutions of the form

	�x,y� = Bn�x,y ;k1,k2�

� eik1x+ik2yGn�x,y ;k1,k2�, � = �n�k1,k2� ,

�3.2�

where �=�n�k1 ,k2� is the diffraction relation of the nth
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FIG. 1. �Color online� �a� Diffraction relation of the uniform
lattice potential �2.8� with E0=15 and I0=6 in the reduced Brillouin
zone along the direction of �→X→M→�. Shaded: First three
Bloch bands. �b� Potential �i.e., effective refractive index change�
�2.8� in the �x ,y� plane. �c� The first Brillouin zone of the 2D lattice
in the reciprocal lattice space.
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Bloch surface, �k1, k2� lies in the first Brillouin zone, i.e.,
−� /T1�k1�� /T1, −� /T2�k2�� /T2, and Gn�x ,y ;k1 ,k2�
is a periodic function in both x and y with periods T1 and T2
respectively. All these Bloch modes �Bn�x ,y ;k1 ,k2� , �k1 ,k2�
� the Brillouin zone,n=1,2 , . . . 	 form a complete set �31�.
In addition, the orthogonality condition between these Bloch
modes is



−



 

−





Bm
* �x,y ;k1,k2�Bn�x,y ; k̂1, k̂2�dx dy

= �2��2��k1 − k̂1���k2 − k̂2���m − n� . �3.3�

Here the Bloch functions have been normalized by



0

T1

dx

0

T2

dy�Gn�x,y ;k1,k2��2

T1T2
= 1,

�� � is the �-function, and the superscript * represents com-
plex conjugation. When ��0, localized eigenfunctions �i.e.,
DMs� can bifurcate out from edges of Bloch bands into band
gaps. Asymptotic analysis of these DMs for ��1 will be
presented below.

Consider bifurcations of defect modes from an edge point
�=�c of the nth Bloch diffraction surface. If two or more
Bloch diffraction surfaces share the same edge point, each
diffraction surface would generate its own defect mode upon
bifurcation, thus one could treat each diffraction surface
separately. After bifurcation, the propagation constant � of
the defect mode will enter the band gap adjacent to the dif-
fraction surface. Without loss of generality, we assume that
the edge point of this diffraction surface is located at a �
symmetry point of the Brillouin zone where �k1 ,k2�= �0,0�.
If the bifurcation point is located at other points such as M or
X points, the analysis would remain the same.

When ��0, defect modes can be expanded into Bloch
waves as

	�x,y� = �
n=1


 

−�/T1

�/T1

dk1

−�/T2

�/T2

dk2�n�k1,k2�Bn�x,y ;k1,k2� ,

�3.4�

where �n�k1 ,k2� is the Bloch-mode coefficient in the expan-
sion. In the remainder of this subsection, unless otherwise
indicated, integrations for dk1 and dk2 are always over the
first Brillouin zone, i.e., the lower and upper limits for k1 and
k2 in the integrals are always �−� /T1 ,� /T1	 and
�−� /T2 ,� /T2	 respectively, thus such lower and upper limits
will be omitted below.

When solution expansion �3.4� is substituted into the left
hand side of Eq. �3.1�, we get

�
n=1




/
n�k1,k2�Bn�x,y ;k1,k2�dk1dk2 = �f�x,y�	�x,y� ,

�3.5�

where n�k1 ,k2� is defined as

n�k1,k2� � �n�k1,k2��� − �n�k1,k2�� . �3.6�

Due to our localization assumption on the defect function
f�x ,y�, the right-hand side of Eq. �3.5� is a 2D-localized
function; thus its Bloch-expansion coefficient n�k1 ,k2� is
uniformly bounded in the Brillouin zone for all values of n
and �. When solution expansion �3.4� is further substituted
into the right-hand side of Eq. �3.5� and orthogonality con-
ditions �3.3� utilized, we find that n�k1 ,k2� satisfies the fol-
lowing integral equation

n�k1,k2� =
�

�2��2 �
m=1




/

m�k̂1, k̂2�

� − �m�k̂1, k̂2�

�Wm,n�k1,k2, k̂1, k̂2�dk̂1dk̂2, �3.7�

where function Wm,n in the kernel is defined as

Wm,n�k1,k2, k̂1, k̂2� = 

−



 

−





f�x,y�Bn
*�x,y ;k1,k2�

�Bm�x,y ; k̂1, k̂2�dx dy . �3.8�

Again, since f�x ,y� is a 2D-localized function,

Wm,n�k1 ,k2 , k̂1 , k̂2� is also uniformly bounded for all �k1 ,k2�
and �k̂1 , k̂2� points in the Brillouin zone. The fact of functions
n and Wm,n being uniformly bounded is important in the
following calculations. Otherwise �when f�x ,y� is not 2D-
localized, for instance�, the results below would not be valid.

