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Multisoliton perturbation theory for the Manakov equations and its applications
to nonlinear optics

Jianke Yang
Department of Mathematics and Statistics, The University of Vermont, 16 Colchester Avenue, Burlington, Vermont 05401

~Received 2 June 1998!

The effect of small perturbations on the collision of vector solitons in the Manakov equations is studied in
this paper. The evolution equations for the soliton parameters~amplitude, velocity, polarization, position, and
phases! throughout collision are derived. The method is based on the completeness of the bounded eigenstates
of the associated linear operator inL2 space and a multiple-scale perturbation technique. These results are
applied to the coupled nonlinear Schro¨dinger equations, which govern the pulse propagation in birefringent
nonlinear optical fibers. Both transmission and repulsion scenarios are predicted. More interestingly, it is found
that, near the transition from transmission to repulsion, the collision outcome is very sensitive to the cross-
phase modulational coefficient and initial soliton parameters. Rapid and considerably large oscillations in the
parameters of the final vector solitons are observed. All these predictions are confirmed by direct numerical
simulations. Applications of these results to ultrafast soliton switching devices are also discussed.
@S1063-651X~99!10702-5#

PACS number~s!: 42.65.Tg, 41.20.Jb
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I. INTRODUCTION

Nonlinear pulse propagation in optical fibers has be
studied over 30 years. The idea of using optical solitons
information bits in high-speed telecommunication syste
was first proposed in 1973@1#, and then demonstrated ex
perimentally in 1980@2#. In the following years, as fibe
technology advanced, interest in optical soliton transmiss
started to increase. Multigigabits transmission over m
than 10 000 km was reported regularly starting in 1991.
further increase the bit rate and transmission distance, n
techniques such as wavelength division multiplexi
~WDM!, polarization division multiplexing~PDM!, and dis-
persion management have been proposed and utilized. V
ous all-optical ultrafast soliton switches have also been
signed and demonstrated. These techniques have sp
fresh interest in the theoretical modeling of pulse propa
tion and collision in the underlying communication system

In an ideal fiber, optical solitons can be modeled appro
mately by the nonlinear Schro¨dinger~NLS! equation, whose
solution behaviors are completely known@3,4#. But in real-
ity, optical fibers are birefringent. Pulses travel at sligh
different speeds along the two orthogonal polarization ax
This effect has been analyzed in@5#, where two coupled
nonlinear Schro¨dinger ~CNLS! equations were derived fo
the pulse propagation along the two polarization axes. I
linearly birefringent fiber, the cross-phase modulatio
~XPM! coefficient is 2/3. But it may take other values if th
birefringence is elliptic@6#. If the birefringence randomly
varies along the fiber due to bending, twisting, and the en
ronmental perturbations, the pulses evolve according to
Manakov equations with corrections caused by polariza
mode dispersion@8,9#. The CNLS equations also arise fo
beam propagation in crystals@10–12#. In this case, the XPM
coefficient can be very close to one. Water waves is ano
field where these equations are relevant@13,14#.

Birefringent fibers also support optical solitons~they are
PRE 591063-651X/99/59~2!/2393~13!/$15.00
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called vector solitons! @7,25#. The collision of vector solitons
is critical in many optical switching devices and nonline
optical telecommunication networks. In all-optical solito
switching, various ultrafast digital logic gates have been p
posed and experimentally demonstrated@15,16#. These logic
gates utilize the phase or frequency shift created by the
lision between orthogonally polarized solitons. They can o
erate at bit rates up to 0.2 THz. In long haul telecommu
cation systems, PDM and WDM technology have be
explored. In a PDM system, solitons are launched alterna
along the fast and slow axes of a birefringent fiber in orde
reduce the tail interference of adjacent solitons@17#. This
technique could double the transmission rate of a sing
wavelength channel with little increase in bit error rate. In
WDM system, multiple channels with finite frequency sep
rations are utilized. This technique could increase the to
transmission rate of a communication line by many fold. B
when these two techniques are combined, collision betw
solitons in different channels will arise. This will alter th
polarization states of the originally orthogonal solitons, a
thus ruin the benefits of the PDM system. In fact, it has be
shown recently by experiments and theoretical analysis
the WDM and PDM systems are incompatible@18,19#. In
crystals, collision of beams~spatial vector solitons! is also an
interesting question. A spatial soliton logic gate based on
interaction of two orthogonally polarized beams has a
been proposed@12,20#.

Collision of vector solitons in the CNLS equations h
been studied before@21,23–25#. If the XPM coefficient is
one, the equations are the integrable Manakov equati
The soliton collision is elastic, and the outcome has be
explicitly specified@21,22#. But in many situations, this co
efficient is not equal to one. Furthermore, small perturbati
such as polarization mode dispersion, third-order dispers
and Raman scattering may also need to be considered
such cases, the collision is inelastic and more difficult
analyze. In the work@23–25#, such small perturbations wer
neglected, while the XPM coefficient was taken differe
2393 ©1999 The American Physical Society
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from one. In@23#, the authors studied this inelastic collisio
between two orthogonally polarized solitons. They nume
cally demonstrated the transmission, reflection and fus
scenarios depending on the precollision soliton parame
They also qualitatively explained some of these scena
using a simple analytical estimate based on spatial reson
between the two solitons. In@24#, this collision was investi-
gated numerically. It was shown that large collision spe
causes little radiation, but appreciable changes in the p
ellipticity. Smaller relative speed gives imperfect collisio
for nearly orthogonal, linearly polarized pulses. In@25#, we
showed that the CNLS equations support many types of v
tor solitons. Only the single-hump ones are stable. Usin
NLS soliton in a slowly varying potential model, we ex
plained certain types of transmission and reflection beh
iors. We also showed numerically that collision of two ve
tor solitons could create one or more new vector soliton
the XPM coefficient is large.

