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Light propagation in periodically modulated complex waveguides
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Light propagation in optical waveguides with periodically modulated index of refraction and alternating gain
and loss are investigated for linear and nonlinear systems. Based on a multiscale perturbation analysis, it is shown
that for many non-parity-time- (PT -) symmetric waveguides, their linear spectrum is partially complex; thus
light exponentially grows or decays upon propagation, and this growth or decay is not altered by nonlinearity.
However, several classes of non-PT -symmetric waveguides are also identified to possess all-real linear spectrum.
For PT -symmetric waveguides, phase transition is predicted analytically. In the nonlinear regime longitudinally
periodic and transversely quasilocalized modes are found for PT -symmetric waveguides both above and below
phase transition. These nonlinear modes are stable under evolution and can develop from initially weak initial
conditions.
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I. INTRODUCTION

Parity-time- (PT -) symmetric wave systems have the un-
intuitive property that their linear spectrum can be completely
real even though they contain gain and loss [1]. In spatial
optics, PT -symmetric systems can be realized by employing
symmetric index guiding and an antisymmetric gain-loss
profile [2–4]. In temporal optics and other physical settings,
PT -symmetric systems can be obtained as well [5–12]. So
far, a number of novel phenomena in optical PT systems
have been reported, including phase transition, nonreciprocal
Bloch oscillation, unidirectional propagation, distinct pattern
of diffraction, formation of solitons and breathers, wave
blowup, and so on [1–6,9,13–23]. Novel photonic devices such
as PT lasers have also been demonstrated [12].

Research into optical PT systems has been largely devoted
to waveguides where the gain and loss is distributed along
the transverse direction. This leads to the following natural
question: what role doesPT symmetry play when the gain and
loss is distributed in the direction of propagation? In the study
of PT systems which exhibit unidirectional propagation or
Bragg solitons [9,16,17], this has been touched upon. However,
the models in those works ignored the transverse effects on
light propagation. For real waveguides (i.e., without gain and
loss), control of light through modulation of the refractive
index has been well documented [24], and just recently
researchers have studied these modulations with added gain
and loss distributed in the transverse direction [25].

In this article, we study the propagation of light in complex
waveguides with periodically modulated index of refraction
as well as alternating gain and loss along the direction of
propagation. When this system is non-PT symmetric, we
show that linear modes often grow or decay over distance,
and this growth or decay is not affected by nonlinearity.
However, several classes of non-PT -symmetric waveguides
are found to possess completely real linear spectrum, thus
all linear modes propagate periodically over distance. For
PT -symmetric waveguides, phase transition is predicted
analytically and verified numerically. In the nonlinear regime,
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families of longitudinally periodic and transversely quasilocal-
ized solutions exist forPT -symmetric waveguides both below
and above phase transition. These nonlinear modes are stable
under evolution and can develop from weak initial conditions.
By applying multiscale perturbation theory, a reduced ordinary
differential equation is derived for the modes’ linear and
nonlinear propagation, and this reduced model agrees well
with direct simulations of the original system.

Propagation of light in a modulated waveguide with gain
and loss can be modeled under paraxial approximation by the
following nonlinear Schrödinger equation:

iψz + ψxx + V (x,z)ψ + σ |ψ |2ψ = 0, (1)

where z is the direction of propagation, x is the transverse
direction, ψ is the envelope function of the light’s electric
field, V (x,z) is a complex periodic potential whose real part
is the refractive index of the waveguide and the imaginary
part represents gain and loss (negative imaginary part for gain
and positive imaginary part for loss), and σ is the coefficient
of the cubic nonlinearity. A schematic diagram of our system
is given in Fig. 1. The paraxial model (1) is valid when the
waveguide modulation is weak and the light frequency is not
near the Bragg frequency of the periodic waveguide, in which
case back wave reflection is negligible. This waveguide would
be PT symmetric if

V ∗(x,z) = V (x,−z), (2)

where the asterisk represents complex conjugation. Note that,
in this PT condition, coordinate reflection is only in the
z direction, not x direction. This differs from the usual
multidimensional PT symmetry [13] and more resembles the
partial PT symmetry proposed in [26].