At the edge point �=�c, ��n /�k1=��n /�k2=0. For sim-
plicity, we also assume that �2�n /�k1�k2=0 at this edge
point — an assumption which is always satisfied for Eqs.
�2.1�–�2.3� we considered in Sec. II due to symmetries of its
defective lattice. If �2�n /�k1�k2�0 in some other problems,
the analysis below only needs minor modifications. Under
the above assumption, the local diffraction function near a
�-symmetry edge point can be expanded as

�n�k1,k2� = �c + �1k1
2 + �2k2

2 + o�k1
2,k1k2,k2

2� , �3.9�

where

�1 = 1

2

�2�n

�k1
2 

�0,0�
, �2 = 1

2

�2�n

�k2
2 

�0,0�
. �3.10�

Since �=�c is an edge point, which should certainly be a
local maximum or minimum point of the nth diffraction sur-
face, clearly �1 and �2 must be of the same sign, i.e., �1�2
�0. The DM eigenvalue can be written as

� = �c + �h2, �3.11�

where �= ±1, and 0�h����1 when ��1. The dependence
of h on � will be determined next.

When Eqs. �3.9� and �3.11� are substituted into Eq. �3.7�,
we see that only a single term in the summation with index
m=n makes O�n� contribution. In this term, the denomina-

tor �−�n�k̂1 , k̂2� is very small near the � symmetry point

�bifurcation point� �k̂1 , k̂2�= �0,0�, which makes it O�n�
rather than O��n�. The rest of the terms in the summation
give O��m� contributions, because the denominators �

WANG, YANG, AND CHEN PHYSICAL REVIEW A 76, 013828 �2007�

013828-4



−�m�k̂1 , k̂2� in such terms are not small anywhere in the first
Brillouin zone. Thus

n�k1,k2� =
�

�2��2 /

n�k̂1, k̂2�

� − �n�k̂1, k̂2�
Wn,n�k1,k2, k̂1, k̂2�dk̂1dk̂2

+ O��n� . �3.12�

Since the first term on the right-hand side of the above equa-
tion is O�n� rather than O��n�, it can balance the left-hand
side of that equation. This issue will be made more clear in
the calculations below. In order for the denominator in the
integral of Eq. �3.12� not to vanish in the Brillouin zone, we
must require that

� = − sgn��1� = − sgn��2� . �3.13�

This simply means that the DM eigenvalue � must lie inside
the band gap as expected.

Now we substitute expressions �3.9� and �3.11� into Eq.
�3.12�, and can easily find that

n�k1,k2� =
��

�2��2 /

n�k̂1, k̂2�

h2 + ���1�k̂1
2 + ��2��k̂2

2

�Wn,n�k1,k2, k̂1, k̂2�dk̂1dk̂2 + O��n� .

�3.14�

The above equation can be further simplified, up to error
O��n�, as

n�k1,k2� =
��

�2��2n�0,0�Wn,n�k1,k2,0,0�

�
/

1

h2 + ���1�k̂1
2 + ��2��k̂2

2
dk̂1dk̂2 + O��n� .

�3.15�

To calculate the integral in the above equation, we introduce

variable scalings: k̃1=���1�k̂1 , k̃2=���2�k̂2. Then Eq. �3.15�
becomes

n�k1,k2� =
��

�2��2��1�2

n�0,0�Wn,n�k1,k2,0,0�

�
/

1

h2 + k̃1
2 + k̃2

2
dk̃1dk̃2 + O��n� ,

�3.16�

where the integration is over the scaled Brillouin zone with

�k̃1 � �����1� /T1 and �k̃2 � �����2� /T2. This integration re-

gion can be replaced by a disk of radius �1−h2 in the �k̃1 , k̃2�
plane, which causes error of O��n� to Eq. �3.16�. Over this
disk of radius �1−h2, the integral in Eq. �3.16� can be easily
calculated using polar coordinates to be −2� ln h, thus Eq.
�3.16� becomes

n�k1,k2� = −
�� ln h

2���1�2

n�0,0�Wn,n�k1,k2,0,0� + O��n� .

�3.17�

Lastly, we take k1=k2=0 in the above equation. In order for
it to be consistent, we must have

ln h = −
2����1�2

�Wn,n�0,0,0,0�
+ O�1� . �3.18�

When this equation is substituted into Eq. �3.11�, we finally
get a formula for the DM eigenvalue � as

� = �c + �Ce−�/�, �3.19�

where � is given by Eq. �3.13�,

� =
4����1�2

Wn,n�0,0,0,0�
, �3.20�

and C is some positive constant. Obviously � and � must
have the same sign, thus � and �Wn,n�0,0 ,0 ,0� must have
the same sign. Since we have shown that � and �1, �2 have
opposite signs, we conclude that the condition for defect-
mode bifurcations from a �-symmetry edge point is that

sgn��Wn,n�0,0,0,0�� = − sgn��1� = − sgn��2� . �3.21�

Under this condition, the DM eigenvalue � bifurcated from
the edge point �c is given by formula �3.19�. Its distance
from the edge point, i.e., �−�c, decreases exponentially with
the defect strength ���. This contrasts the 1D case where such
dependence is quadratic �10�. The constant C in formula
�3.19� is much more difficult to calculate analytically, thus
will not be pursued here.