Despite the above efforts, a rigorous analytical theory
scribing the collision process has still been lacking. In t
paper, we present such an analytical theory. We study
collision of two vector solitons, based on the perturb
Manakov equations:

iAt1Axx1~ uAu21uBu2!A5eM ~A,B,]x ,] t!, ~1.1a!

iBt1Bxx1~ uBu21uAu2!B5eN~A,B,]x ,] t!. ~1.1b!

Here A and B are complex functions, ande!1. When e
50, Eqs.~1.1! are the integrable Manakov equations. Vec
solitons collide with each other elastically, except that th
polarizations may change after collision. If the incomi
vector solitons have the same or orthogonal polarizatio
such change will not occur. Whene!1, Eqs.~1.1! are the
perturbed Manakov equations. Generally, all the soliton
rameters will change after collision. Three types of analyti
approaches are known for studying the dynamics of solit
and their collisions in perturbed integrable systems. They
the variational principle method, the direct perturbation te
nique based on a Green’s function, and the perturbed inv
scattering method. These methods have been compre
sively reviewed in@26#. Some of the recent contributions ca
be found in@27–30#. As far as soliton collision is concerned
these methods have been applied to the KdV, modified K
NLS, sine-Gordon, and Benjamin-Ono equations under p
turbations@26,28#. Collision scenarios, such as fusion of
soliton pair into a breather and transmissive collision, ha
been analyzed in detail. The perturbation theory for a sin
soliton of the Manakov system has also been develo
@9,31,32#.

In the present paper, we study the soliton collision in
perturbed Manakov equations. Our method is based on
closure of the bounded eigenstates of the associated li
operator and a direct perturbation technique~see@33,29,30#!.
We first construct the exact two-soliton solution of t
Manakov equations by the Hirota method. Then, we emp
this perturbation technique to the colliding vector solito
under perturbations, and derive the evolution equations
the amplitudes, velocities, polarizations, positions, a
phases of the two colliding solitons. Integration of these e
lution equations will give these soliton parameters throu
i-
n
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out the collision. Such information is valuable for unde
standing the collision process of vector solitons in t
presence of perturbations. As an example, we consider
CNLS equation with the XPM coefficient close to 1, an
study in detail the collision of two orthogonally polarize
solitons. We find that both transmission and reflection s
narios can occur. Transmission typically happens when
XPM coefficient or the collision speed is larger than certa
critical values. Reflection arises when the opposite con
tions are true. In both cases, the soliton parameters
changed considerably after collision. More interesting
when the collision changes from transmission to repulsi
the parameters of the outcoming solitons are very sensitiv
those of the incoming solitons and the XPM coefficie
Rapid and appreciable oscillations in the parameters of
outcoming solitons are observed just before and after
transition. All these theoretical predictions are confirmed
our direct numerical simulations. We also find, through n
merical calculations, that two colliding solitons can also fu
into one, or new vector solitons can be created, after co
sion. This may happen when the XPM coefficient is not clo
to one, which lies outside the regime of the current pert
bation theory. In the end, we discuss the implications
these results to digital soliton logic gates, and propos
soliton-repulsion logic gate using birefringent fibers.

This paper is organized as follows. In Sec. II, we det
mine the exact two-soliton solution of the Manakov equ
tions by the Hirota method. In Sec. III, we derive the evo
tion equations for the soliton parameters throughout collis
for the perturbed Manakov equations. In Sec. IV, we ap
these results to the CNLS equation. In particular, we stu
the collision of two orthogonally polarized solitons, and d
cuss the analytical and numerical results in detail. In Sec
we summarize the main results obtained in the previous
tions, and explore their applications to soliton switching d
vices.

II. EXACT TWO-SOLITON SOLUTIONS
IN THE MANAKOV EQUATIONS

When e is zero, Eqs.~1.1! are the Manakov equations
which allow exactN-soliton solutions. These solutions ca
be determined by Hirota’s method. The two-soliton soluti
has been given by Radhakrishnanet al. @22#. For the conve-
nience of the present analysis, we will explicitly introdu
the polarization and phase variables of the solitons, and
formulate their solution.

The one-soliton solution of the Manakov equations
given by

FABG5F cosueid

sinue2 idG eh

11eh1h* , ~2.1!

where

h5ax1 ia2t1h0 , ~2.2!

a5r 1 iv, h05j01 i z0 , ~2.3!

andr, v, u, d, j0 , andz0 are real constants. This soliton ca
be rewritten as
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FABG5F cosueid

sinue2 idG&rei $vx1~r 22v2!t1z0% sech$r ~x22vt !

1j0%. ~2.4!
es
We can see that it has amplitude&r , velocity 2v, polariza-
tion u, initial central position2j0 /r , in-phase constantz0 ,
and opposite phase constantd.

The two-soliton solution is given by
A5
a1eh11a2eh21eh11h1* 1h21S11eh11h21h2* 1S2

11eh11h1* 1R11eh11h2* 1S01eh1* 1h21S0* 1eh21h2* 1R21eh11h1* 1h21h2* 1R3
, ~2.5a!

