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Complexity and regularity of vector-soliton collisions
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In this paper, we extensively investigate the collision of vector solitons in the coupled nonlinear Schro¨dinger
equations. First, we show that for collisions of orthogonally polarized and equal-amplitude vector solitons,
when the cross-phase modulational coefficientb is small, a sequence of reflection windows similar to that in
the f4 model arises. Whenb increases, a fractal structure unlikef4’s gradually emerges. But whenb is
greater than one, this fractal structure disappears. Analytically, we explain these collision behaviors by a
variational model that qualitatively reproduces the main features of these collisions. This variational model
helps to establish that these window sequences and fractal structures are caused entirely or partially by a
resonance mechanism between the translational motion and width oscillations of vector solitons. Next, we
investigate collision dependence on initial polarizations of vector solitons. We discovered a sequence of
reflection windows that isphase inducedrather than resonance induced. Analytically, we have derived a simple
formula for the locations of these phase-induced windows, and this formula agrees well with the numerical
data. Last, we discuss collision dependence on relative amplitudes of initial vector solitons. We show that when
vector solitons have different amplitudes, the collision structure simplifies. Feasibility of experimental obser-
vation of these results is also discussed at the end of the paper.

DOI: 10.1103/PhysRevE.64.056616 PACS number~s!: 42.65.Tg, 05.45.Yv, 42.81.Dp
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I. INTRODUCTION

Collision of solitary waves is an important problem f
both physical and mathematical reasons. Physically, solit
wave collisions are common phenomena in science and
gineering. For instance, a popular technology in fiber co
munication systems is wavelength-division multiplexi
~WDM!. In a WDM system, optical pulses in different fre
quency channels collide with each other all the time@1–3#.
In waveguides such as crystals, photorefractives, and
beam collision is being utilized to achieve instant be
steering and control@4–10#. Water-wave collisions in the
ocean and on the beach are even more familiar@11#. Math-
ematically, solitary-wave collision is a major branch of no
linear waves. In integrable systems, solitary waves col
elastically. But if the system is nonintegrable, this collisi
may be highly nontrivial. Much work has been done
solitary-wave collisions in a large array of physical system
Various collision scenarios such as transmission, reflect
annihilation, trapping, creation of solitary waves and ev
mutual spiraling have been reported@12–20#. In particular,
for kink-antikink collisions in thef4 and related models, a
interesting sequence of resonant reflection windows has b
discovered@21–25#. Near the edge of each resonance w
dow, other sequences of resonant windows with m
‘‘bouncing’’ have also been revealed@22,23,26#. This phe-
nomenon is the so-called fractal structure inf4-related sys-
tems. In two recent articles, we found a somewhat differ
fractal structure in vector-soliton collisions in the nonint
grable coupled nonlinear Schro¨dinger ~NLS! equations
@27,28#. When we zoom in to various collision-velocity win
dows, we obtain a copy, a horizontal reflection, or a verti
reflection of the original graph with all the major geomet
features preserved. Unlike thef4 fractal, zooming opera-
tions for the vector-soliton fractal are performed not at ed
of a resonant window. More importantly, the basic struct
1063-651X/2001/64~5!/056616~17!/$20.00 64 0566
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of this coupled NLS fractal is a sequence of multipass a
multibounce windows, while the basic structure of thef4

fractal is a collection of two-pass windows. Very recent
breather interactions in a weakly discrete sine-Gordon eq
tion have been studied, and a fractal structure has been i
tified there as well@20#.

The fractal dependence is probably the most vivid ma
festation of both complexity and regularity in solitary-wav
collisions. Such dependence in the coupled NLS equation
particularly significant since those equations directly gov
pulse propagation in birefringent fibers and WDM syste
@1,2,29#. Those equations are also closely related to be
propagation in crystals and photorefractive waveguides@10#.
In @27,28#, this fractal structure was shown only for on
cross-phase modulational~XPM! coefficientb52/3 that cor-
responds to linear fiber birefringence. In addition, only c
lisions of vector solitons with equal amplitudes and orthog
nal polarizations were studied. In engineering applicatio
elliptical fiber birefringence is not uncommon@30#. Further-
more, initial solitons are not always in orthogonal polariz
tions or with equal amplitudes. Thus, how this fractal stru
ture changes when the XPM coefficient, initial polarization
and relative amplitudes vary is obviously a pressing qu
tion. In addition, in@27,28#, the mechanism for this fracta
dependence was argued as a resonance between the tr
tional motion and internal oscillations of vector solitons
numerical and heuristic grounds. A more quantitative a
lytical theory to explain this fractal structure is clearly calle
upon. All these important questions will be addressed in
present paper.