If the edge point of DM bifurcations is not at a � sym-
metry point, the DM bifurcation condition �3.21� and the DM
eigenvalue formula �3.19� still hold, except that �1 ,�2 and
Wn,n in these formulas should now be evaluated at the under-
lying edge point in the Brillouin zone.

Now we apply the above general results to the special
system �2.1�–�2.5� we were considering in Sec. II. When
��1, this system can be written as

uxx + uyy + �� + V�x,y��u = �f�x,y�u + O��2� , �3.22�

where V�x ,y� is given in Eq. �2.8�, and

f�x,y� = −
E0I0 cos2�x�cos2�y�FD�x,y�

�1 + I0 cos2�x�cos2�y��2 . �3.23�

In this case, W�0,0 ,0 ,0� is always negative, thus DM bifur-
cation condition �3.21� reduces to

sgn��� = sgn��1� = sgn��2� . �3.24�

Thus, in an attractive defect, DMs bifurcate out from normal-
diffraction band edges �i.e., lower edges� of Fig. 1�a� where
the diffraction coefficients are positive; in a repulsive defect,
DMs bifurcate out from anomalous-diffraction band edges
�i.e., upper edges� of Fig. 1�a� where the diffraction coeffi-
cients are negative. This analytical result is in agreement
with the heuristic argument in the end of Sec. II.
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It should be mentioned that at some band edges, two lin-
early independent Bloch modes exist. Due to the symmetry
of the lattice in Eq. �2.2�, these two Bloch modes are related
as B�x ,y� and B�y ,x�, where B�x ,y��B�y ,x�. Under weak
defects �2.3�, two different DMs of forms u�x ,y� and u�y ,x�
but with identical eigenvalues � will bifurcate out from these
two Bloch modes of edge points, respectively. This can be
plainly seen from the above analysis. Since these DMs have
the same propagation constant, their linear superposition re-
mains a defect mode due to the linear nature of Eq. �2.5�.
Such superpositions can create more interesting DM pat-
terns. This issue will be explored in more detail in the next
subsection.

B. Numerical results of defect modes in localized defects
of various depths

The analytical results of the previous subsection hold un-
der weak localized defects. If the defect becomes strong �i.e.,
��� not small�, the DM formula �3.19� will be invalid. In this
subsection, we determine DMs in Eq. �2.5� numerically for
both weak and strong localized defects, and present various
types of DM solutions. In addition, in the case of weak de-
fects, we will compare numerical results with analytical ones
in the previous subsection, and show that they fully agree
with each other. The numerical method we will use is a
power-conserving squared-operator method developed in
�30�.

In these numerical computations, we fix E0=15, I0=6,
and vary the defect strength parameter � from −1 to 1. We
found a number of DM branches which are plotted in Fig. 2
�solid lines�. First, we look at these numerical results under
weak defects ��� � �1�. In this case, we see that DMs bifur-
cate out from edges of every Bloch band. When the defect is
attractive ���0�, the bifurcation occurs at the left edge of

each Bloch band, while when the defect is repulsive ���0�,
the bifurcation occurs at the right edge of each Bloch band.
Recall that the left and right edges of Bloch bands in Fig. 2
correspond to the lower and upper edges of Bloch bands in
Fig. 1�a� �where diffractions are normal and anomalous re-
spectively�, thus these DM bifurcation results qualitatively
agree with the theoretical analysis in the previous subsection.
We can further make quantitative comparisons between nu-
merical values of � and the theoretical formula �3.19�. This
will be done in two different ways. One way is that we have
carefully examined the numerical � values for �� � �1, and
found that they are indeed well described by functions of the
form �3.19�. Data fitting of numerical values of � into the
form �3.19� gives � values which are very close to the the-
oretical values of Eq. �3.20�. For instance, for the DM branch
in the semi-infinite band gap in Fig. 2, numerical data fitting
for 0���1 gives �num=0.1289 �Cnum=0.4870�. The theo-
retical � value, obtained from Eqs. �3.20� and �3.23�, is
�anal=0.1297, which agrees with �num very well. Another
way of quantitative comparison we have done is to plot the
theoretical formula �3.19� alongside the numerical curves in
Fig. 2. To do so, we first calculate the theoretical value �
from Eq. �3.20� at each band edge. Regarding the constant C
in the � formula �3.19�, we do not have a theoretical expres-
sion for it. To get around this problem, we fit this single
constant from the numerical values of �. The theoretical for-
mulas thus obtained at every Bloch-band edge are plotted in
Fig. 2 as dashed lines. Good quantitative agreement between
numerical and analytical values can be seen as well near
band edges.

