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Various families of charge-1 vortex solitons in two-dimensional periodic media are reported. These vortices
reside either in the semi-infinite gap or higher band gaps of the media. For both Kerr and saturable nonlin-
earities �either focusing or defocusing�, infinite vortex families are found. All these families do not bifurcate
from Bloch bands; rather, they turn around before reaching the edges of the Bloch bands. It is further revealed
that vortices with drastically different topological shapes can belong to the same vortex family, which is quite
surprising.
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I. INTRODUCTION

Nonlinear wave propagation in periodic media is an im-
portant phenomenon, and it arises in a wide array of physical
settings such as photonic-crystal fibers �1,2�, photorefractive
crystals imprinted with a photonic lattice �3,4�, and Bose-
Einstein condensates loaded in an optical lattice �5–7�. The
interplay between nonlinearity and periodicity results in a lot
of new physical effects of the wave propagation. For in-
stance, in a periodic media, solitons can exist not only under
focusing nonlinearity, but also under defocusing nonlinearity
�8–10�. A distinctive feature of periodic media is that they
can support a wide variety of solitons residing in different
band gaps. Examples include fundamental solitons
�9,11–17�, dipole solitons �18,19�, vortex solitons
�13,20–24�, reduced-symmetry solitons �25�, higher-band
vortex solitons �6,26–28�, embedded-soliton trains �29�, and
so on—many of which have been experimentally observed.
Solitons in Bessel-ring lattices have been reported too
�30,31�. In an effort to classify solitons in two-dimensional
�2D� periodic media, Shi and Yang �32� studied low-
amplitude solitons near Bloch-band edges. These solitons are
Bloch waves modulated by slowly varying envelope func-
tions. Using asymptotic techniques, they derived envelope
equations, based on which they successfully classified all
soliton families bifurcating from Bloch-band edges. Ex-
amples include fundamental solitons, reduced-symmetry
solitons, dipole-array solitons, and many others. However, a
peculiar question arose on vortex solitons. According to the
envelope equations, those vortex solitons should also bifur-
cate from Bloch-band edges. However, numerical results
suggest that they disappear before reaching the band edges
�33,34�. This paradox has not been resolved yet, and it casts
a cloud over vortex-soliton research in periodic media.

In this paper, we comprehensively investigate charge-1
vortex solitons residing in various band gaps of a 2D peri-
odic media and resolve the above paradox on this subject.
For both the Kerr �cubic� and saturable nonlinearities, we
find that there exist infinite families of on-site and off-site
vortex solitons in the semi-infinite gap �for focusing nonlin-
earity� and in the first gap �for defocusing nonlinearity�. We
further show that all these vortex families do not bifurcate
from the edges of the Bloch bands. Rather, before reaching
the band edges, they turn back and move into the band gaps

again. Within each vortex family, the shapes of the vortex
solitons undergo drastic changes as the propagation constant
varies. As a result, vortices with very different topological
structures can actually belong to the same family. These find-
ings significantly deepen our understanding of vortex soli-
tons in general periodic media.

II. VORTEX SOLITONS UNDER KERR NONLINEARITY

We first consider vortex solitons in 2D periodic media
under Kerr nonlinearity. The mathematical model for this
situation is
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FIG. 1. �Color online� Power diagrams of the first two families
of on-site �a� and off-site �b� vortex solitons in the semi-infinite gap
under focusing Kerr nonlinearity. The inset in �a� shows the 2D
square lattice of Eq. �2�; the inset in �b� zooms in on the graph near
the band edge. Vortex profiles at the marked points are shown in
Fig. 2 �on-site� and Fig. 3 �off-site�, respectively. Shaded area: the
first Bloch band.
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iUz + Uxx + Uyy + V�x,y�U + ��U�2U = 0, �1�

where U is a complex function, � takes the value of 1 for
focusing nonlinearity and −1 for defocusing nonlinearity, and
V�x ,y� is a 2D periodic potential. This equation also arises in
Bose-Einstein condensates loaded in an optical lattice �5–7�
as well as nonlinear light propagation in laser-written
waveguides �35� and photonic crystal fibers with weak trans-
verse index variation. Without loss of generality, we take the
periodic potential V�x ,y� as