The results of this paper may be summarized as follo
We first investigate the collision dependence of orthogona
polarized and equal-amplitude vector solitons on the XP
coefficientb(.0). We find that whenb is very small, vec-
tor solitons pass through each other at collision velocitiesV0
above a critical valueVc , and trap each other at collisio
©2001 The American Physical Society16-1
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YU TAN AND JIANKE YANG PHYSICAL REVIEW E 64 056616
velocitiesV0,Vc . Whenb increases, a sequence of refle
tion windows similar to that in thef4 model gradually
emerges just below the critical velocityVc . In all these win-
dows, the two solitons pass each other only twice, but nu
bers of width oscillations of vector solitons~or equivalently,
collision time! between the two passes differ. Whenb in-
creases further, a fractal structure unlikef4’s emerges@27#.
As b approaches one, this fractal structure simplifies. Wh
b51 ~the Manakov model!, the collision is elastic and com
plexity disappears. Whenb.1, the collision is not elastic
but the collision structure remains simple. Theoretically,
explain the above intricate collision structure and dynam
by a simple variational model. With this model, we su
ceeded in qualitatively reproducing the key features
vector-soliton collisions in the original partial differentia
equations~PDE’s!. This success helps to establish that t
mechanism for window sequences and fractal structure
vector-soliton collisions may be attributed to a resona
between the translational motion and width oscillatio
~breathing! of colliding solitons. Next, we investigate colli
sion dependence on initial polarizations of vector solitons
this case, we discovered a sequence of reflection wind
that is quite different from that in the collision of orthogo
nally polarized vector solitons. Collisions in these windo
are all simple and also similar to each other. We will sh
that this window sequence is not induced by a resona
mechanism. Rather, it is phase induced, i.e., it is caused
the collision’s dependence on vector solitons’ relat
phases. Analytically we derived a simple formula for t
window locations in this sequence, and it agrees well w
the numerical data. Last, we study collision dependence
relative amplitudes of initial solitons. We find that when ve
tor solitons have different amplitudes, the collision structu
simplifies.

Complexity of vector-soliton collisions is remarkab
enough. Equally remarkable is the clear pattern and regu
ity in these collisions. In addition to the fractal structure th
exhibits clear patterns amidst complicated collisions, we a
find that window locations in a sequence are given by sim
formulas as well. Specifically, in the window sequence
collisions of orthogonally polarized vector solitons at sm
b values, quantity (Vc

22Vn
2)21/2, where Vc is the critical

velocity andVn is the center of thenth window, is a linear
function of the window indexn. In the window sequence fo
collisions of nonorthogonally polarized vector solitons,Vn

21

is a linear function ofn. We also find that in the window
sequence for orthogonally polarized vector solitons, the c
lision time Tn depends linearly onn. These surprisingly
simple formulas testify to the high regularity of vecto
soliton collisions. It is noted that the linear dependence
quantity (Vc

22Vn
2)21/2 and collision timeTn on window in-

dex n occurs in thef4-related models as well@21–25#.
Hence, this dependence appears to be universal in reson
induced window sequences.

The structure of this paper is organized as follows. In S
II, we study the collision dependence of orthogonally pol
ized and equal-amplitude vector solitons on XPM coeffici
b (.0). In Sec. III, we present a variational model th
05661
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qualitatively explains the collision structure and dynamics
Sec. II. In Secs. IV and V, we examine the collision depe
dence on polarizations and relative amplitudes, respectiv
In Sec. VI, we summarize our main results, and argue t
the experimental observation of our results is feasible.

II. COLLISIONS OF ORTHOGONALLY POLARIZED AND
EQUAL-AMPLITUDE VECTOR SOLITONS

The coupled NLS equations under study are

iAt1Axx1~ uAu21buBu2!A50, ~2.1!

iBt1Bxx1~ uBu21buAu2!B50, ~2.2!

whereA andB are complex amplitudes of wave envelopes
two orthogonal polarizations or two WDM channels@3,29#.
The parameterb is the XPM coefficient that is always pos
tive in optics applications. The system~2.1! and ~2.2! is
phase, position, and Galilean invariant. Solitary waves in t
system are of the form

A~x,t !5r 1~x2vt2x0!e(1/2)ivx1 i [v1
2
2(v2/4)]t1 ig1, ~2.3!