B5
b1eh11b2eh21eh11h1* 1h21S181eh11h21h2* 1S28

11eh11h1* 1R11eh11h2* 1S01eh1* 1h21S0* 1eh21h2* 1R21eh11h1* 1h21h2* 1R3
, ~2.5b!
o-

are

ilar
d
lli-
where

hk5akx1 iak
2t1hk0 , ~2.6!

ak5r k1 ivk , hk05jk01 i zk0 , ~2.7!

ak5cosuke
idk, bk5sinuke

2 idk, ~2.8!

eR15
k11

a11a1*
, eR25

k22

a21a2*
, eS05

k12

a11a2*
,

~2.9!

eR35
ua12a2u2

~a11a1* !~a21a2* !ua11a2* u2 ~k11k222k12k21!,

~2.10!

FeS1

eS18G5
a12a2

~a11a1* !~a1* 1a2!
S Fa1

b1
Gk212Fa2

b2
Gk11D ,

~2.11!

FeS2

eS28G5
a22a1

~a21a2* !~a11a2* !
S Fa2

b2
Gk122Fa1

b1
Gk22D ,

~2.12!

and

k i j 5
a ia j* 1b ib j*

2~ai1aj* !
. ~2.13!

If we assume that the two solitons have different velociti
say, v1.v2 , then ast→2`, this solution reduces to two
separate one-solitons:

FAh

Bh
G→F cosu1eid1

sinu1e2 id1G eh̄1

11eh̄11h̄1*
1F cosū2ei d̄2

sinū2e2 i d̄2
G eh̄2

11eh̄21h̄2*
,

~2.14!

where

h̄k5akx1 iak
2t1h̄k0 , h̄k05 j̄k01 i z̄k0 , ~2.15!

s1eig15eS1/AueS1u21ueS18u2, s18e
ig185eS18/AueS1u21ueS18u2,

~2.16!
,

h̄105h102 ln 2&r 1 , ~2.17!

h̄205h201
1
2 ln~ ueS1u21ueS18u2!2 ln 2&r 21 1

2 i ~g11g18!,
~2.18!

cosū25s1 , sinū25s18 , ~2.19!

d̄25d21 1
2 ~g12g18!. ~2.20!

We would like to remind the reader that, in the above tw
soliton solutions,$ak ,hk0 ,uk ,dki , k51,2% are the intermedi-
ate parameters. The two separate solitons~2.14! actually
have amplitudes&r k , velocities 2vk , polarizationsu1( ū2),
initial positions2 j̄k0 /r k , in-phase constantsz̄k0 , and oppo-
site phase constantsd1( d̄2), respectively. It is easy to show
that, if these actual parameters of the initial solitons
given, then the intermediate parametersu2 andd2 are deter-
mined from the equation,

cotu2e2i ~d22d1!

52

1
2 sin 2u1 tanū22~sin2 u12D !e2i ~ d̄22d1!

tanū2~cos2 u12D !2 1
2 sin 2u1e2i ~ d̄22d1!

,

~2.21!

where

D5
a1* 1a2

a11a1*
,

and the values ofhk0 are obtained from Eqs.~2.17! and
~2.18!, respectively.

As t→`, the two-soliton solution~2.5! also reduces to
two separate one-solitons:

FAh

Bh
G→F cosû1ei d̂1

sinû1e2 i d̂1
G eĥ1

11eĥ11ĥ1*
1F cosu2eid2

sinu2e2 id2G eĥ2

11eĥ21ĥ2*
,

~2.22!

where the quantities with carets are given by relations sim
to Eqs.~2.15!–~2.20!, with the bars replaced by carets, an
the indices 1 and 2 in them switched. Notice that after co
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sion, the solitons pass through each other. Their amplitu
and velocities do not change, but the polarizations, pha
and positions are shifted. These shifted values can be
tained directly from the precollision soliton parameters. F
this purpose, we define the unit vector

c5Fcosuei ~z01d!

sinuei ~z02d! G ~2.23!

for a soliton ~2.1!. This vector determines the soliton’s po
larization and phases. From the asymptotic relations~2.14!
and ~2.22! of the two-soliton solution~2.5!, it is easy to
verify that

c1
15

1

x

a1* 1a2

a1* 2a2*
Fc1

21
a21a2*

a1* 2a2*
~c2

2* •c1
2!c2

2G ,
~2.24a!

c2
15

1

x

a1* 1a2

a22a1
Fc2

21
a11a1*

a22a1
~c1

2* •c2
2!c1

2G ,
~2.24b!

where

x5Ua11a2*

a12a2
UF11

~a11a1* !~a21a2* !

ua12a2u2
uc1

2* •c2
2u2G1/2

,

~2.25!

andck
2 andck

1 (k51,2) are the just defined unit vectors fo
the precollision and after-collision solitons, respectively~see
also@21#!. These relations will readily give the shifted pola
ization and phase values. It is clear from Eqs.~2.24! that the
soliton polarizations do not change; only in the case wh
their initial polarizations are parallel~c1

2ic2
2 , i.e., u1

25u2
2 ,

and ud1
22d2

2u50 or p!, or orthogonal~c1
2'c2

2 , i.e., uu1
2

2u2
2u5p/2!. The position shifts of the colliding solitons ar

also easy to obtain. Suppose thatv1.v2 . Then these shifts
can be derived from Eqs.~2.14! and ~2.22! as

Dx15
ln x

r 1
, Dx252

ln x

r 2
. ~2.26!

In the rest of this paper, we will treat the two-solito
solutionsAh andBh as functions of the initial soliton param
eters@see Eqs.~2.14!#,

FAh

Bh
G5FAh

Bh
G~r 1 ,v1 ,j̄1 ,z̄1 ,u1 ,d1 ,r 2 ,v2 ,j̄2 ,z̄2 ,ū2 ,d̄2!,

~2.27!
es
s,
b-
r

n

wherej̄k and z̄k (k51,2) are real functions,

j̄k1 i z̄k5 iak
2t1h̄k0 , ~2.28!

i.e.,

j̄k522r kvkt1 j̄k0 , z̄k5~r k
22vk

2!t1 z̄k0 . ~2.29!