V�x,y� = − V0�sin2 x + sin2 y� , �2�

and take V0=6 in all our calculations.
Vortex solitons in Eq. �1� are sought in the form

U�x,y ;z� = u�x,y�exp�− i�z� , �3�

where � is the propagation constant and u�x ,y� is a complex-
valued localized function which satisfies the equation

uxx + uyy + �� + V�x,y��u + ��u�2u = 0. �4�

We will determine these solutions numerically using the
modified squared-operator iteration method and the power-
conserving squared-operator method developed in �36�.

A. Case of focusing Kerr nonlinearity

First, we study vortex solitons supported by the focusing
Kerr nonlinearity—i.e., �=1 in Eq. �4�. Two types of vortex
solitons—on-site and off-site ones—will be sought. On-site
vortices are centered on a lattice site �lattice peak�, while
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FIG. 2. �Color online� Vortex profiles ��u�� in the first �top� and second �bottom� on-site vortex families under focusing Kerr nonlinearity
at marked points in Fig. 1�a�. The inset in �a� is the typical phase structure of all these vortices. The background circles represent the lattice
sites �with high V values�, as in Figs. 3, 5, and 6 as well.
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FIG. 3. �Color online� Vortex profiles ��u�� in the first �top� and second �bottom� off-site vortex families under focusing Kerr nonlinearity
at marked points in Fig. 1�b�. The inset in �a� is the typical phase structure of all these vortices.
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off-site vortices are centered between lattice sites �lattice
minimum� �13,20,22,23�. For each type of vortices, various
families are found in the semi-infinite gap. The power dia-
grams of the first two families of on-site and off-site vortex
solitons are shown in Figs. 1�a� and 1�b�, respectively. Here
the power is defined by P=�−�

� �−�
� �u�2dx dy. A distinctive

feature about these power curves is that each curve has a
slanted U shape. At each propagation constant � away from

the band edge, one can find two vortex solitons with different
powers within each family. Another feature of these curves is
that none of them reaches the edge of the �first� Bloch band.
This means that none of these vortex families bifurcates from
Bloch bands. These features are in stark contrast with those
for soliton families reported in �32�, which do bifurcate from
Bloch bands �in the low-amplitude limit�, and each propaga-
tion constant only corresponds to a single soliton solution
within each family. To find out what types of vortex solitons
are contained in each family, we display them at four repre-
sentative locations of each power curve in Fig. 2 �on-site�
and Fig. 3 �off-site�. First we examine the first on-site vortex
family whose power curve is the solid �blue� one in Fig. 1�a�.
At four marked positions a−d on this curve, the correspond-
ing vortex profiles are displayed in Figs. 2�a�–2�d�, respec-
tively. The phase structures of all these vortices are similar to
that of the ring vortex soliton in bulk media and shown in the
inset of Fig. 2�a�. Winding around the center of the vortex,
the phase increases by 2�; thus, these vortices have charge 1.
The intensity distributions of these vortices, on the other
hand, differ significantly at various locations of the power
curve. On the lower branch of the power curve, when � is far
away from the Bloch band, the vortex soliton consists of four
main humps residing in the four lattice sites closest to the
center site and forming a diamond configuration �see Fig.
2�a��. Hence this is the familiar on-site vortex soliton which
has been reported before �20,23,37�. When � increases to-
ward the band edge along the lower branch, the vortex’s
power as well as its peak intensity decreases and the vortex
starts to develop tails on the outside of its four main humps
�see Fig. 2�b��. As � further increases beyond a cutoff value
�c

�1�=4.107, which is close to but below the band edge
�edge=4.126, vortices in this family cannot be found any-
more. This phenomenon was first reported by one of the
authors in �33�, and it was puzzling at the time since we did
not expect a solution branch terminating abruptly away from
edges of Bloch bands. This puzzle is now resolved by Fig.
1�a�. What happens is that when � reaches the cutoff value
�c