To be consistent with the paraxial approximation, in this
article we consider complex waveguides where the z-direction
modulation appears as a small perturbation,

V (x,z) = V0(x) + εV1(x,z), (3)

where V0(x) is the unperturbed real refractive index which is
assumed to be localized, ε � 1, and the perturbation V1(z,x)
is periodically modulated along the z direction whose period is
normalized as 2π . Assuming V1(x,z) has the same transverse
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FIG. 1. (Color online) Schematic diagram for an optical waveg-
uide with modulated index of refraction and alternating gain-loss
regions. The periodic change in height represents the change in index
of refraction, while the alternating regions of red and blue represent
regions of gain and loss.

profile as the unperturbed index V0(x), V1 then can be expanded
into a Fourier series

V1(x,z) = V0(x)
∞∑

n=−∞
ane

inz, (4)

where an are complex Fourier coefficients. Without loss of
generality, we take a0 = 0. The perturbed waveguide is PT
symmetric when all the Fourier coefficients an are strictly real.

II. MULTISCALE PERTURBATION ANALYSIS

Assume that the unperturbed real waveguide V0 supports
a linear discrete eigenmode ψ = u0(x)e−iμ0z, where μ0 is a
real propagation constant and u0 is a real localized function
satisfying

(∂xx + V0 + μ0)u0 = 0. (5)

Then in the presence of the above longitudinal waveguide
perturbations and weak nonlinearity, the perturbed solution to
Eq. (1) can be expressed as

ψ(x,z) = u(x,z,Z)e−iμ0z, (6)

where

u(x,z,Z) = εA(Z)u0(x) + ε2A(Z)u1(x,z) + ε3U2 + · · · ,

(7)

A(Z) is a slowly varying complex envelope function, and Z =
ε2z is the slow distance variable. Substituting this expansion
into Eq. (1), at order ε2 we have

(i∂z + ∂xx + V0 + μ0)u1 = −u0V1.

Defining the operator

Ln = ∂xx + V0 + μ0 − n,

and expanding the solution u1(x,z) into a Fourier series

u1(x,z) =
∞∑

n=−∞
u

(n)
1 (x)einz,

each term u
(n)
1 (x) is then determined from the equation

Lnu
(n)
1 (x) = −anu0(x)V0(x). (8)

Since a0 = 0, the right-hand side is zero for n = 0. Without
loss of generality we take u

(0)
1 (x) = 0 as well. Since the

potential V0(x) is localized, assuming no other discrete
eigenvalues of V0 differ from μ0 by an integer, then when
n > μ0 there is no solvability condition and a localized real
solution u

(n)
1 (x) is admitted. When n < μ0, however, the Ln

operator has nonvanishing bounded homogeneous solutions,
and as a result the corresponding solution u

(n)
1 is nonvanishing

at large |x| as well if an �= 0. In this case, for the solution
to make sense physically, u

(n)
1 may be uniquely determined

by imposing the Sommerfeld radiation condition, which says
that the energy radiation must travel away from the source. In
the present context, this condition translates to the boundary
conditions

u
(n)
1 (x) →

{
R+eikx, x � 1,

R−e−ikx, x � −1,
(9)

where k = √
μ0 − n and R± are complex constants which

measure the radiation amplitudes at x → ±∞. A consequence
of the Sommerfeld radiation condition is that the resulting
physical solution u

(n)
1 (x) must be complex. To impose these

boundary conditions, we write the solution u
(n)
1 (x) as

u
(n)
1 (x) = UP (x) + C1UH1(x) + C2UH2(x),

where UP (x) is a real particular solution to Eq. (8) and
UH1(x), UH2(x) are two real homogenous solutions. Utilizing
the boundary conditions of these homogeneous and particular
real solutions and enforcing the Sommerfeld radiation condi-
tion (9), radiation amplitudes R± and constants C1,2 can then
be derived.