Thus, before collision, the solitons have amplitudes&r k ,
velocities 2vk , polarizations u1( ū2), central locations
2 j̄k /r k , in phasesz̄k , and opposite phasesd1( d̄2), respec-
tively. Furthermore, for convenience, we will drop the ba

III. COLLIDING VECTOR SOLITONS
UNDER PERTURBATIONS

When e!1, the colliding soliton solution can be ex
panded into a perturbation series,

A5Ah~r k ,vk ,jk ,zk ,uk ,dk , k51,2!1eA11e2A21¯ ,
~3.1a!

B5Bh~r k ,vk ,jk ,zk ,uk ,dk , k51,2!1eB11e2B21¯ ,
~3.1b!

where

jk522E
0

t

r kvkdt1jk0 , ~3.2a!

zk5E
0

t

~r k
22vk

2!dt1zk0 . ~3.2b!

Due to the small perturbations, the soliton parametersr k ,
vk , jk0 , zk0 , uk, anddk will be forced to vary. In the fol-
lowing, we derive the evolution equations for the solito
parameters throughout collision. The method we will use
based on the completeness of the bounded eigenstates o
associated linear operator and a multiple-scale perturba
procedure.

When Eqs.~3.1! are substituted into Eqs.~1.1!, the zeroth-
order equations are trivially satisfied sinceAh andBh are the
exact two-soliton solutions of the Manakov equations.
ordere, we get

LF5R2W, ~3.3!

where

L5 i ] t1S s3

s3
DH, ~3.4!
H5S 2uAhu21uBhu2

Ah*
2

Ah* Bh

Ah* Bh*

Ah
2

2uAhu21uBhu2

AhBh

AhBh*

AhBh*

Ah* Bh*
2uBhu21uAhu2

Bh*
2

AhBh

Ah* Bh

Bh
2

2uBhu21uAhu2
D , ~3.5!
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which is a Hermitian matrix,

F5~A1 ,A1* ,B1 ,B1* !T, ~3.6!

R5~M ,2M* ,N,2N* !T, ~3.7!

W5 i (
k51

2

$C r k
r kT1Cvk

vkT1Cjk
jk0T1Czk

zk0T1Cuk
ukT

1Cdk
dkT%, ~3.8!

C5~Ah ,Ah* ,Bh ,Bh* !T. ~3.9!

Here,s35diag(1,21) is the third Pauli spin matrix, the sub
scriptT is the derivative with respect to the slow timeet, and
the superscriptT represents the transpose of a matrix.

Even though the linear operatorL in Eq. ~3.3! is a partial
differential operator with variable coefficients, Eq.~3.3! can
still be solved. Here the key idea is to establish the compl
ness of the bounded eigenstates ofL in L2 space, and define
an appropriate inner product. We first study the null space
L. Recall that the two-soliton solution~2.5! has 12 free pa-
rameters. The derivatives ofC with respect to each of thes
parameters, i.e.,

$C̃ r k
,C̃vk

,Cjk
,Czk

,Cuk
,Cdk

, k51,2% ~3.10!

span the discrete subspace of this null space. Here,

C̃ r k
5C r k

22t~vkCjk
2r kCzk

!, ~3.11!

C̃vk
5Cvk

22t~r kCjk
1vkCzk

!. ~3.12!

The continuous subspace consists of eigenfuncti
Fc(x,t,l), which are oscillatory at infinity. Here the param
eterl is the wave number of the function at infinity, whic
characterizes the continuous eigenfunction.

The above discrete and continuous eigenfunctions for
complete set. This has been shown in@33#. We define the
inner product as

~c1 ,c2!5E
2`

`

c1*
TS s3

s3
Dc2dx. ~3.13!

Then, if c1 andc2 are inL’s null space, i.e.,

ckt5 i S s3

s3
DHck , k51,2; ~3.14!

then, it is easy to show that

d

dt
~c1 ,c2!50. ~3.15!

In the proof of this relation, the fact thatH is Hermitian has
been used.

We see from Eq.~3.15! that, to evaluate the inner prod
ucts of two functions inL’s null space, we can taket→
2`. Recall that, in this limit, the two-soliton solution~2.5!
reduces to two separate one-solitons@see Eqs.~2.14!#. Thus,
L’s eigenfunctions are also simplified to those of the line
e-

of

s

a

-

ization operator around a single soliton, which have be
discussed before@9#. In this way, we can show that the dis
crete and continuous eigenfunctions in the null space ofL are
orthogonal to each other. Furthermore, the nonzero in
products of the discrete eigenfunctions are

~C̃ r k
,Czk

!5~Czk
,C̃ r k

!* 54i , ~3.16a!

~C̃vk
,Cjk

!5~Cjk
,C̃vk

!* 54i , ~3.16b!

~C̃ r k
,Cdk

!5~Cdk
,C̃ r k

!* 54i cos 2uk , ~3.16c!

~Cuk
,Cdk

!5~Cdk
,Cuk

!* 528ir k sin 2uk . ~3.16d!

Here,k51 and 2. Notice that the basisC̃ r k
andC̃vk

have a
secular term proportional tot. To avoid such an undesirabl
behavior, we use instead the equivalent set

$C r k
,Cvk

,Cjk
,Czk

,Cuk
,Cdk

, k51,2%, ~3.17!

which also spans the discrete subspace. The nonzero i
products between them take the same form as Eqs.~3.16!,
with C̃ r k

andC̃vk
replaced byC̃ r k

andCvk
, respectively.