�1�, the power curve turns around and enters the upper
branch of the same family �see Fig. 1�a��. When passing
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FIG. 4. �Color online� Power diagrams of the first family of
on-site �a� and off-site �b� vortex solitons in the first band gap under
defocusing Kerr nonlinearity. The insets zoom in on the graphs near
the band edge. Vortex profiles at the marked points are shown in
Fig. 5 �on-site� and Fig. 6 �off-site�, respectively. Shaded area: the
first two Bloch bands.
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FIG. 5. �Color online� On-site gap vortex profiles ��u�, top row� and phase structures �bottom row� corresponding to the marked points in
Fig. 4�a� under defocusing Kerr nonlinearity. Bottom right: color bar of the phase plots.
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through the turnaround, the vortex undergoes rapid shape
changes and evolves into eight main humps in a square con-
figuration surrounding the central lattice site. Tails at the out-
side of this square are significant too. As � moves away from
the Bloch band along the upper branch, the tails gradually
fade away and the eight main humps totally dominate the
vortex �see Fig. 2�d��. Thus, in this first family of on-site
vortex solitons, the vortex undergoes dramatic shape changes
from a four-humped diamondlike structure into an eight-
humped square structure. This is quite unexpected.

Regarding the second on-site family, vortex solitons at
four representative positions e−h of the power curve are
displayed in Figs. 2�e�–2�h�. The phase structures of these
vortices are similar to those in the first family �see inset of
Fig. 2�e��, i.e., these vortices also have charge 1. But the
intensity patterns in this second family are quite different
from those in the first family. Specifically, in the lower
branch of the second family, away from the Bloch band, the
vortex contains eight main humps in a larger-diamond con-
figuration �see Fig. 2�e��. As � moves continuously from the
lower branch to the upper one, the vortex continuously
evolves from this eight-humped diamond configuration to a
16-humped configuration resembling the surrounded wall of
a castle �see Figs. 2�e�–2�h��. This dramatic shape change
within the same solution family occurs for all vortex fami-
lies, and it is one of the main findings of this article.

For off-site vortex solitons in the semi-infinite gap, vari-
ous solution families are found as well. In the first off-site
family, representative solution profiles are displayed in Figs.
3�a�–3�d�. These vortices also have a simple 2�-phase wind-
ing structure around the vortex center, thus having charge 1
�see inset in Fig. 3�a��. Regarding their intensity patterns,
when � is far away from the Bloch band on the lower
branch, the vortex has four main humps occupying four ad-
jacent lattice sites in a compact square configuration. This is
the familiar off-site vortex soliton reported in �13,22,23,33�.
As � moves from the lower branch to the upper one, the
vortex changes from the four-humped square configuration
to a 12-humped compact cross configuration �see Figs.
3�a�–3�d��. In the second off-site family, lower-branch vortex

solitons away from the Bloch band have eight main humps
arranged in an octagon configuration �see Fig. 3�e��. As �
moves to the upper branch, however, the vortex becomes a
square with 12 main humps on its perimeter �see Fig. 3�h��.
Notice from Fig. 1�b� that the upper branches of these two
off-site families have almost the same power for the same
propagation constant. This is because on these two upper
branches, vortices of both families have the same number of
main humps and nearby humps are all aligned along the
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FIG. 6. �Color online� Off-site gap vortex soliton profiles ��u�, top row� and phase structures �bottom row� corresponding to the marked
points in Fig. 4�b� under defocusing Kerr nonlinearity. Bottom right: color bar of the phase plots.
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FIG. 7. �Color online� Power diagrams of an on-site vortex fam-
ily in the semi-infinite gap under focusing saturable nonlinearity.
The power curve after point f in �a� is continued in �b�. Vortex
profiles at the marked points are shown in Fig. 8. The insets zoom
in on the graphs near the band edge.
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lattice direction and separated by one lattice spacing �see
Figs. 3�d� and 3�h��. One may recall that for on-site vortices,
the upper branch of the first family and the lower branch of
the second family also have the same number of humps �see
Figs. 2�d� and 2�e��. But adjacent humps in the latter case are
aligned along diagonal directions of the lattice and have
larger spatial separations than in the former case. This caused
noticeable power differences between these two branches as
can be seen in Fig. 1�a�.