As ��� increases, DM branches move away from band
edges �toward the left when ��0 and toward the right when
��0�. Notice that in attractive defects ���0�, these
branches stay inside their respective band gaps. But in repul-
sive defects ���0�, DM branches march to edges of higher
Bloch bands and then reappear in higher band gaps. For in-
stance, the DM branch in the first band gap reaches the edge
of the second Bloch band at ��−0.70 and reappears in the
second band gap when ��−0.76. These behaviors resemble
those in the 1D case �see Fig. 4 in �10��. One difference
between the 1D and 2D cases seems to be that, in 1D repul-
sive defects, when DM branches approach edges of higher
Bloch bands, the curves become tangential to the vertical
band-edge line. This indicates that these 1D defect modes
cannot enter Bloch bands as embedded eigenvalues inside
the continuous spectrum. This fact is consistent with the
statement “�discrete� eigenvalues cannot lie in the continuous
spectrum” in �32� for locally perturbed periodic potentials in
1D linear Schrödinger equations. In the present 2D repulsive
defects, on the other hand, the curves seem to intersect the
vertical band-edge lines nontangentially. This may lead one
to suspect that these DM branches might enter Bloch bands
and become embedded discrete eigenvalues. This suspicion
appears to be wrong however for two reasons. First, the
mathematical work by Kuchment and Vainberg �33� shows
that for separable periodic potentials perturbed by localized
defects, embedded DMs cannot exist. In our theoretical
model �2.5�, the periodic potential is nonseparable, thus their
result does not directly apply. But their result strongly sug-
gests that embedded DMs cannot exist either in our case.
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FIG. 2. �Color online� Bifurcations of defect modes with the
defect described by Eq. �2.2� at E0=15 and I0=6. Solid lines: Nu-
merical results. Dashed lines: Analytical results. The shaded regions
are the Bloch bands. Profiles of DMs at the circled points in this
figure are displayed in Figs. 3 and 4.
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Second, our preliminary numerical computations support this
nonexistence of embedded DMs. We find numerically that
when a DM branch enters Bloch bands in Fig. 2, the DM
mode starts to develop oscillatory tails in the far field and
becomes nonlocalized �thus not being a DM anymore�.

Now we examine profiles of defect modes on DM
branches in Fig. 2. For this purpose, we select one represen-
tative point from each DM branch, mark them by circles, and
label them by letters in Fig. 2. DM profiles at these marked
points are displayed in Figs. 3 and 4. The letter labels for
these defect modes are identical to those for the marked
points on DM branches in Fig. 2. First, we look at Fig. 3,
which shows DM profiles in repulsive defects ���0�. We
see that DMs at points a ,b of Fig. 2 are symmetric in both x
and y, with a dominant hump at the defect site, and satisfy
the relation u�x ,y�=u�y ,x�. These DMs are the simplest in
their respective band gaps, thus we will call them fundamen-
tal DMs. Notice that these fundamental DMs are sign-
indefinite, i.e., they have nodes where the intensities are
zero, because they do not lie in the semi-infinite band gap.
Although DMs in Figs. 3�a� and 3�b� look similar, differ-
ences between them �mainly in their tail oscillations� do exist
due to their residing in different band gaps. These differences
are qualitatively similar to the 1D case, which has been care-
fully examined before �see Figs. 8�b,d� in �10� and Figs.
4�b,d� in �8��. The DM branch of point c is more interesting.
At each point on this branch, there are two linearly indepen-
dent DMs, the reason being that this DM branch bifurcates
from the right edge of the second Bloch band where two
linearly independent Bloch modes exist �this band edge is a
X symmetry point; see Fig. 1�. These two DMs are shown in
Figs. 3�c� and 3�d�. One of them is symmetric in x and anti-
symmetric in y, while the other is opposite. They are related
as u�x ,y� and u�y ,x� with u�x ,y��u�y ,x�. These DMs are
dipolelike. However, these dipoles are largely confined in-
side the defect site. They are closely related to certain single-
Bloch-mode solitons reported in �22�.

Since the DM branch of point c admits two linearly inde-
pendent defect modes, their arbitrary linear superposition
would remain a defect mode since Eq. �2.5� is linear. Such
linear superpositions could lead to new interesting DM struc-
tures. For instance, if the two DMs in Figs. 3�c� and 3�d� are
superimposed with � /2 phase delay, i.e., in the form of
u�x ,y�+ iu�y ,x�, we get a vortex-type DM whose intensity
and phase structures are shown in Figs. 3�e� and 3�f�. This
vortex DM is strongly confined in the defect site and looks
like a familiar vortex ring. It is qualitatively similar to
vortex-cell solitons in periodic lattices under defocusing non-
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FIG. 4. �Color online� Profiles of defect modes in attractive
defects in Fig. 2. �i�–�l� DMs at the circled points i , j ,k , l in Fig. 2,
with �� ,��= �0.8,4.39�, �0.8,8.12�, �0.8,11.96�, and �0.8,12.57�, re-
spectively. �m�, �n� DMs obtained by superimposing mode �l� and
its coexisting mode with zero and � phase delays, i.e., in the form
of u�x ,y�+u�y ,x� and u�x ,y�−u�y ,x�, respectively.
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FIG. 3. �Color online� Profiles of defect modes in repulsive defects in Fig. 2. �a�–�c� DMs at the circled points a ,b ,c in Fig. 2, with
�� ,��= �−0.6,8.33�, �−0.8,10.73�, and �−0.6,12.31�, respectively; �d� coexisting DM of mode �c�; �e�, �f� intensity and phase of the vortex
mode obtained by superimposing modes �c� and �d� with � /2 phase delay, i.e., in the form of u�x ,y�+ iu�y ,x�; �g�, �h� intensity and phase
of the diagonally-oriented dipole mode obtained by superimposing modes �c� and �d� with no phase delay, i.e., in the form of u�x ,y�
+u�y ,x�.
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linearity as reported in �22�, as well as linear vortex arrays in
defected lattices as observed in �7�. However, it is quite dif-
ferent from the gap vortex solitons as observed in �20�,
where the vortex beam itself creates an attractive defect with
focusing nonlinearity, while the vortex DM here is supported
by a repulsive defect. If the two DMs in Figs. 3�c� and 3�d�
are directly superimposed without phase delays, i.e., in the
form of u�x ,y�+u�y ,x�, we get a dipole-type DM whose in-
tensity and phase profiles are shown in Figs. 3�g� and 3�h�.
This dipole DM is largely confined in the defect site and
resembles the DM of Figs. 3�c� and 3�d�, except that its
orientation is along the diagonal direction instead. This di-
pole DM is qualitatively similar to dipole-cell solitons in
uniform lattices under defocusing nonlinearity as reported in
�22�. If the two DMs in Figs. 3�c� and 3�d� are superimposed
with � phase delay, i.e., in the form of u�x ,y�−u�y ,x�, the
resulting DM would also be dipolelike but aligned along the
other diagonal axis. Such a DM is structurally the same as
the one shown in Figs. 3�g� and 3�h� in view of the symme-
tries of our defected lattice.