Now, we are ready to solve the linear equation~3.3! by
expanding the solutionF and the forcing termR2W into
this complete set ofL’s eigen-functions:

F5 (
k51

2

$c1kC r k
1c2kCvk

1c3kCjk
1c4kCzk

1c5kCuk
1c6kCdk

%1E ClFc~x,t,l!dl,

~3.18!

R2W5 (
k51

2

$d1kC r k
1d2kCvk

1d3kCjk
1d4kCzk

1d5kCuk
1d6kCdk

%1E DlFc~x,t,l!dl.

~3.19!

Here, thecnk’s and Cl are functions oft. Using the inner
products of the equivalent set~3.17! to Eq. ~3.19!, we can
determine the expansion coefficientsdnk from the following
equations:

r kT1 id1k* 5 1
4 ~R,Czk

!, ~3.20a!

vkT1 id2k* 5 1
4 ~R,Cjk

!, ~3.20b!

jk0T1 id3k* 52 1
4 ~R,Cvk

!, ~3.20c!

zk0T1 id4k* 1cos 2uk~dkT1 id6k* !52 1
4 ~R,C r k

!,
~3.20d!

cos 2uk~r kT1 id1k* !22r k sin 2uk~ukT1 id5k* !5 1
4 ~R,Cdk

!,
~3.20e!
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FIG. 1. Time evolution of soliton parameter
throughout collision forb52/3 andv50.4, pre-
dicted analytically by Eqs.~4.3!. The solid and
dashed curves are for the two different vect
solitons.
te
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dkT1 id6k* 5
~R,Cuk

!

8r k sin 2uk
. ~3.20f!

When we substitute the two expansions~3.18! and ~3.19!
into Eq. ~3.3! and compare the coefficients of the discre
eigenfunctions, we find that the evolution equations for
coefficientscnk in Eq. ~3.18! are

icnk8 5dnk , n51,2,5,6, ~3.21a!

i ~c3k8 12vkc1k12r kc2k!5d3k , ~3.21b!

i ~c4k8 22r kc1k12vkc2k!5d4k , ~3.21c!

wherek51 and 2, and the prime represents the derivat
with respect tot. Notice that, ast→`, the forcing termsdnk
can be easily calculated from Eqs.~3.20! using the
asymptotic forms ofAh and Bh given in Eq.~2.22!. If the
perturbationR does not depend ont explicitly, then the space
integrals in the inner products of Eqs.~3.20! can eliminate
the t dependence, and one obtains a constant value for
of these forcing terms. These terms will generate secular
even quadratic growth inF’s expansion coefficientscnk ,
which will invalidate the perturbation series~3.1!. To sup-
press this growth, we need to impose the condition

dnk50, n51,...6, k51,2. ~3.22!

These conditions will completely determine the slow tim
evolution of the soliton parameters. Indeed, when Eqs.~3.22!
e

e

ch
nd

are inserted into Eqs.~3.20!, such evolution equations will be
obtained. When the original time variable is restored, a
Eqs.~3.2! used, these evolution equations can be written

r kt5
e

4
~R,Czk

!, ~3.23a!

vkt5
e

4
~R,Cjk

!, ~3.23b!

jkt522r kvk2
e

4
~R,Cvk

!, ~3.23c!

zkt5r k
22vk

22cos 2ukdkt2
e

4
~R,C r k

!, ~3.23d!

ukt5
4 cos 2ukr kt2e~R,Cdk

!

8r k sin 2uk
, ~3.23e!

dkt5
e~R,Cuk

!

8r k sin 2uk
. ~3.23f!

Integration of these differential equations will determine t
evolution of the soliton parameters throughout collision.

With some more effort, the evolution of the continuo
modes in the solution~3.18! can be similarly obtained. Bu
this lies outside the scope of the present paper.
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FIG. 2. Time evolution of the soliton param
eters throughout collision forb52/3 and v
51.6, predicted analytically by Eqs.~4.3!. The
solid and dashed curves are parameters of the
and second vector solitons, respectively. The d
ted and dash-dotted curves are their shifted v
ues after transmission~see the text for details!.
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IV. SOLITON COLLISIONS IN THE CNLS EQUATIONS

In polarization-maintaining birefringent fibers, puls
along the two orthogonal polarization axes are governed
the following CNLS equations:

iAt1Axx1~ uAu21buBu2!A50, ~4.1a!

iBt1Bxx1~ uBu21buAu2!B50. ~4.1b!

Here we did not explicitly include the group velocity term
The reason is that such terms can be eliminated by a sim
phase transformation~see, e.g., Ref.@34#!, not that we
wanted to neglect them. But we did neglect the attenuat
higher-order dispersion and Raman effect. For soli
switching devices, this approximation is justified, since th
effects are weak, and the switching fibers are short. H
ever, for long-distance communication systems, the appr
mation needs careful scrutiny. For linearly birefringent
bers, the XPM coefficientb is 2/3. This is the case in logic
gates and switches. For elliptically birefringent fibers,b will
take other values@6#. In telecommunication fibers, the bire
fringence is random. In that case,b is averaged to be one
Meanwhile, the linear and nonlinear polarization mode d
persion terms will appear on the right-hand side of Eqs.~4.1!
@8,9#. In this section, we only consider the polarizatio
maintaining fibers, where Eqs.~4.1! are the appropriate
model.