At order ε3 Eq. (1) gives

(i∂z + ∂xx + V0 + μ0)U2 = −iAZu0 − Au1V1 − σ |A|2Au3
0.

Decomposing the solution U2 into a Fourier series in z, the
equation for the constant mode U

(0)
2 is found to be

L0U
(0)
2 = −iAZu0 + A

∞∑
m=−∞

a−mamũ
(m)
1 V0 − σ |A|2Au3

0,

where u
(m)
1 = −amũ

(m)
1 , and

Lmũ
(m)
1 = u0V0.

In view of Eq. (5), u0 is a homogeneous solution of the
above inhomogeneous equation. Since L0 is self-adjoint, in
order for this equation to be solvable, its right-hand side
must be orthogonal to u0. This solvability condition leads
to the following ordinary differential equation (ODE) for the
evolution of the slowly varying envelope function A(Z):

AZ + iμ̃A − iσ̃ |A|2A = 0, (10)

where

μ̃ =
∞∑

m=−∞
a−mam

∫ ∞
−∞ V0u0ũ

(m)
1 dx∫ ∞

−∞ u2
0dx

, σ̃ = σ

∫ ∞
−∞ u4

0dx∫ ∞
−∞ u2

0dx
.

(11)
This reduced ODE model will be helpful for the understanding
of linear and nonlinear dynamics of solutions in the original
equation (1) as we will elucidate below.

First we consider the solution to the linear equation (10),
i.e., with the cubic term in (10) dropped. As a concrete example
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we take a waveguide where all modulations of V1 are in the
first harmonics,

V1(x,z) = V0(x)(eiz + βe−iz), (12)

where β is a complex constant. In this case, μ̃ = βc, where

c =
∫ ∞
−∞ V0u0

(
ũ

(−1)
1 + ũ

(1)
1

)
dx∫ ∞

−∞ u2
0dx

. (13)

Recall from the earlier text that the solution u
(n)
1 is real when

n > μ0 and complex when n < μ0, so is ũ
(n)
1 . Thus the constant

c will be real when μ0 < −1 and complex when μ0 > −1.
Since μ̃ = βc, the linear envelope equation (10) yields

A(Z) = A0e
−iβcZ, (14)

where A0 is the initial envelope value. In view of Eqs. (6)
and (7), this A(Z) solution can be absorbed into a shift of the
eigenvalue

μ = μ0 + ε2βc (15)

in the linear Bloch mode of Eq. (1),

ψ(x,z) = e−iμzu(x,z). (16)

Then we immediately see that for generic complex β values
in the first-harmonic perturbation (12), a complex eigen-
value bifurcates out from every discrete real eigenvalue
of the unperturbed waveguide. Even for real β values in
that waveguide perturbation, a complex eigenvalue can still
bifurcate out if c is complex, and this eigenvalue yields an
exponentially growing eigenmode for one sign of β. Noticing
this waveguide perturbation (12) is PT symmetric when β is
real, we conclude that the linear spectrum of the waveguide is
generically partially complex when the waveguide is non-PT
symmetric. In addition, when the waveguide isPT symmetric,
phase transition can still occur at β = 0, where exponentially
growing modes appear in the linear spectrum.

Next we consider the solution to the nonlinear ODE (10).
This nonlinear equation is exactly solvable, and its general
solution is

A(Z) = A0exp

[
−iμ̃Z − i

σ̃ |A0|2
2 Re[iμ̃]

(e−2 Re[iμ̃]Z − 1)

]
,

(17)

where A0 is the initial envelope value. The amplitude of this
nonlinear solution evolves as

|A(Z)| = |A0|e−Re[iμ̃]Z, (18)

which is exactly the same as that of the linear solution A(Z) =
A0e

−iμ̃Z . This indicates that nonlinearity does not affect the
magnitude of the envelope solution (regardless whether the
nonlinearity is self-focusing or self-defocusing). In particular,
for the first-harmonic perturbation (12) where μ̃ = βc, when
Re[iβc] < 0, the linear solution will grow exponentially. In
this case, nonlinearity will not arrest this exponential growth
at larger amplitudes.