From Fig. 1, we see that both on-site and off-site vortices
can exist close to the Bloch band �see points c and g in Fig.
1�a�, for example�. We find that such vortices near the Bloch
band have lower amplitudes. For instance, the vortex at point
c in Fig. 1�a� has amplitude 0.55, and the one at point g has
amplitude 0.48. Comparatively, vortex amplitudes far away
from the Bloch band are much higher. Additionally, vortices
close to the Bloch band have long tails and they resemble the
Bloch wave of the band edge modulated by a ring-vortex
envelope �see Figs. 2�c� and 2�g�, for instance�. This seems
to suggest that vortex solitons near Bloch bands can be
treated analytically by asymptotic methods. However, such
an asymptotic analysis encounters subtle problems for vortex
solitons, as we will explain below. The low-amplitude
Bloch-wave packets in Eq. �1� have been analyzed in �32�.
Near the band edge �edge in Fig. 1 and under focusing non-
linearity, the leading-order asymptotic solution is u�x ,y�
=�A�X ,Y�p�x ,y�, �=�edge−�2. Here, p�x ,y� is the Bloch
wave at the band edge �edge �with �-point symmetry�,
X=�x, Y =�y, ��1, and the envelope function A�X ,Y� satis-
fies the equation

D1�AXX + AYY� − A + �0�A�2A = 0, �5�

where D1	0 is the second-order dispersion coefficient at the
band edge and �0	0 is a constant. The envelope equation
�5� admits a ring-vortex solution A= f�R�ei
, where �R ,
�
are the polar coordinates of the �X ,Y� plane. Due to some
additional constraints on the solution u�x ,y�, this ring enve-
lope can only be centered at certain locations at or between

lattice sites �32�. Centering the ring-vortex envelope at a lat-
tice site, the corresponding solution u�x ,y� would then be a
low-amplitude on-site vortex soliton which resembles the
ones such as Figs. 2�c� and 2�g�. Centering the ring-vortex
envelope between a lattice site, we would get a low-
amplitude off-site vortex soliton which resembles the ones in
Figs. 3�c� and 3�f�. However, a contradiction between this
asymptotic analysis and the numerical results is that, accord-
ing to the asymptotic analysis, these vortices should exist
continuously as � approaches the band edge �edge �i.e. �
→0�, but the numerical results in Fig. 1 indicate that true
vortex solitons actually do not approach the band edge for
each vortex family. An analogous phenomenon occurs for
multi-packet solitary waves in the fifth order Korteweg-de
Vries equation �38�. Apparently, the asymptotic analysis
above is not entirely correct for vortex solitons and it must
be revised in order to explain the true vortex behaviors in
Figs. 1–3. How this can be done remains to be seen.

It should be pointed out that vortex-array and vortex-cell
solitons in periodic media have been reported in �32�. Those
solitons do bifurcate out from Bloch bands, but not from the
first band. Thus they are unrelated to the vortex solitons in
Figs. 1–3.

Figure 1 just shows the first two families of on-site and
off-site vortex solitons. We have also found other vortex
families in Eq. �4� whose power curves have similar slanted
U shapes and are higher than those in Fig. 1. Vortices in
these higher families contain more intensity humps which
are located further away from the center of the vortex, but
their phase structures remain similar to those of the first two
families �i.e., they all have charge 1�. It can be inferred that
infinite families of such vortex solitons exist in the semi-
infinite gap and all of them do not bifurcate from the edge of
the first Bloch band. Within each higher family, vortex
shapes also undergo drastic changes as � moves from the
lower branch to the upper one.