Comparing Eqs.~4.1! to Eqs.~1.1!, we see that

e512b, M5uBu2A, N5uAu2B. ~4.2!
y

le

n,
n
e
-
i-

-

Thus the evolution equations~3.23! for the soliton param-
eters reduce to

r kt5
12b

4
I zk

, ~4.3a!

vkt5
12b

4
I jk

, ~4.3b!

jkt522r kvk2
12b

4
I vk

, ~4.3c!

zkt5r k
22vk

22cos 2ukdkt2
12b

4
I r k

, ~4.3d!

ukt5
4 cos 2ukr kt2~12b!I dk

8r k sin 2uk
, ~4.3e!

dkt5
~12b!I uk

8r k sin 2uk
, ~4.3f!

where

I 5I ~r k ,vk ,jk ,zk ,dk , k51,2!5E
2`

`

uAhBhu2dx.

~4.4!

For simplicity, we consider the collision of two initially or
thogonal vector solitons, withu150 and u25p/2. In this
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case, the initial phase constantszk0 anddk0 ~k51 and 2! can
be scaled out. Thus, before collision, the two solitons~2.14!
can be rewritten as

A~x,t !5&r 1ei $v1x1~r 1
2
2v1

2
!t% sech~r 1x22r 1v1t1j10!,

~4.5a!

B~x,t !5&r 2ei $v2x1~r 2
2
2v2

2
!t% sech~r 2x22r 2v2t1j20!.

~4.5b!

Without loss of generality, we takev152v25v/4(.0). So
the approaching velocity of the two solitons isv. We also fix
r 151.2 andr 251, so the initial amplitudes of the two sol
tons are approximately 1.6971 and 1.4142, respectiv
They are chosen different so that we can track and iden
them after collision. The choices for the initial position p
rametersj10 and j20 can be totally arbitrary. They will no

FIG. 3. Numerical simulation of Eqs.~4.1! with b52/3 andv
50.4. The initial condition is given by Eqs.~4.5! with other param-
eters specified in the text.
y.
fy

affect the collision outcome as long asj10.0 andj20,0 are
large enough. We fixj10510 andj205210 in our calcula-
tions. Thus, the two solitons are initially located atx5
2j10/r 1'28.33 and2j20/r 2510, respectively. The only
free parameters left are the XPM coefficientb and the colli-
sion velocityv, which will be used as control parameter
For given b and v values, we numerically integrate Eq
~4.3! by the adaptive Runge-Kutta-Fehlberg method. N
thatuk50 andp/2 are singular values in these equations.
order to initiate the integration, we actually tooku151026

andu25p/221026. Other choices ofu1 andu2 values very
close to 0 andp/2, respectively, do not affect the results. Th
integral I in Eq. ~4.4! is evaluated by the trapezoidal ru
with error control. The overall accuracy of our computatio
is about 1025.

We first carry out two individual computations to sho
typical evolutions of soliton parameters throughout collisio
In the first case, we selectb52/3, which corresponds to
linearly birefringent fibers, andv50.4, which gives the ap-

FIG. 4. Numerical simulation of Eqs.~4.1! with b52/3 andv
51.6. The initial condition is given by Eqs.~4.5!.
lision.
TABLE I. Comparison between numerical and analytical values of the soliton parameters after col
The initial conditions are given by Eqs.~4.5! with other parameters specified in the text.

r 1 v1 u1 r 2 v2 u2

case 1: analytical 1.4240 20.1096 0.4120 0.7760 0.2268 1.4963
b52/3, v50.4 numerical 1.3652 20.1148 0.3982 0.7557 0.2448 1.5026
case 2: analytical 1.2746 0.3448 0.3276 0.925420.3885 1.3192
b52/3, v51.6 numerical 1.223 0.316 0.325 0.891 20.363 1.297
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FIG. 5. Amplitudes, velocities, and polariza
tions of the two postcollision vector soliton
againstb ~the collision velocityv is fixed to be
0.4!. The solid lines are from analytical predic
tions, and the dashed ones are from numeri
simulations.
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proaching velocity 0.4. For these values, the evolution of
soliton parameters are shown in Fig. 1. We observe that
lision takes place att'40. During collision, the velocity of
the right-moving soliton steadily decreases, and beco
negative when it emerges from the collision. This means
this soliton is reflected back by collision~this can be seen
from the position plots as well!. The same happens to th
other soliton. It initially moves to the left, but turns aroun
after collision. This reflection scenario has been reported
@23,25#. It is entirely due to the perturbations~4.2!, because
without them, the two solitons would pass through ea
other ~see Sec. II!. The amplitudes of the two solitons als
changed after collision: the larger soliton gets even larg
and the smaller one gets even smaller. Thus energy has
transferred from the smaller soliton to the larger one. Ad
tionally, the polarizations of the two solitons also shifte
This means that the energy inside a vector soliton has b
partially transferred from one polarization axis to the oth
due to the collision. This is the so-called daughter wave~or
shadow! creation discussed in@25#.