The above predictions for the solution dynamics are verified
with direct numerical computations of the original system (1).
For this purpose, we first take

V0 = 2 sechx, ε = 0.2 (19)
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FIG. 2. (Color online) (a),(b) z-direction modulations of the
waveguide (3) at x = 0 for β = i and β = −i in the first-harmonic
perturbations (12) with parameters (19), respectively; solid blue is
refractive-index variation and dashed red gain-loss variation (positive
for gain and negative for loss); (c),(d) amplitude evolution in the
nonlinear simulation of Eq. (1) with σ = 1 for β = i and β = −i,
respectively; the analytical solution is also plotted as dashed red lines
for comparison.

in our waveguides (3) and (12). In this case, the unperturbed
real waveguide V0 has a single discrete eigenvalue μ0 ≈
−1.245 < −1; hence c is real and numerically found to be
c ≈ −0.369. Then our theoretical analysis predicts that for
any nonreal value of β in the first-harmonic perturbation (12),
a complex eigenvalue bifurcates out from μ0 according to
formula (15). Numerically this is confirmed. In addition, it
is found that this bifurcated eigenvalue is the only complex
eigenvalue in the linear spectrum. To verify the nonlinear
amplitude formula (17), we choose two β values of i and −i.
The corresponding z-direction modulations of the perturbed
waveguide at x = 0 are displayed in Figs. 2(a) and 2(b),
respectively. In these perturbed waveguides, we take the initial
condition ψ(x,0) = εA0u0(x), where A0 = 1 and u0(x) is the
eigenmode of eigenvalue μ0 in the unperturbed waveguide
V0 with normalized peak height of 1. The simulation of the
original equation (1) under this initial condition is plotted
in Figs. 2(c) and 2(d) for β = i and −i, respectively. Here
the solution’s amplitude at x = 0 versus z is displayed. For
comparison, the analytical amplitude solution |εA(Z)u0(0)|
with |A(Z)| given by (18) is also plotted. As predicted by the
ODE model (10), the solution for β = i exponentially decays,
while that for β = −i exponentially grows. In the latter case,
this growth is not arrested by nonlinearity [even for longer
distances than those shown in panel (d)], in agreement with the
analytical solution (18). It is noted that amplitude oscillations
in the numerical solution are due to higher-order terms in
the perturbation expansion (7), which are not accounted for
in our leading-order analytical solution plotted in this figure.
Physically these amplitude oscillations are due to periodic gain
and loss in the waveguide.

The growth and decay of solutions in Fig. 2 for different
values of β can be intuitively understood. When Im(β) > 0,
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modulations of the real and imaginary parts of the waveguide
V have a phase difference between zero and π/2. Recalling
Im(V ) > 0 corresponds to loss and Im(V ) < 0 to gain, we
see that the region with strongest index of refraction, where
the beam is at its strongest, corresponds to a region of loss [see
Fig. 2(a)]; thus the beam decays over distance. Conversely,
when Im(β) < 0, modulations of the real and imaginary parts
of V have a phase difference between π/2 and π . This means
the region with strongest index of refraction corresponds to
a region of gain [see Fig. 2(b)]; thus the beam grows over
distance.