The vortex solitons studied above are symmetric about the
vortex center. Asymmetric vortices also exist in a square lat-
tice �24�. We find that the power curves of asymmetric vor-
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FIG. 8. �Color online� On-site vortex profiles ��u�� corresponding to the marked points in Fig. 7 under focusing saturable nonlinearity.
�l� shows the profile of the vortex at �=1 �far from the band edge�. The inset in �a� is the typical phase structure of all these vortices. The
background circles represent the lattice sites �with high I values�, as in Fig. 10.
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tices also have slanted U shapes as in Fig. 1 and they do not
bifurcate from Bloch bands either. We also find that asym-
metric vortices reported in �24� belong to the lower branches
of these power curves. As � moves to the upper branches,
shapes of asymmetric vortices become very different and
more complex.

B. Case of defocusing Kerr nonlinearity

In this subsection, we examine vortex solitons under de-
focusing Kerr nonlinearity—i.e., �=−1 in Eq. �4�. These
vortices exist as infinite families in the first band gap. Figure
4 shows the power curves of the first on-site and off-site
gap-vortex families. It is seen that these power curves also
have a U shape, but slanted in an opposite direction from the
focusing case �see Fig. 1�. Spatial profiles and phase struc-
tures of these gap vortices at the marked points in Fig. 4 are
displayed in Fig. 5 �on-site� and Fig. 6 �off-site�. We see that
the shapes of these first-family defocusing gap vortices ��u��
resemble those of the first-family focusing vortices. Specifi-
cally, for the first on-site defocusing family, as � moves from
the lower branch to the upper one, the shape of gap vortices
changes from a four-humped diamond configuration to an

eight-humped square configuration �see Fig. 5�, analogous to
the focusing case �see Fig. 2�. For the first off-site defocusing
family, as � moves from the lower branch to the upper one,
gap vortices change from a four-humped square configura-
tion to a 12-humped cross configuration �see Fig. 6�, also
analogous to the focusing case �see Fig. 3�. The most impor-
tant difference between defocusing vortices and focusing
vortices lies in their phase structures. The phase fields of
focusing vortices have a simple 2�-winding structure like in
ring vortices of bulk media �see insets in Figs. 2�a� and 3�a��.
However, the phase structures of defocusing gap vortices are
much more complex �see Figs. 5 and 6�. In the central region
of the gap vortices, the phase field has a simple 2�-winding
structure around the vortex center. But in the outer region,
vortex phases at adjacent lattice sites sometimes have a �
difference �see Figs. 5�b�, 5�c�, 6�b�, and 6�c��, but some
other times do not �see Figs. 5�d� and 6�a��. These compli-
cated phase structures make the concept of topological
charges ambiguous and not well defined for gap vortices.
Note that gap vortices reported earlier in �6,34� correspond to
the lower branches of our gap vortices in Fig. 4.

From Fig. 4, we see that gap vortices can exist quite close
to the right edge of the first Bloch band. At this band edge,
the second-order dispersion coefficient D1 is negative. Thus
according to the envelope equation for this band edge, which
is similar to Eq. �5� with only the sign of the A term reversed,
ring-vortex solutions A= f�R�ei
 exist under defocusing non-
linearity �where �0�0�. Hence for � close to this band edge,
one may construct the analytical gap-vortex solution u�x ,y�
=�A�X ,Y�p�x ,y�, where p�x ,y� is the Bloch wave at this
right edge �with M-point symmetry�. This analytical gap-
vortex solution qualitatively reproduces the intensity distri-
bution, and more importantly, the intricate phase structure, of
the true solution near the right edge of the first band �see
Figs. 5�b� and 6�b�, for instance�. In particular, it explains the
simple 2� winding of the phase near the vortex center and
the � phase difference between lattice sites in the far field
�due to the M-point symmetry of the Bloch wave at this band
edge�. Of course, this analytical gap-vortex solution cannot
explain why true gap vortices exist as infinite families and
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FIG. 9. �Color online� The power diagram of an off-site vortex
family in the semi-infinite gap under focusing saturable nonlinear-
ity. Vortex profiles at the marked points are shown in Fig. 10.
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FIG. 10. �Color online� Off-site vortex profiles ��u�� corresponding to the marked points in Fig. 9 under focusing saturable nonlinearity.
The inset in �a� is the typical phase structure of all these vortices.
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each family does not continuously reach the band edge—the
same difficulty we have seen with the focusing nonlinearity
in the previous subsection.