B~x,t !5r 2~x2vt2x0!e(1/2)ivx1 i [v2
2
2(v2/4)]t1 ig2, ~2.4!

wherev1
2 andv2

2 are frequencies of theA andB components,
and initial positionx0, velocity v, phasesg1 , g2 are arbi-
trary parameters. In the optics literature, these solitary wa
are called vector solitons even though their collisions gen
ally are not elastic at all. The real-valued amplitude functio
r 1(x) andr 2(x) are related to frequenciesv1

2 andv2
2 through

the following ordinary differential equations~ODE’s!:

r 1xx2v1
2r 11~r 1

21br 2
2!r 150, ~2.5!

r 2xx2v2
2r 21~r 2

21br 1
2!r 250. ~2.6!

This ODE system supports a wide array of solitary-wa
solutions. The single-humped vector solitons are linea
stable, and all the others are believed to be linearly unsta
@31–34#. In this paper, we only consider collisions of singl
humped vector solitons. Such solitons are of two types. O
type is degenerate where either theA or B component van-
ishes. In this case, the other component is simply a N
soliton that has a sech profile. The other type is true vec
solitons where bothA andB components are nonzero. Suc
solitons exist only when the frequency ratiov2 /v1 falls be-
tween two values (A118b21)/2 and 2/(A118b21)
@15,32#. In general, these solitons defy explicit analytical e
pressions and have to be determined numerically.

In this section, we focus on the collision of orthogona
polarized and equal-amplitude vector solitons. These co
sions arise often in WDM systems and photorefractive m
terials@3,5#. The initial conditions for such collisions may b
written as

A~x,0!5A2 sechS x1
1

2
D0De(1/4)iV0x, ~2.7!
6-2
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COMPLEXITY AND REGULARITY OF VECTOR-SOLITION . . . PHYSICAL REVIEW E 64 056616
B~x,0!5A2 sechS x2
1

2
D0De2(1/4)iV0x, ~2.8!

whereV0(.0) is the relative velocity of the two initial soli
tons, andD0(@1) is the initial separation. In other word
initially, the two-vector solitons are both degenerate, but
left soliton ~2.7! is polarized entirely in theA component,
and the right soliton~2.8! is polarized in theB component.
For convenience, we will call the left soliton asA pulse, and
the right soliton asB pulse. These pulses initially move to
ward each other at relative velocityV0. This velocity will be
called collision velocity throughout this article. Due to pha
invariances of Eqs.~2.1! and ~2.2!, any initial phases in the
two solitons~2.7! and~2.8! may be removed. The amplitude
of these solitons are equal and have been normalized toA2
without loss of generality. The collision results of these so
tons do not depend on the specific value ofD0 as long as it is
large enough. It is noted that with the present initial con
tion, solutionsA(x,t) and B(x,t) are related by a simple
symmetry:B(x,t)5A(2x,t). Because of this, only contour
of theA component are shown in this section, as the conto
of the B component may be obtained by a simple mirr
reflection ofA contours about positionx50. Whenb50 or
1 ~integrable cases!, the two NLS solitons~2.7! and~2.8! will
simply pass through each other without change in amplitu
velocity, or polarization@35–37#. In the Manakov case (b
51), polarization rotations do not occur here because in
solitons are orthogonally polarized@36,37#. Whenb5” 0 and
1 ~nonintegrable case!, amplitudes, velocities, and polariza
tions of initial solitons will all change after collision. Thi
nonintegrable collision will be the focus of study in this se
tion.

At each XPM coefficientb, we have simulated Eqs.~2.1!
and ~2.2! extensively with initial conditions~2.7! and ~2.8!,
using collision velocityV0 as a control parameter. We tak
D0520 which proves to be large enough for the results
report in this section. The numerical scheme we use
third-order split-step method. Thex interval was taken as
@280,80#, and 1024 grid points were used. The time step w
taken as 0.01. To minimize radiation that can feed back
the system through periodic boundary conditions, a damp
condition has been applied in the boundary interv
@280,260# and @60,80#. To assess numerical errors, w
have selectively run our simulations with widerx intervals,
larger grid points, and smaller time steps. The results sh
that our choice of scheme parameters are adequate. A
independent check, we have also written a code that use
pseudospectral method along thex direction and fourth-order
Runge-Kutta method to advance in time. Our extensive co
parisons of these two numerical schemes show no disag
ment. All our simulations used double precision~about 16
significant digits!.