Now we examine DMs in attractive defects, which are
shown in Fig. 4. At point i in the semi-infinite band gap, the
DM is bell-shaped and is strongly confined inside the defect
site �see Fig. 4�i��. This mode is guided by the total internal
reflection mechanism, which is different from the repeated
Bragg reflection mechanism for DMs in higher band gaps.
On the DM branch of point j, there are two linearly indepen-
dent DMs which are related as u�x ,y� and u�y ,x�. One of
them is shown in Fig. 4�j�. This mode is dipolelike and re-
sembles the one in Fig. 3�c�. Linear superpositions of this
mode u�x ,y� with its coexisting mode u�y ,x� would generate
vortex- and dipolelike DMs similar to those in Figs.
3�e�–3�h�. In particular, the vortex DM at this point j would
be qualitatively similar to the gap vortex soliton as observed
in �20�. On the DM branch of point k, a single DM exists.
This is because the left edge of the third Bloch band where
this branch of DM bifurcates from is located at the M sym-
metry point of the Brillouin zone �see Fig. 1� and admits
only a single Bloch mode. The DM at point k is displayed in
Fig. 4�k�. This mode is largely confined at the defect site and
is quadrupolelike. On the DM branch of point l, two linearly
independent DMs exist which are related as u�x ,y� and
u�y ,x�. One of them is shown in Fig. 4�l�. This mode is
symmetric in both x and y directions and is tripolarlike �with
three dominant humps�. Unlike DMs at points c , j, this DM,
superimposed with its coexisting mode with � /2 phase delay
would not generate vortex modes, since this DM has nonzero
intensity at the center of the defect. However, their superpo-
sitions with zero and � phase delays, i.e., in the forms of
u�x ,y�+u�y ,x� and u�x ,y�−u�y ,x� would lead to two struc-
turally different defect modes, which are shown in Figs. 4�m�
and 4�n�. The DM in Fig. 4�m� has a dominant hump in the
center of the defect, surrounded by a negative ring, and with
weaker satellite humps further out. The DM in Fig. 4�n� is
quadrupolelike, but oriented differently from the quadrupole-
like DM in Fig. 4�k�. These DMs resemble the spike-array
solitons and quadrupole-array solitons in uniform lattices un-
der focusing nonlinearity as reported in �22�.

Most of the DM branches in Fig. 2 bifurcate from edges
of Bloch bands. Even the branch of point b in the second

band gap of Fig. 2 can be traced to the DM bifurcation from
the right edge of the first Bloch band. But there are excep-
tions. One example is the DM branch of point l in the upper
right corner of the second band gap in Fig. 2 �we will call it
the l branch below�. This l branch does not bifurcate from
any Bloch-band edge. Careful examinations show that DMs
on this branch closely resemble Bloch modes at the lowest
�-symmetry point in the third Bloch band �see Fig. 1�. Thus
this l branch should be considered as bifurcating from that
lowest �-symmetry point when ��1. However, we see from
Fig. 1 that this lowest �-symmetry point is not an edge point
of the third Bloch band. Even though it is a local edge �mini-
mum� point of diffraction surfaces in the Brillouin zone, it
still lies inside the third Bloch band. Let us call these type of
points “quasiedge points” of Bloch bands. Then the l branch
of DMs bifurcates from a quasiedge point, not a true edge
point, of a Bloch band. To illustrate this fact, we connected
the l branch to this quasiedge �-symmetry point �at �=0� by
dotted lines through a fitted function of the form �3.19� in
Fig. 2. This dotted line lies inside the third Bloch band. One
question we can ask here is what is the nature of this dotted
line? Since it is inside the Bloch band, the mathematical
results by Kuchment and Vainberg �33� suggest that it cannot
be a branch of embedded DMs. On the other hand, the ‘l’
DM branch in the second band gap does bifurcate out along
this route. Then how does the ‘l’ branch bifurcate from the
quasiedge point along this route? This question awaits fur-
ther investigation. We note by passing that the � and M
points inside the second Bloch band are also quasiedge
points �see Fig. 1�a��. Additional DM branches may bifurcate
from such quasiedge points as well.