III. VORTEX SOLITONS UNDER SATURABLE
NONLINEARITY

In photorefractive crystals where many lattice-soliton ex-
periments were performed in recent years, the nonlinearity is
saturable �39�. Even though wave phenomena under satu-
rable and Kerr nonlinearities have many features in common,
significant differences exist as well. In this section, we ex-
amine vortex solitons under saturable nonlinearity.

A simple theoretical model for solitons in photorefractive
crystals imprinted with a photonic lattice is �37,39�

uxx + uyy −
E0

1 + I�x,y� + �u�2
u = − �u , �6�

where E0 is the applied dc field,

I�x,y� = I0 cos2 �x�cos2 �y� �7�

is a periodic square-lattice function, I0 is the peak intensity
of this lattice, and � is the propagation constant. Here all
variables have been nondimensionalized �37�. When the soli-
ton amplitude is low ��u��1�, the saturable nonlinearity be-
comes the same as the Kerr nonlinearity. Therefore, we can
expect that near Bloch bands, the vortex behavior under satu-
rable nonlinearity should be similar to that under Kerr non-
linearity. In particular, they cannot bifurcate from Bloch
bands either. Below we numerically investigate vortex soli-
tons in the semi-infinite gap in Eq. �6� under focusing non-
linearilty �E0	0�. Without loss of generality, we choose the
parameters I0=3 and E0=6. Vortex solitons in the first band
gap under defocusing saturable nonlinearity will be briefly
described in the end of this section.

First, we examine on-site vortex solitons under focusing
saturable nonlinearity. An infinite number of such vortex
families exist in the semi-infinite gap, and one of them is
reported below. The power curve of this family is displayed
in Fig. 7. We see that this curve is quite complicated. It has a
number of turning points �twists� and winds up and down in
an unexpected way �a somewhat similar power curve was
reported for 1D lattice solitons under cubic-quintic nonlin-
earities in �40��. All vortices in this family have simple
2�-phase winding structures, thus having charge 1 �see inset
of Fig. 8�a��. Their intensity structures along the power curve
are displayed in Fig. 8. It is seen that far from the band edge
�point a in Fig. 7�, the power is very high and the vortex has
a ring profile �see Fig. 8�a��. This ring profile can be easily
understood since the vortex here has high intensities and
dominates over the lattice; thus, it effectively becomes a ring
vortex in lattice-free �bulk� media. As the power and inten-
sity decrease �when � moves toward the Bloch band�, the
lattice effect starts to appear and the vortex reshapes itself by
distributing its main power to the lattice sites. This leads to a
four-humped on-site vortex as seen in Figs. 8�b� and 8�c�.
This vortex has been theoretically analyzed in �37� and ex-
perimentally observed in �23�. This reshaping process, how-

ever, is a delicate one as is evidenced by the two turning
points near b in the power curve of Fig. 7�a�. As the power
curve gets close to the first band �see points c and d�, the
vortex starts to spread out and its amplitude becomes low.
Vortices here closely resemble those of the first on-site Kerr
family near the first band �see Figs. 2�b� and 2�c��. There-
fore, the power curve of saturable vortices cannot reach the
first band either and has to turn around before reaching the
band edge. After the turning point, the power starts to in-
crease �as � moves away from the Bloch band� and the vor-
tex reshapes itself again. This time, after a complex reshap-
ing process, the eight-humped square vortex at point d
becomes a four-humped square vortex with its humps resid-
ing near the four diagonal lattice sites around the vortex cen-
ter �see Figs. 8�e� and 8�f��. Strangely, in this reshaping pro-
cess, the power curve turns around again at �=1.832
�between e and f in Fig. 7�a�� and starts to decrease toward
the first band �see g in Fig. 7�b��. Near the first band, the
power curve turns around again and moves back into the
semi-infinite gap �see inset in Fig. 7�b��. Near the turning
point, the vortex spreads out again �see Figs. 8�h� and 8�i��.
Shortly after turning back, the vortex exhibits another com-
plex reshaping process evidenced by a twist in its power
curve �see the inset in Fig. 7�b� near point i�. Afterwards, the
power curve moves into the semi-infinite gap smoothly and
the vortex ultimately becomes four fundamental solitons
with � /2-phase delay between each other. Figure 8�l� shows
such a vortex when the propagation constant �=1, which is
far away from the Bloch band �this point lies outside the axis
windows in Fig. 7�. The complexity of the power curve as
well as the intricate reshaping process of vortices exhibited
in this saturable-vortex family is very remarkable and is
rarely seen in other wave systems.