Our numerical simulations reveal three collision sc
narios: transmission, reflection, and trapping. In a transm
sion scenario, most energy in the pulses~2.7! and ~2.8!
passes through. In a reflection scenario, most energy in
two pulses is reflected back. In a trapping scenario, the
pulses trap each other and form a bound state. When
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collision is transmissional or reflectional, we have found th
only two-vector solitons emerge out of collision, unless t
XPM coefficientb is relatively large ()2). Polarizations of
these two exit vector solitons generally are different from
andp/2 of the initial solitons’. This phenomenon is the s
called shadow formation in the literature. In each collisio
radiation of various amount is also observed. We note tha
some rare cases, the transmitted energy and reflected en
of pulses~2.7! and ~2.8! are almost equal. When this hap
pens, the two exit solitons both have approximately 45 °
larization angles. In such cases, the distinction betw
transmissional and reflectional collisions is blurred~see Fig.
6!. We define the exit velocityV of a transmissional or re
flectional collision as the relative separation velocity of t
two exit solitons. For transmissional collision,V is positive.
For reflectional collision,V is negative. In a trapping colli-
sion, we simply assignV as zero. To determine exit veloc
ties numerically, we simulate each collision for a long tim
Meanwhile, we track the positions ofuAu and uBu ’s maxi-
mum values. After a long-time simulation, if these two p
sitions still remain very close to each other, we decide t
the solitons~2.7! and ~2.8! have trapped each other and s
exit velocity as zero. Otherwise, we use the statistical le
squares method to fit the velocities ofuAu and uBu ’s
maximum-value positions. The difference between these
velocities is recorded as the exit velocity. Due to the sy
metry of the initial condition~2.7! and ~2.8!, these two ve-
locities must be opposite to each other. This relation ser
as an additional check of our numerical accuracy.

We have carried out collision simulations of solitons~2.7!
and~2.8! for a large number ofb values ranging from 0 to 2
Below, we will present collision results at selectedb values
that highlight the main features of collision structure a
dynamics asb continuously increases from zero. Results
otherb values will not be displayed but briefly described. T
restrict the scope of this paper, we will only report ex
velocity results for each case with the only exception at
physically significant valueb52, where component ampli
tudes of exit pulses are also presented@see Fig. 7~b!#. At
another physically significant XPM coefficientb52/3, com-
ponent amplitudes of exit pulses may be found in@28#.

A. bÄ0.05

Whenb50, the system~2.1! and~2.2! is decoupled. Soli-
tons~2.7! and~2.8! do not interact with each other, and the
is no collision. So, the exit-velocityV is always exactly equa
to the collision-velocityV0. When b increases from 0, the
first nontrivial phenomenon is that, at small collision veloc
ties, solitons~2.7! and~2.8! trap each other and form a boun
state. Atb50.05, the exit-velocity versus collision-velocit
graph is shown in Fig. 1~a!. As we can see, whenV0 is
smaller than a critical velocityVc50.1715, trapping colli-
sion always occurs. Here, the critical-velocityVc is defined
as the smallest collision velocity above which all collisio
are transmissional. This definition will be used througho
this paper. To demonstrate, we takeV050.1, and show the
uAu contour of the collision in Fig. 1~b!. We remind the
reader that theuBu contour is just a horizontal reflection o
6-3
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YU TAN AND JIANKE YANG PHYSICAL REVIEW E 64 056616
the uAu contour aboutx50 axis. We see in this figure tha
after the first pass, the two solitons are dragged toward e
other. Then they trap each other and engage in interna
cillations @38–41#. In this collision, translational energy o
initial solitons has been transferred into internal-oscillat
energy. Small amount of radiation is emitted as well. W
note in passing that the state of internal oscillations in t
graph may last for a very long time. But, eventually the
oscillations will decay algebraicly due to radiation dampin
and the solution asymptotically approaches a station
vector-soliton state@40,42#. When V0.Vc , the collision is
transmissional. An example is shown in Fig. 1~c! with V0
50.3. Note that the solitons slow down a bit after collisio
In addition, their amplitudes and widths oscillate mildl

FIG. 1. Collision results forb50.05:~a! exit-velocity graph;~b,
c! uAu contours at collision velocities marked by respective letters
~a!. Contour levels are both 0.2:0.2:1.4.
05661
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These oscillations decay over time. The energy radiat
caused by the collision is very small here~less than 1%!. At
higher b values ~to be discussed below!, energy radiation
may increase slightly. But the radiation amount is still le
than 10% in most cases.

B. bÄ0.2

As b increases from 0.05, a very interesting phenomen
happens. That is, a sequence of reflection windows gradu
appears just below the critical-velocityVc . At b50.2, this
phenomenon is displayed in Fig. 2~a!. Note that these reflec
tion windows are intertwined with trapping intervals. In a
dition, they are spaced closer and become narrower
collision-velocity V0 approaches the critical-velocityVc ,
which is equal to 0.935 63 in Fig. 2~a!. A note-worthy fact is
that, asb increases from 0.05 to 0.2, reflection window
closer to the critical velocityVc appear first. Windows fur-
ther away~to the left! from the critical velocity appear later
This explains why in Fig. 2~a!, the first window on the far
left is so low since it was just born. No other reflectio
windows were found belowV050.9 in Fig. 2~a!.