IV. DEPENDENCE OF DEFECT MODES ON THE
APPLIED dc FIELD E0

In the previous section, we investigated the bifurcation of
DMs as the local-defect strength parameter � varies. In ex-
periments on photorefractive crystals, the applied dc field E0
can be adjusted in a wide range much more easily than the
defect strength. So in this section, we investigate how DMs
are affected by the value of E0 in Eqs. �2.1� and �2.2� under
localized defects of Eq. �2.3�. When E0 changes, so does the
lattice potential. We consider both attractive and repulsive
defects at fixed values of �= ±0.9 �the reason for these
choices of � values will be given below�. For other fixed �
values, the dependence of DMs on E0 is expected to be quali-
tatively the same. The reader is reminded that throughout this
section, the I0 value is fixed at I0=6.

A. Case of repulsive defects

In 2D photonic lattices with single-site repulsive defects
we experimentally created in �7�, ��−1. At this value of �,
however, we found that DMs may exist in high band gaps,
but not in low band gaps �see Fig. 2 where E0=15�. Thus for
presentational purposes, we take �=−0.9 in our computations
below. The corresponding lattice profile of IL�x ,y� is shown
in Fig. 5�a�, which still closely resembles the defects in our
previous experiments �7�.
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For this defect, we found different types of defect modes
at various values of E0. The results are summarized in Figs.
5�b� and 6. In Fig. 5�b�, the dependence of DM eigenvalues
� on the dc field E0 is displayed. As can be seen, when E0
increases from zero, a DM branch appears in the second
band gap at E0�8.5. When E0 increases further, this branch
moves toward the third Bloch band and disappears at E0
�15. But when E0 increases to E0�23.4, another DM
branch appears in the third band gap. This branch moves
toward the fourth Bloch band and disappears at E0�36.7. In
the fourth gap, there are two DM branches. The upper branch
exists when 45.9�E0�64.2, and the lower branch exists
when 31.6�E0�40.8. As E0 increases even further, DM
branches will continue to migrate from lower band gaps to
higher ones. These behaviors are qualitatively similar to the
1D case �see Fig. 7 in �10��. Some examples of DMs marked
by circles in Fig. 5 are displayed in Fig. 6. We can see that
DMs at points a ,b ,c are “fundamental” DMs. At point d,
there are two linearly independent DMs related by u�x ,y�
and u�y ,x�, one of which is displayed in Fig. 6�d�. These
DMs are dipolelike, similar to the c branch in Fig. 2. Linear

superpositions of these DMs with � /2 and 0 phase delays
would generate a vortex DM and a diagonally-oriented di-
pole DM, whose amplitude profiles are shown in Figs. 6�e�
and 6�f� �their phase fields are similar to those in Figs. 3�f�
and 3�h� and thus not shown here�.

B. Case of attractive defects

For attractive defects, we choose �=0.9 following the
above choice of �=−0.9 for repulsive defects. The lattice
profile at this � value is shown in Fig. 7�a�. The dependence
of DM eigenvalues � on the dc field E0 is shown in Fig. 7�b�.
Unlike DMs in repulsive defects, DMs in this attractive de-
fect exist in all band gaps �including the semi-infinite and
first band gaps�. In addition, DM branches here stay in their
respective bandgaps as E0 increases, contrasting the repul-
sive case. DM profiles at marked points in Fig. 7�b� are dis-
played in Fig. 8. The DM in Fig. 8�a� is bell-shaped and all
positive, and it is the fundamental DM in the semi-infinite
band gap. This DM is similar to the one on the i branch of
Fig. 2, and is guided by the total internal reflection mecha-
nism. The DM in the first band gap is dipolelike and is dis-
played in Fig. 8�b�. This DM branch is similar to the j branch
of Fig. 2. On this branch, there is another coexisting DM
which is a 90° rotation of Fig. 8�b�. Linear superpositions of
these two DMs could generate vortexlike and diagonally-
oriented dipolelike DMs, as Fig. 3�e�–3�h� shows. In the sec-
ond band gap, there are two DM branches: The c branch and
the d branch. DMs on the c branch are quadrupolelike, and
this branch is similar to the k branch of Fig. 2. On this
branch, there is a single linearly independent defect mode.
The d branch is similar to the l branch of Fig. 2. On this
branch, there are two linearly independent DMs which are
tripolarlike and orthogonal to each other �see Fig. 4�l��. A
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FIG. 5. �Color online� �a� Profile of the lattice IL�x ,y� in Eq.
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FIG. 6. �Color online� �a�–�d� Defect modes supported by the
repulsive localized defect of Fig. 5�a� at the circled points a ,b ,c ,d
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coexisting mode with � /2 and zero phase delays.