Now we consider off-site vortex solitons under focusing
saturable nonlinearity. Again, many families of them are
found. One such family is shown in Fig. 9 �power curve� and
Fig. 10 �vortex profiles�. We see that this power curve and its
vortex reshaping process are simpler. Indeed, unlike the
above on-site saturable case, the power curve here has no
twists. It does have a turning point near the Bloch band
though, just like all other vortex families reported in this
paper. At high powers, the off-site vortex has a ring profile
�Fig. 10�a��. As its power decreases �with increasing � val-
ues�, it reshapes itself into a four-humped off-site vortex oc-
cupying four adjacent lattice sites �Figs. 10�b� and 10�c��.
These vortices have been theoretically analyzed and experi-
mentally observed in �22,23,37�. Comparing these vortices
with those of off-site Kerr vortices in Fig. 3, we can see that
this saturable-vortex family is the counterpart of the first off-
site Kerr-vortex family. As the propagation constant � moves
from the lower branch to the upper one, this saturable vortex
continuously reshapes itself and eventually turns into four
humps with a � /2-phase delay between each other �as in the
on-site case�. In all vortices of this off-site family, their phase
fields have simple 2� winding around the vortex center �see
inset in Fig. 10�a��, thus having charge 1.

When the saturable nonlinearity is of defocusing type
�E0�0�, infinite families of vortex solitons exist in the first
band gap. In this case, we have found that saturable vortices
show similar behaviors �in power curves and vortex shapes�
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as defocusing Kerr vortices in Figs. 4–6; thus, such results
will not be displayed here.

IV. SUMMARY AND DISCUSSION

In this paper, we examined various families of charge-1
vortex solitons in 2D periodic media. For both Kerr and satu-
rable nonlinearities, we found that there exist infinite fami-
lies of on-site and off-site vortex solitons in the semi-infinite
gap �for focusing nonlinearity� and the first gap �for defocus-
ing nonlinearity�. We further showed that all these vortex
families do not bifurcate from edges of Bloch bands. Rather,
before reaching band edges, they turn back and move into
band gaps again. Within each vortex family, we revealed that
topological structures of vortex solitons undergo drastic
changes �such as evolving from a square configuration to a
cross configuration� as the propagation constant varies.

Regarding the linear stability of vortex solitons, it was
shown before that certain on-site and off-site charge-1 vortex
solitons in the semi-infinite gap �under focusing nonlinearity�
are stable in deep lattice potentials or with weak intersite
couplings �13,20,28,37,41�. Certain on-site and off-site gap
vortices under defocusing nonlinearity are stable as well

�6,28�. Such vortices generally correspond to the lower
branches of first-family vortices reported in this paper �see
Figs. 3�a� and 6�b�, for instance�. It will be interesting to
investigate the linear stability of upper branches of first-
family vortices as well as branches of higher-family vortices
obtained in this paper. The stability results on a discrete 2D
NLS model �41� imply that some of the upper branches of
vortices in our continuous models are linearly unstable �such
as Fig. 2�d��. In such cases, one can ask where on the vortex
branches the instability starts to appear. Note that all vortices
reported in this paper have charge 1. It is known that vortices
with more intensity humps may be stabilized by increasing
their charges �41,42�. For instance, the vortex in Fig. 2�d�
can be stabilized if its charge increases to 3 �41�. Thus it
would be interesting to study vortex families with higher
charges as well as their stability properties. These questions
will be left for future studies.
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