The prediction of phase transition at β = 0 in the PT -
symmetric first-harmonic perturbation (12) (with real β) is also
numerically confirmed. In this case, the perturbed waveguide
can be rewritten as

V (x,z) = V0(x)[1 + ε(1 + β) cos z + iε(1 − β) sin z], (20)

thus 1 − β controls the strength of gain and loss. In the
numerics, we take

V0 = sechx, ε = 0.2. (21)

Then the unperturbed potential V0 has a unique discrete
eigenvalue μ0 ≈ −0.518 > −1, which results in a complex
constant c ≈ −0.014 + 0.162i from formula (13). Conse-
quently Eq. (15) predicts an exponentially growing linear
mode when β < 0. Since the waveguide is PT symmetric,
all complex eigenvalues come in conjugate pairs. For β < 0
this means a pair of complex eigenvalues bifurcate out at
β = 0, which is verified numerically in Fig. 3(a). As seen
in the figure, the prediction from the analytical eigenvalue
formula (15) matches numerical values very well.

The asymptotic nature of the eigenvalue formula (15) for
ε � 1 is numerically verified as well. For this purpose, we
fix β = 1 and allow ε to vary. The imaginary part of the
numerically obtained eigenvalue μ versus ε is displayed in
Fig. 3(b). This figure reveals a quadratic dependence on ε

when ε � 1. Comparison between the numerical values and
the theoretical prediction (15) as illustrated in the figure shows
good agreement.

For β > 0 in the perturbed waveguide (20) and (21),
the theoretical formula (14) predicts a decaying amplitude
for eigenmode u0(x). This seems to suggest a complex
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FIG. 3. (Color online) (a) Complex eigenvalues for the phase
transition in β in the PT -symmetric waveguide (20) with pa-
rameters (21). (b) Complex eigenvalue bifurcation in ε in the
waveguide (20) with β = 1. In both figures, solid blue is numerical
values and dashed red analytical predictions.

eigenvalue (15) for a decaying eigenmode in the linear
spectrum. However, due to PT symmetry of the waveguide,
any complex eigenvalue of a decaying eigenfunction would
have to be paired with the complex conjugate of this eigenvalue
for a growing eigenfunction. Since our perturbation theory
does not detect growth in the physical solution, we conclude
that the decay of the eigenmode u0(x) for β > 0 is due to the
shedding of radiation and that the spectrum remains real. This
matches, numerically, both computations of the spectrum and
evolutions of the initial eigenmode u0(x).

III. NON-PT -SYMMETRIC WAVEGUIDES WITH
ALL-REAL LINEAR SPECTRUM

It is seen from the previous section that, for first-harmonic
perturbations (12), the linear spectrum is generically partially
complex for nonreal values of β, i.e., when the perturbed
waveguide is non-PT symmetric. However, we have found
two notable families of complex waveguides which are
non-PT symmetric but still possess all-real linear spectra.
This is quite surprising, since in complex waveguides with
transverse gain-loss variations, all-real spectra are very rare
for non-PT -symmetric systems [27].

The first family consists of waveguides (3) and (4) with
unidirectional Fourier series decomposition, i.e., an = 0 for
either n < 0 or n > 0. In our calculation of the shifted
eigenvalue μ = μ0 + ε2μ̃ with μ̃ given in Eq. (11), notice
that μ̃ = 0 for a unidirectional Fourier series; hence the
eigenvalue μ0 does not shift at all under these complex
waveguide perturbations. Regarding other eigenvalues in the
linear spectrum, we have verified numerically that they do not
shift to the complex plane either; thus the linear spectrum is
all real for waveguides of this type.

The second family consists of separable waveguides,
V (x,z) = Va(z) + Vb(x), where

∫ 2π

0 Im[Va(z)]dz = 0 (mean-
ing that the gain and loss are balanced along the propagation
direction), and Vb(x) is real. In this case, Bloch modes (16)
in the linear equation (1) can be decomposed as μ = μa + μb

and u(x,z) = ua(z)ub(x), where (ua,μa),(ub,μb) satisfy the
following one-dimensional eigenvalue problems:

[i∂z + Va(z)]ua = −μaua,

[∂xx + Vb(x)]ub = −μbub.