An important characteristic of this sequence of reflect
windows is that quantity (Vc

22Vn
2)21/2, whereVc is the criti-

cal velocity andVn is the midpoint of thenth window, is
almost a perfect linear function of the window indexn, i.e.,

~Vc
22Vn

2!2 1/25mn1u, ~2.9!

wherem and u are constants. To demonstrate this, we fi
assignn52,3, . . . , for thereflection windows in Fig. 2~a!
starting from the left. The reason we did not assignn51 to
the first window in Fig. 2~a! is that, an even lower window in
this sequence does exist not atb50.2, but at higherb val-
ues. That window should be the first in this sequence
reflection windows and should be given indexn51. After
assignment of window indices, we numerically determi
each window’s midpointVn , which is almost the same as th
bottom point of that window. Then we plot the quanti
(Vc

22Vn
2)21/2 versus window indexn in Fig. 2~b! ~circles!.

We see that these points fall onto a straight line almost p
fectly. A least-square line fit gives the slopem and
y-interceptu as

m52.0588, u50.0375. ~2.10!

Collision dynamics in this sequence of reflection windo
is very interesting. It turns out that in all these reflecti
windows, the two solitons pass each other only twice. B
the time between these two passes varies from one win
to another. In addition, solitons between passes show a
nificant amount of width and amplitude oscillations. To
lustrate, we pick the bottom points of windows with indic
n53 and 6 in Fig. 2~a!, and display their collision contour
in Figs. 2~c! and 2~d!, respectively. We see that in bot
cases, solitons pass each other twice: the first pass oc
when they come together, and the second pass occurs w
they escape from each other. But numbers of width osci
tions between the two passes are different. These feature

n

6-4
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FIG. 2. Collision results forb
50.2. ~a! Exit-velocity graph.~b!
(Vc

22Vn
2)21/2 graph~circles!. The

solid line is the least-squares fi
given by Eqs.~2.9! and~2.10!. ~c,
d! uAu contours withV0 at the bot-
toms of the second and fifth win
dows with indicesn53 and 6 in
~a!. Contour levels are both
0.6:0.15:1.35.~e! Collision time
graph ~circles!. The solid line is
the least-squares fit given by Eq
~2.11! and ~2.12!.
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common to all those reflection windows. Below, we will ca
these reflection windows as two-pass windows.

Why do these reflection windows appear amidst trapp
intervals? The answer is suggested by Figs. 2~c! and 2~d!.
We see that during collisions, each soliton still holds up~no
splitting!, but its amplitude and width oscillate considerab
~breathing!. After collision, these oscillations become mu
weaker. This suggests an energy exchange mechanism
tween solitons’ translational motion and width oscillation
This energy exchange would be the strongest if time betw
the two passes is multiples of the width-oscillation peri
~plus a constant offset parameter to account for intricac
near the passes!. In other words, we expect that

vTn52np1d, ~2.11!

whereTn is the time between two passes when the collis
velocity V0 is at the bottom of thenth window, v is the
05661
g
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.
n

s

n

width oscillation frequency, andd is an offset parameter
This turns out to be the case indeed. When collision timeTn ,
which is measured numerically as the time between the
intersections ofuAu and uBu ’s maximum-value positions, is
plotted versus window indexn in Fig. 2~e! ~circles!, these
points fall onto a straight line very nicely. A least-square li
fit of this data gives frequencyv and offset parameterd as

v50.7976, d50.9764. ~2.12!

An analytical study of the above sequence of reflection w
dows will be carried out in Sec. III.

At this moment, we would like to draw the reader’s atte
tion to the remarkable similarity between collisions of Fig.
and those of kink-antikink collisions inf4-related models
@21–26#. First of all, f4 models also have a sequence
reflection windows just like Fig. 2~a!. Second, collision dy-
6-5
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YU TAN AND JIANKE YANG PHYSICAL REVIEW E 64 056616
namics inf4 models is analogous to that in Figs. 2~c! and
2~d!. Third, locations of reflection windows inf4 models
have the same functional form as Eq.~2.9!. Fourth, collision
time in f4 models is given by the same formula~2.11!. Fifth,
the mechanism for those reflection windows inf4 models is
a resonance between translational motion and inte
~shape! modes of kinks and antikinks, similar to the one f
our model. Even though kinks and antikinks are topologi
solitons that have infinite mass, while solitons~2.7! and~2.8!
are localized entities, similarities of collision dynamics b
tween them are surprising. A minor difference between re
nance mechanisms of these two models is worth mention
In the f4 models, the resonance is with internal modes
kinks and antikinks. These modes are discrete eigenfunct
of f4 models linearized around kinks and antikinks. In t
present paper, width oscillations of solitons as seen in F
2~c! and 2~d! are due to radiation modes@43#. Thus, the
resonance here is with radiation modes of solitons. Si
radiation modes exist in every conservative wave syst
while internal modes are relatively rare, we believe that re
nance with radiation modes is more common in physi
wave systems.