If we increase the colliding velocityv, we expect the two
solitons to pass through each other. This is indeed the c
For b52/3 andv51.6, the solutions of Eqs.~4.3! are shown
in Fig. 2. We see that, when the solitons come into collisi
their velocities decrease significantly as before. But in t
case, they pick up speed again when they emerge from
collision. As a result, the solitons pass through each ot
and settle down to constant speeds along the original di
tions. This transmission scenario has also been studied
fore @23–25#. The amplitudes of the two solitons underwe
e
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es
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similar changes as in the first case. One seemingly intrigu
feature of this collision is that, after transmission, the pol
ization parametersuk do not approach constants, and t
positions and phasesjk , zk , anddk do not approach straigh
lines, as one would expect. Actually, this is easy to expla
Recall that these parameters correspond to those of the
separate solitons before collision@see Eqs.~2.14!#. After a
transmissive collision, the values ofjk , zk , uk , anddk are
shifted ~the amplitudesr k and velocitiesvk remain the
same!. These shifted values can be obtained from Eqs.~2.24!
and~2.26!. In Fig. 2, we also plotted these shifted paramet
for the outcoming vector solitons. They behave as expec
Notice that the polarizations of the transmitted solitons ha
shifted away from 0 andp/2. This is the same daughter wav
creation mentioned earlier. It is caused by the perturbati
~4.2!, because in the Manakov model, two initially orthog
nal vector solitons do not change their polarizations a
transmission~see Sec. II!. If transmission does not tak
place, there are no such shifts in the soliton parameter val
This is why in the first case the parameter values shown
Fig. 1 are the actual ones of the reflected vector solitons

To check the above analytical results, we directly sim
lated the CNLS~4.1! with the initial conditions as given by
Eqs. ~4.5!. Our numerical scheme is the pseudospec
method in space, and the Runge-Kutta method in time.
results for both cases discussed above are plotted in Fig
and 4, respectively. As predicted, the reflection scenario
observed in Fig. 3, while the transmission scenario is see
Fig. 4. The quantitative comparison between numerical
analytical values of the soliton parameters after collision
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FIG. 6. Magnifications of the transition re
gions in the left half of Fig. 5. Notice that fas
oscillations appear every time we zoom in.
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shown in Table I. We see that the agreement is quite sa
factory, considering that the perturbations in these cases
not really small (e51/3).

Next, we systematically study the postcollision vec
solitons asb or v continuously varies. We first fix the colli
sion velocityv50.4, and integrate Eqs.~4.3! for variousb
values. The parameters of the vector solitons after collis
againstb are plotted in Fig. 5~solid curves!. The following
features can be observed.~1! For smallerb values, the soli-
ton velocities after collision have the opposite sign of th
original ones. This simply means that the solitons are
flected by collision. For largerb values, the velocities afte
collision are of the same sign as their original ones. Thus
solitons pass through each other after collision. The tra
tion from reflection to transmission takes place atbc
'0.9733.~2! At smallerb values, the larger of the colliding
solitons gets even larger, and the smaller of them gets e
smaller, after collisions. In other words, in this case, collis
transfers energy from the smaller soliton to the larger one
largerb values, it is just the opposite.~3! After collision, the
polarizations of the vector solitons are generally shif
away from 0 andp/2. In particular, for smallerb values,
each of the two solitons after collision still retains most of
energy in the original polarization axis in which energy
launched~since the polarization shift is less thanp/4!. But
for larger b values, the solitons can transfer most of th
energy to the opposite polarization axes by collision.~4!
Whenb decreases below roughly 0.75, the velocities of
reflected solitons start to get smaller. This suggests that f
certain range of smallb values, the velocities of the reflecte
solitons may become zero, thus the two solitons will fu
into one after collision. This is indeed the case~see the end
is-
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of this section and also Fig. 8!. When b further decreases
close to zero, the collision will be transmissive again. T
reason is that, whenb50, the CNLS~4.1! become two de-
coupled NLS, and the two orthogonal solitons~4.5! will pass
by each other with no collision at all. But theseb regimes lie
outside the scope of the present perturbation theory.~5! In
the u1 andu2 plots, there are sharp corners nearu150 and
u25p/2. This is because we restricted the soliton polari
tions to be in the interval@0, p/2#. Without this restriction,
such spikes would disappear.

Another noticeable feature in Fig. 5 is that the transiti
from reflection to transmission is not a smooth process
fact, asb approachesbc from either side, the soliton param
eters after collision start to oscillate, and the oscillating f
quency gets higher and higher. To see it more clearly,
twice magnify the transition regions in the first soliton’s p
rameters and plot them in Fig. 6. Each time we zoom in,
see new and faster oscillations emerging. This process
pears to continue indefinitely. The oscillation amplitudes
r 1 , v1 , andu1 are about 4%, 50%, and 200% of their ave
age values, respectively. Thus, in the transition region,
outcoming solitons are very sensitive to theb value. Slight
changes inb could alter the outcoming soliton paramete
significantly. Similar behaviors are observed for the seco
soliton as well. It makes the prediction of the vector solito
after collision somewhat uncertain in the transition regio
This uncertainty is especially serious in the velocities a
polarizations of the outcoming vector solitons because of
relatively large and rapid oscillations in those parameters

All these analytical predictions have been verified by
rect numerical simulations. In Figs. 5 and 6, the numerica
obtained soliton parameters after collision are also plot
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FIG. 7. Amplitudes, velocities, and polariza
tions of the postcollision vector solitons again
the initial collision velocityv ~b is now fixed to
be 2/3!. The solid lines are from analytical pre
dictions, and the dashed ones from numeric
simulations.
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for comparison. We see that whenb is close to 1, which is
the regime where the above perturbation theory is based
agreement between the numerical and analytical value
very good~as expected!. This agreement deteriorates whenb
moves away from 1, but is still satisfactory over a bro
range ofb values centered around 1. In particular, the n
merical results confirmed the jittery transition from reflecti
to transmission, which was predicted analytically~see Fig.
6!. The numericalbc value for transition isbc'0.9730,
which agrees remarkably well with the analyticalbc value.