TWO-DIMENSIONAL DEFECT MODES IN OPTICALLY… PHYSICAL REVIEW A 76, 013828 �2007�

013828-9



superposition of these DMs with zero phase delay creates a
hump-ring-type structure which is shown in Fig. 8�d� �see
also Fig. 4�m��. A different superposition would produce a
quadrupole-type structure as the one shown in Fig. 4�n�. In
the third and fourth band gaps, there are additional DM
branches. These branches exist at E0 values higher than 15,
thus have no counterparts in Fig. 2 �where E0=15�. Profiles
of these DMs are more exotic as can be seen in Figs. 8�e� and
8�f�.

V. DEFECT MODES IN NONLOCALIZED DEFECTS

In previous sections, we exclusively dealt with defect
modes in 2D-localized defects. We found that DM eigenval-
ues bifurcate out from Bloch-band edges exponentially with
the increase of the defect strength � �see Eq. �3.19��. In ad-
dition, DMs cannot be embedded inside Bloch bands �i.e.,
the continuous spectrum�. In this section, we briefly discuss
DMs in nonlocalized defects, and point out two significant

differences between DMs in localized and nonlocalized de-
fects. One is that in nonlocalized defects, DM eigenvalues
can bifurcate out from edges of the continuous spectrum al-
gebraically, not exponentially, with the defect strength �. The
other one is that in nonlocalized defects, DMs can be em-
bedded inside the continuous spectrum as embedded eigen-
modes.

For simplicity, we consider the following linear
Schrödinger equation with separable nonlocalized defects,

uxx + uyy + �VD�x� + VD�y�	u = − �u , �5.1�

where function VD is a one-dimensional defected periodic
potential of the form

VD�x� = −
E0

1 + I0 cos2�x��1 + �FD�x�	
, �5.2�

FD�x�=exp�−x8 /128� is a defect function as has been used
before �10�, and � is the defect strength. We chose this sepa-
rable defect in Eq. �5.1� because all its eigenmodes �both
discrete and continuous� can be obtained analytically �see
below�. The non-localized nature of this separable defect can
be visually seen in Fig. 9�a�, where the defected potential
VD�x�+VD�y� for I0=3 ,E0=6, and �=−0.7 is displayed. Note
that this potential plotted here differs from the usual concept
of quantum-mechanics potentials by a sign, and it resembles
the refractive-index function in optics. We see that along the
x and y axes in Fig. 9�a�, the defect extends to infinity �thus
nonlocalized�. The above I0 and E0 parameters were chosen
because they have been used before in the 1D defect-mode
analysis of �10�, and such 1D results will be used to con-
struct the eigenmodes of the 2D defect equation �5.1� below.

Since the potential in Eq. �5.1� is separable, the eigen-
modes of this equation can be split into the following form:
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FIG. 8. �Color online� Defect modes supported by attractive
localized defects of Fig. 7�a� at the circled points a ,b ,c ,d ,e , f of
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u�x,y� = ua�x�ub�y�, � = �a + �b, �5.3�

where ua, ub, �a, �b satisfy the following one-dimensional
eigenvalue equation:

ua,xx + VD�x�ua = − �aua, �5.4�

ub,yy + VD�y�ub = − �bub. �5.5�

These two 1D equations for ua and ub are identical to the 1D
defect equation we studied comprehensively in �10�. Using
the splitting �5.3� and the 1D results in �10�, we can construct
the entire discrete and continuous spectra of Eq. �5.1�.

Before we construct the spectra of Eq. �5.1�, we need to
clarify the definitions of discrete and continuous eigenvalues
of this 2D equation. Here an eigenvalue is called discrete if
its eigenfunction is square-integrable �thus localized along
all directions in the �x ,y� plane�. Otherwise it is called con-
tinuous. Note that an eigenfunction which is localized along
one direction �say x axis� but nonlocalized along another

direction �say y axis� corresponds to a continuous, not dis-
crete, eigenvalue.

Now we construct the spectra of Eq. �5.1� for a specific
example with E0=6 , I0=3 and �=0.8. At these parameter
values, the discrete eigenvalues and continuous-spectrum in-
tervals �1D Bloch bands� of the 1D eigenvalue problem �5.4�
are �see �10��

��1,�2,�3, . . . 	 = �2.0847,4.5002,7.5951, . . . 	 , �5.6�

��I1,I2�,�I3,I4�,�I5,I6�, . . . 	 = ��2.5781,2.9493�,

�4.7553,6.6010�,

�7.6250,11.8775�, . . . 	 .

�5.7�

Using the relation �5.3�, we find that the discrete eigenvalues
and continuous-spectrum intervals of the 2D eigenvalue
problem �5.1� are

��1,�2,�3,�4, . . . 	 = �2�1,�1 + �2,2�2,�1 + �3, . . . 	