The first eigenvalue problem has an exact solution

ua(z) = exp

{
iμaz + i

∫ z

0
Va(ξ )dξ

}
.

Thus for waveguides with equal amounts of gain and loss, i.e.,∫ 2π

0 Im[Va(z)]dz = 0, its μa spectrum is all real. The second
eigenvalue problem is a Schrödinger eigenvalue problem.
Thus for real waveguides Vb(x), its spectrum is also all
real. Together, we see that for the separable waveguides of
the above form, the linear spectrum is all real. Notice that
these separable waveguides are non-PT symmetric in general;
thus they constitute another large class of non-PT -symmetric
waveguides with all-real spectra.
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IV. LONGITUDINALLY PERIODIC NONLINEAR MODES

In this section we consider nonlinear z-periodic modes in
these modulated waveguides. Such modes are of the form

ψ(x,z) = e−iμzu(x,z), (22)

where μ is a real propagation constant, and u(x,z) is 2π

periodic in z. From the reduced ODE model (10) for the first-
harmonic perturbation (12), we see that when the waveguide
is non-PT symmetric (i.e., β is nonreal) the solution (17)
will generically grow or decay (since μ̃ = βc is generically
complex); thus nonlinear z-periodic modes are not expected.
But when the waveguide is PT symmetric and μ0 < −1,
where μ̃ = βc is real, the nonlinear solution to the ODE model
is

A(Z) = A0exp[−iβcZ + iσ̃ |A0|2Z]. (23)

Since both βc and σ̃ are real, when this A(Z) function is
substituted into the perturbation series solution (6) and (7),
analytical z-periodic nonlinear modes (22) with

μ = μ0 + ε2(βc − σ̃ |A0|2) (24)

are then obtained. In this μ formula, the amplitude parameter
A0 is arbitrary. Thus a continuous family of nonlinear
z-periodic modes parametrized by the propagation constant
μ are predicted. Our perturbation analysis also reveals another
important property about these z-periodic modes, i.e., they
contain weak transversely nonlocal tails and are thus not fully
localized. The order at which these nonlocal tails appear in
the perturbation series depends on the unperturbed waveguide
V0(x) as well as the waveguide perturbation V1(x). For the
first-harmonic perturbation (12) with V0 = 2 sechx [as in (19)],
μ0 ≈ −1.245; thus nonlocal tails appear at the O(ε3) term
of expansion (7) in the e−2iz harmonics. For perturbations
with V0 = sechx [as in (21)], μ0 ≈ −0.518; thus nonlocal
tails appear at the O(ε2) term of expansion (7) in the e−iz

harmonics. Since these transversely nonlocal tails occur at
higher orders of the perturbation series, the resulting z-periodic
nonlinear mode is then quasilocalized, i.e., the height of the
solution’s tails at x → ±∞ is much less than the solution’s
peak amplitude.

Numerically we have confirmed the existence of these
z-periodic and transversely quasilocalized nonlinear modes
in Eq. (1) for PT -symmetric waveguides. In addition, we
have found that these modes exist both below and above phase
transition. These solutions are computed as a boundary value
problem in the (x,z) space by the Newton-conjugate-gradient
method [28]. To demonstrate, we take the first-harmonic
perturbation (12) with

V0 = 2 sech2x, ε = 0.2. (25)