A visually distinctive difference between the collisio
structure of Fig. 2~a! and that off4 models is that, inf4

models, at the edge of each reflection window, another
quence of windows with one more ‘‘bouncing’’ can be foun
@21,26#. In Fig. 2~a!, we do not see such edge sequenc
This is not because we missed such edge windows in
numerics. Rather, the reason is energy radiation, wh
wipes out such edge windows. However, remnants of s
edge windows still persist in the present collisions. For
stance, we take the window with index n53 in Fig. 2~a! and
select two collision velocities 0.920 22 and 0.920 49 just
low its left edge. Collision contours at these two velociti
are shown in Figs. 3~a! and 3~b!. In both contours, we se
that the initial collision dynamics is almost the same as t
in Fig. 2~c!, obviously because these two collision velociti
are so close to the left edge of then53 window in Fig. 2~a!.
But then instead of escaping, the two solitons in Figs. 3~a!
and 3~b! engage in different numbers of width oscillation
followed by a third pass. If solitons escaped after this pa
we would have observed edge windows as inf4 models. But
solitons after the third pass seem to have lost too much
ergy to escape. So they subsequently trap each other
form a bound state. This is the only difference on edge c
lisions betweenf4 and our models. Atb50.2, those edge
windows did not come out. However, whenb gets larger
~say 0.6 or 2/3!, edge windows of one more pass do fina
appear. It is helpful to note here that in the variational mo
of Sec. III where energy is never radiated, sequences of e
windows indeed exist atb50.2 ~see Fig. 9!.

C. bÄ0.6

As b increases from 0.2, the two-pass windows of F
2~a! move closer to the critical-velocityVc , and the lowest
two-pass window with indexn51 finally emerges at ab
value somewhere between 0.3 and 0.4. After it is born,
sequence of two-pass windows is then complete. Ifb in-
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creases further, a pass-bounce-pass window appears o
left of the two-pass window sequence. The collision dyna
ics of this pass-bounce-pass window is as shown in Fig. 4~c!
described below. In addition, this pass-bounce-pass wind
starts to develop its own sequence of windows inside
two-pass window sequence. Meanwhile, other windows
even more complex collisions continue to emerge. Here, b
window sequence, we mean a sequence of windows wh
collision dynamics are the same, except that numbers
width and position oscillations at a certain stage of the c
lision are different~see Figs. 2 and 4!. These development
subsequently lead to the fractal structure reported in@27#.
That is, when we zoom into the neighborhood of high
indexed two-pass windows, we get a copy of the entire str
ture ~qualitatively!. This development is illustrated in Fig.
at b50.6. The whole exit velocity graph is displayed in Fi
4~a!. The wide reflection window whose bottom is marke
by letter ‘‘~c!’’ is the simplest pass-bounce-pass windo
The other wide reflection window whose bottom is mark
by letter ‘‘~d!’’ is the simplest two-pass window with inde
n51. Collision contours at the bottoms of these two wi
dows are shown in Figs. 4~c! and 4~d!, respectively. Now, if
we zoom into the neighborhood of the second two-pass w
dow, specifically, we zoom into the interval@1.265 50,
1.267 15#, which is highlighted by two vertical dashed line
in Fig. 4~a!, we get Fig. 4~b!, which is roughly a copy of Fig.

FIG. 3. Collision contours (uAu) at two velocities just below the
second reflection window~with index n53) in Fig. 2~a!: ~a! V0

50.920 22; ~b! V050.920 49. Both contours are at leve
0.6:0.15:1.35.
6-6
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FIG. 4. Collision results forb
50.6. ~a! Exit-velocity graph;~b!
enlargement of the interva
marked by two vertical dashed
lines in ~a!; ~c,d,e,f!: uAu contours
with collision velocitiesV0 at the
bottoms of the reflection windows
marked by respective letters in~a!
and ~b!. All contours are
0.2:0.2:1.4.
is

w

-

w

y
w
s
n

si-

ol-

t

e
h
ig.