Next, we fix b52/3, and study the vector solitons aft
collision for various collision velocitiesv. The analytical
soliton parameters are obtained by integrating Eqs.~4.3! and
applying the shift formulae in Sec. II in the case of a tran
missive collision. These results are shown in Fig. 7~solid
curves!. Also plotted are the numerical values~dashed
curves! for comparison. At small collision velocities, the co
lision is reflective, while at large collision velocities, it
transmissive. The transition valuevc is predicted to be 1.05
which can be compared to the numerical value 1.03. O
interesting feature in Fig. 7 is that, whenv→0, the param-
eters of the reflected solitons approach certain limits.
instance, we analytically predict that the velocities 2v1 and
2v2 approach20.2046 and 0.3892, respectively. It is ve
fied by the numerical results~see Fig. 7!. This means that
for a slow collision, no matter how slow it is, the collisio
outcome is always the same. In particular, the outcom
vector solitons always move at fixed nonzero speeds. Th
quite remarkable. Another feature in Fig. 7 is that, asv gets
larger, the soliton parameter values after collision get clo
he
is
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e
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er

to their original ones. This is expected, since whenv is
larger, the collision is faster, and thus weaker. As a res
the solitons will change less in such a collision. One mo
feature in Fig. 7 is that the transition from reflection to tran
mission is also sensitive and oscillating rapidly, just as in
first case. In this region, the analytical and numerical val
do not match well: the numerical curves are less violent. T
reason is twofold. First, the perturbation parametere51/3 is
not very small here. Thus the theoretical results are subje
errors of that order. Second, the soliton parameters in
region are sensitive to thev value. Nonetheless, the analyt
cal curves still qualitatively capture the overall features
the numerical ones.

From the above results, we conclude that the present
turbation theory successfully describes the reflection
transmission scenarios of the collision forb close to 1. But
there are other collision scenarios, notably fusion and c
ation of new vector solitons, which may occur atb values far
away from 1. The present theory is inadequate in describ
them. Fusion typically occurs whenb is small, and the col-
lision is slow. One example, withb50.3 and v50.4, is
shown in Fig. 8. Creation of new vector solitons can happ
when b is large, and the collision velocity is moderate. A
example, withb53 andv51.6, is shown in Fig. 9. We will
discuss such collisions elsewhere.

Finally, we wish to compare the above collision results
the CNLS equations to those between kink and antikinks
the f4 nonlinear Klein-Gordon equations. In thef4 theory,
two types of collision scenarios between a kink and an a
kink have been reported@35,36#. One is reflection, in which
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the kink and antikink are reflected from each other. T
happens for large collision velocities. The other is fusion,
which the kink and antikink capture each other and form
long-lived, spatially localized, time-oscillatory state. This o
curs for small collision velocities. In the transition regio
intervals of collision velocity for fusion and reflection alte
nate with each other. This alternation gets faster and faste
the collision velocity approaches a critical value. This s
called resonance structure was explained semianalytical
@35#. The basic idea is that there exists an internal mode
the kink and antikink in thef4 equation. During collision,
this mode can temporarily store energy taken away from
colliding waves’ kinetic energy, and give it back when t
collision is over. In our results for the CNLS equations, w
also identified two collision scenarios: transmission and
flection. In the transition region, we observed oscillations
the parameters of the outcoming solitons. This is reminisc
of the behavior in thef4 theory. Furthermore, we have dis
covered recently that internal modes also exist for vec
solitons in the CNLS equations@37#. This raises a strong
possibility that the resonance mechanism proposed in@35#
may also be at work here. But for the parameter values
chose, the transition is clear-cut. There is no alternation
tween parameter intervals for transmission and reflection
would be interesting to see if this will change when the i
tial soliton parameters are varied. To answer this quest
substantially more numerical and analytical work will b
needed.

FIG. 8. Fusion of two solitons into one in the CNLS~4.1! ~nu-
merical simulations!. The initial conditions are given by Eqs.~4.5!
with b50.3 andv50.4.
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V. DISCUSSION

In the previous sections, we analytically studied the c
lision of vector solitons in the perturbed Manakov equatio
and applied the results to the collision of orthogonally pol
ized solitons in the CNLS equations. We showed that, in
presence of perturbations, the soliton parameters, such a
amplitudes, velocities, and polarizations, will change af
collision. We found that both transmissive and repulsive c
lisions can occur, depending on the combinations of ini
parameter values. In the region of transition from transm
sion to reflection, the collision outcome is sensitive to t
parameters of colliding solitons and the XPM coefficientb.
Considerable oscillations were observed in the paramete
the outcoming vector solitons. These results were compa
to the direct numerical simulations, and very good agreem
was demonstrated.

Next we discussed the applications of these results to
tical switches. We have shown above that, for relativ
small collision velocities, the orthogonally polarized solito
in polarization-maintaining fibers undergo reflective collisi
~see Figs. 3 and 7!. This suggests the interesting possibili
of designing the soliton-repulsion logic gate using birefr
gent fibers~such a logic gate using dual-core fibers or bea
in crystals has been proposed recently in@38,12#!. In this
logic gate, the control and signal pulses are launched suc
sively along the fast and slow polarization axes of the bi
fringent fiber. If the relative group velocity of the two pulse
is moderately small, then they will be reflected by each ot
after collision. This reflective collision significantly increas

FIG. 9. Creation of new vector solitons after collision in th
CNLS ~4.1! ~numerical simulations!. The initial conditions are
given by Eqs.~4.5! with b53 andv51.6.
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the position and frequency~velocity! shifts of the pulses. As
a result, shorter polarization-maintaining fibers may
needed to create the required amount of position or polar
tion shift for switching. In addition, this logic gate is pha
independent and cascadable. We will investigate this typ
logic gate further elsewhere.
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