We also take σ = 1 (focusing nonlinearity). These waveguides
with β values of 0.5 and −0.5 (below and above phase
transition) are illustrated in Figs. 4(a) and 4(b), respectively.
For β = 0.5 below phase transition, this family of nonlinear
modes is displayed in Fig. 4(e). It is seen that these modes
bifurcate from μ ≈ −1.011 where its amplitude approaches
zero. The analytical bifurcation point from formula (24), with
A0 set to zero, is μanal ≈ −1.014, since μ0 = −1 and c ≈
−0.691 for the present waveguide. Apparently the numerical
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FIG. 4. (Color online) Families of longitudinally periodic and
transversely quasilocalized nonlinear modes in PT -symmetric
waveguides below and above phase transition. The waveguide is (3)
with first-harmonic perturbations (12) and parameters (25), and
σ = 1. (a),(b) Modulated waveguides vs z at x = 0 for β = 0.5
(below phase transition) and β = −0.5 (above phase transition),
respectively; solid blue is refractive-index variation and dashed
red gain-loss variation (positive for gain and negative for loss);
(c),(d) example nonlinear modes in waveguides of (a),(b), respec-
tively; (e),(f) nonlinear modes’ peak amplitude vs the propagation
constant μ in waveguides of (a),(b); solid blue lines are numerical
values, while the dashed red line in (e) is analytical predictions. The
locations of example modes in (c),(d) are marked by black dots.

and analytical bifurcation points are in good agreement.
Further comparison between the numerically obtained peak
amplitudes of these modes and analytically obtained εA0 val-
ues from Eq. (24) for varying μ values can be seen in Fig. 4(e).
An example solution, with μ = −1.04, is shown in Fig. 4(c).
Notice that this solution is strongly localized, since its nonlocal
transverse tails are very weak and thus almost invisible.

At β = −0.5 above phase transition, these nonlinear
modes are found as well, whose peak amplitude versus the
propagation constant μ is depicted in Fig. 4(f). These solutions
do not bifurcate from infinitesimal linear modes; thus its
peak amplitude does not reach zero. An example solution
at μ = −1.044 is shown in Fig. 4(d). This solution is also
strongly localized with tails almost invisible.

We have examined the stability of these z-periodic nonlin-
ear modes by simulating their evolution under perturbations
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FIG. 5. (Color online) Evolution of a weak initial condition in
a PT -symmetric waveguide above phase transition. (a) Solution
evolution in the (x,z) plane; (b) amplitude evolution vs distance z. In
this figure, solutions are plotted at distances z = 2nπ , where n is an
integer; thus amplitude oscillations inside each z-period 2π (caused
by gain and loss regions) are invisible.

in Eq. (1), and they are found to be stable. This stability holds
even when the waveguide is above phase transition. In the latter
case, an initial localized function whose amplitude is above the
threshold of periodic nonlinear modes in Fig. 4(f) would evolve
into one of these modes. If the initial amplitude is very small,
then it will first grow exponentially due to the existence of
complex (unstable) eigenvalues in the linear spectrum above
phase transition. Subsequently in the nonlinear regime, we
find that its growth saturates, and the solution approaches
a z-periodic nonlinear state. This evolution is illustrated in
Fig. 5 for the waveguide of Fig. 4(b) (with σ = 1) under the
initial condition ψ(x,0) = 0.02 sechx. This growth saturation

by nonlinearity in PT -symmetric waveguides (above phase
transition) contrasts that in non-PT -symmetric waveguides,
where the exponential growth is not arrested by nonlinearity
[see Sec. II and Fig. 2(d)].

V. SUMMARY

In summary, we have studied light propagation in complex
waveguides with periodic refractive-index modulations and
alternating gain and loss along the direction of propagation.
Our analysis is based on a multiscale perturbation theory,
supplemented by direct numerical simulations. We have shown
that non-PT -symmetric waveguides often possess complex
eigenvalues in their linear spectrum, but several classes of such
waveguides with all-real linear spectra are also identified. We
have also shown that PT -symmetric waveguides can exhibit
phase transition. In the nonlinear regime, we have shown that,
for non-PT -symmetric waveguides, cubic nonlinearity does
not alter the exponential growth or decay of the related linear
system. But for PT -symmetric waveguides, continuous fami-
lies of longitudinally periodic and transversely quasilocalized
nonlinear modes exist both below and above phase transition.
In the latter case, low-amplitude initial conditions eventually
develop into these nonlinear periodic states.
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