= �4.1694,6.5849,9.0004,9.6798, . . . 	 ,

�5.8�

and

��continuum	 = ���1 + I1,2I2�,��1 + I3, 
 �	

= ��4.6628,5.8986�,�6.8400, 
 �	 . �5.9�

Note that at the left edges of the two continuous-spectrum
bands ��=4.6628 and 6.8400�, the eigenfunctions are nonlo-
calized along one direction but localized along its orthogonal
direction, thus they are not the usual 2D Bloch modes �which
would have been nonlocalized along all directions�. This is
why for Eq. �5.1�, we do not call these continuous-spectrum
bands as Bloch bands.

Repeating the same calculations to other � values, we
have constructed the whole spectra of Eq. �5.1� in the �� ,��
plane for I0=3 and E0=6. The results are displayed in Fig.
9�b�. Here solid curves show branches of DMs �discrete ei-
genvalues�, and shaded regions are the continuous spectrum.
This figure shows two significant features which are distinc-
tively different from those in localized defects. One is that
several DM branches �such as the c and d branches� are
either partially or completely embedded inside the continu-
ous spectrum. This means that in nonlocalized defects, em-
bedded DMs inside the continuous spectrum do exist. This
contrasts the localized-defect case, where the mathematical
results of Kuchment and Vainberg �33� and our numerics
show nonexistence of embedded DMs. Another feature of
Fig. 9�b� is on the quantitative behavior of DM bifurcations
from edges of the continuous spectrum at small values of the
defect strength �. We have shown before that in the 1D case,
DMs bifurcate out from Bloch-band edges quadratically with
� �10�. For the 2D problem �5.1�, using the relation �5.3�, we
can readily see that when DMs bifurcate out from edges of
the continuous spectrum �see the a ,b ,d branches, for in-
stance�, the distance between DM eigenvalues and the con-
tinuum edges also depends on � quadratically. This contrasts
the localized-defect case, where we have shown in Sec.III
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FIG. 9. �Color online� �a� Profile of a 2D potential with nonlo-
calized defects VD�x�+VD�y� in Eqs. �5.1� and �5.2� with E0=6,
I0=3, and �=−0.7. �b� DM branches supported by this nonlocalized
defect in the �� ,�� parameter space. Shaded: the continuous spec-
trum. DMs at the circled points are displayed in Fig. 10.
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that DMs bifurcate out from Bloch-band edges exponentially.
Even though the defect in Eq. �5.1� is nonlocalized rather

than localized, the DMs it admits actually are quite similar to
those in localized defects. To demonstrate, we picked four
representative points on the DM branches of Fig. 9�b�. These
points are marked by circles and labeled by letters a ,b ,c ,d,
respectively. Profiles of DMs at these four points are dis-
played in Fig. 10. Comparing these DMs with those of local-
ized defects in Figs. 3 and 4, we easily see that they are quite
similar. In particular, the a ,b ,c ,d branches in Fig. 9�b� re-
semble the i , j ,k ,a branches in Fig. 2, as DMs on the corre-
sponding branches are much alike. Notice that DMs in the
nonlocalized defect case are a little more spread out than
their counterparts in the local-defect case �compare Figs.
4�k� and 10�c�, for instance�. This is simply because in the
nonlocalized defect, we chose E0=6, while in the localized
defect, we chose a much higher value of E0=15. Higher E0
values induce deeper potential variations, which facilitates
better confinement of DMs. We need to point out that, even
though the DMs at points c ,d are embedded inside the con-
tinuous spectrum, their eigenfunctions are perfectly 2D-
localized and square-integrable �see Fig. 10�d� in particular�.
Thus the embedded nature of a defect mode does not neces-
sarily cause it to spread out more.

VI. SUMMARY

In summary, we have thoroughly investigated defect
modes in two-dimensional photonic lattices with localized or
nonlocalized defects. When the defect is localized and weak,
we analytically determined defect-mode eigenvalues bifur-
cated from edges of Bloch bands. We found that in an attrac-

tive �repulsive� defect, defect modes bifurcate out from
Bloch-band edges with normal �anomalous� diffraction coef-
ficients. Furthermore, distances between defect-mode eigen-
values and Bloch-band edges are exponentially small func-
tions of the defect strength, which is qualitatively different
from the 1D case. Another interesting phenomenon we found
was that, some defect-mode branches bifurcate not from
Bloch-band edges, but from quasiedge points within Bloch
bands. When the defect is localized but strong, defect modes
were studied numerically. It was found that both the repul-
sive and attractive defects can guide various types of defect
modes such as fundamental, dipole, tripolar, quadrupole, and
vortex modes. These modes reside in various band gaps of
the photonic lattice. As the defect strength increases, defect
modes move from lower band gaps to higher ones when the
defect is repulsive, but remain within each band gap when
the defect is attractive. The same phenomena are observed
when the defect is held fixed while the applied dc field in-
creases. If the defect is nonlocalized �i.e., the defect does not
disappear at infinity in the lattice�, we showed that DMs
exhibit two new features: �i� DMs can be embedded inside
the continuous spectrum; �ii� DMs can bifurcate out from
edges of the continuous spectrum algebraically rather than
exponentially. These theoretical results pave the way for fur-
ther experimental demonstrations of various type of DMs in
a 2D lattice.
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