-

the
4~a!. Thus, Fig. 4~a! has a fractal structure. Note that th
zoomed-in window preserves the main features of Fig. 4~a!.
In particular, we see counterparts of pass-bounce-pass
dow in Fig. 4~a! and two-pass window in Fig. 4~b! @marked
by ~e! and ~f!, respectively#. Collision dynamics at the bot
toms of these two reflection windows in Fig. 4~b! are dis-
played in Figs. 4~e! and 4~f!. Comparing Figs. 4~c! and 4~d!
with 4~e! and 4~f!, we see clearly that the reflection windo
marked by ‘‘~f!’’ in Fig. 4~b! is the next two-pass window
with index n52, and the reflection window marked b
‘‘ ~e!’’ in that figure is the next pass-bounce-pass windo
Notice that in Figs. 4~e! and 4~f!, after the first pass, soliton
oscillate once about their positions. The rest of the collisio
are qualitatively the same as those in Figs. 4~c! and 4~d!.
This pattern is true everywhere in Fig. 4~a! and its zoomed-in
window Fig. 4~b!. In other words, at the same relative po
05661
in-

.

s

tions of Figs. 4~a! and 4~b!, the collision in Fig. 4~b! is just
one more oscillation after the first pass. The rest of the c
lision is the same as that in Fig. 4~a!. A similar finding has
been reported in@27,28# atb52/3. There are some minor bu
significant differences between Figs. 4~a! and 4~b!. First, the
left end of Fig. 4~a! is broken into a few pieces, while at th
same position in Fig. 4~b!, the structure is a rather smoot
curve. Asb increases from 0.6, these broken pieces in F
4~a! do merge into a smooth curve~see@28#!. Another dif-
ference is that some windows in Fig. 4~a! get lost in the
zoomed-in window in Fig. 4~b!. For instance, the high trans
mission window in the center region of Fig. 4~a! disappears
in Fig. 4~b!.

The collision structure in Fig. 4~a! is actually much richer
than those reported above. First, at the lower edge of
simplest two-pass window@marked by ‘‘~d!’’ in that figure#
6-7
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YU TAN AND JIANKE YANG PHYSICAL REVIEW E 64 056616
and at the upper edge of the simplest pass-bounce-pass
dow @marked by ‘‘~c!’’ there#, windows of one more pas
~transmission windows! finally emerge. These edge window
are hallmarks off4 fractals@21,26#. At b50.2, when we see
a beautiful two-pass window sequence similar tof4’s in Fig.
2~a!, such edge windows did not appear due to energy ra
tion. But now they have. Second, some of the newly emer
windows cluster together and form other structures. Wh
we zoom into such structures, we get pictures that are rel
to the whole picture. An example is the cluster in the inter
@1.215, 1.224# on the left of the pass-bounce-pass windo
marked by ‘‘~c!’’ in Fig. 4~a!. When we zoom into this clus
ter, the graph we get is qualitatively a horizontal reflection
the original graph@it looks very much like a reflection of Fig
4~b!#. Collision dynamics in this zoomed-in window is als
closely related to that in the original graph. This pheno
enon has been reported in@28#, thus details will be omitted
here. Another example is the cluster in the interval@1.198,
1.213# which is on the far left of Fig. 4~a!. Zooming into
different locations of this cluster produces a copy or horiz
tal reflection of this cluster itself. In addition, thes
zoomed-in graphs bear similarities to the whole structure
Fig. 4~a!.

To conclude this section, we would like to emphasize
difference betweenf4 fractals and our present coupled NL
fractal. In f4 fractals, the basic structure is a sequence
two-pass windows just like Fig. 2~a!, all of which have two-
pass collisions of varying collision times@21–25#. At the
edge of a two-pass window, a sequence of three-pass
dows may be found@21,26#. These edge-window sequenc
make thef4 collision structure a fractal. In the coupled NL
fractal, the basic structure isnot the sequence of two-pas
windows. Rather, it is a collection of windows whose col
sions have various numbers of passing and bouncing
other words, complex collisions directly enter the ba
structure of the coupled NLS fractal. Our zooming operat
is not at the edge of a two-pass window either. In addition
zoomed-in windows, collision dynamics is not one mo
pass. Rather, it is one more position oscillation~see Fig. 4!.
Traces off4-type fractals may still be found here throug
the existence of edge windows just mentioned above~see
also Figs. 2 and 3!. But that perspective does not capture t
main collision structures and dynamics of Fig. 4~a! ~see also
@27,28#!. Thus, that perspective will not be adopted in t
rest of this section.

D. bÄ0.95

As b continues to increase from 0.6, more reflection a
transmission windows emerge. Meanwhile, the brok
pieces at the left side of Fig. 4~a! merge together. Thes
developments lead to the fractal structure reported in@27,28#
whereb52/3. Whenb increases further from 2/3, the fract
structure persists, but the details of this fractal are even m
complex. However, whenb gets very close to 1~the Mana-
kov model!, the collision structure simplifies. Atb50.95,
the exit-velocity graph is shown in Fig. 5~a!. As we can see
all those fractal structures and complicated reflection
transmission windows in Fig. 4~a! have now disappeared
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Here, at low-collision velocities, the collision is reflectiona
while at high-collision velocities, the collision is transmi
sional. But the transition from reflectional collisions to tran
missional collisions is still nontrivial. In fact, as the refle
tional ~left! branch and transmissional~right! branch of the
exit-velocity curve come toward a critical transition veloci
~which is about 0.5283!, each branch starts to oscillate mo
and more rapidly~this oscillation phenomenon has been o
served before in@18#!. The right branch oscillates between
high-exit velocity of about 0.48 and a low-exit velocity o
about 0. The left branch oscillates between a low-exit vel
ity of about 20.48 and a high-exit velocity of about 0. A
these oscillations are very close together so that in Fig. 5~a!,
those curves appear just as a spike. Collisions inside
spike are very interesting. We found that colliding solito
may form a quasistationary two-vector-soliton bound st
for a long time before they eventually separate. To dem
strate, we pick a velocityV050.528 45 inside this spike an
display theuAu contour in Fig. 5~b!. Here, after solitons come
together and pass each other the first time, they form a q
sistationary bound state for about 1000 time units. In t
bound state, each vector soliton’s polarization is very clo
to 45 °. The spacing between the two vector solitons is ab
14 units. Phase differences between them are about21 in
theA component, and 1 in theB component. Eventually, the
two-vector solitons come together again, pass through e
other, and escape. In different cycles of oscillations ins
the spike, we have observed different pass/bounce comb

FIG. 5. Collision results forb50.95.~a! exit-velocity graph;~b!
uAu contour atV050.528 45, which is inside the spike of~a!. The
contour levels are 0.2:0.2:1.4.
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COMPLEXITY AND REGULARITY OF VECTOR-SOLITION . . . PHYSICAL REVIEW E 64 056616
tions such as pass-bounce-pass collisions. In each cycle
found collisions in which a quasistationary two-solito
bound state is present.

E. bÄ1.2

Whenb is equal to 1, the system~2.1! and~2.2! becomes
the Manakov model, and the exit velocity becomes ident
to the collision velocity everywhere. In other words, the e
velocity graph is a straight line of slope one. Whenb con-
tinues to increase above one, the collision structure rem
simple. For instance, atb51.2, the exit-velocity graph is
shown in Fig. 6~a!. Above a critical velocity that is abou
0.7403, collisions are all transmissional. Below it, collisio
are all reflectional. The transition from reflection to transm
sion in this figure is a jump. However, this jump is only a
artifact of our definitions of reflectional and transmission
collisions. On the right-hand side of the jump, more ene
passes through, but the energy that is reflected back is
significant and is comparable to the transmitted energy. T
is illustrated in Fig. 6~b!, where theuAu contour is displayed
at collision velocityV050.7407, which is slightly above th
jump. Here, theA-component amplitude of the left exit
vector soliton is 1.074, and that of the right exit-vector so
ton is 1.075. According to our definition, this collision
transmissional, thus,V is positive. WhenV0 decreases, the
transmitted energy decreases, and the reflected energ

FIG. 6. Collision results forb51.2. ~a! Exit-velocity graph;~b!
uAu contour withV0 on the right-hand side of the jump in~a!. The
contour levels are 0.2:0.2:1.4.
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creases. AtV0'0.7403, the transmitted energy is about t
same as the reflected energy. AsV0 decreases below 0.7403
more energy is reflected back, thus, collision becomes refl
tional, andV becomes negative according to our definitio
In short, across this jump in Fig. 6~a!, collision does not
undergo dramatic qualitative changes. The transition i
smooth one.

F. bÄ2

As b increases beyond 1.2, the collision structure alwa
remains simple. For example,, whenb52, the exit-velocity
graph is shown in Fig. 7~a!. This figure is as simple as Fig
6~a!. The reason for the jump in Fig. 7 is the same as tha
Fig. 6~a!: just below the jump, slightly more energy is re
flected back; just above the jump, slightly more energy
transmitted through. Sinceb52 is a physically significant
value that arises in WDM systems, we have also presen
amplitudes of exit-vector solitons in Fig. 7~b!. Plotted in this
figure are component amplitudes of the right-moving ex
vector soliton. The amplitudes of the left-moving exit-vect
soliton may be readily obtained by the symmetry relati
A(x,t)5B(2x,t). Polarizations of exit vector solitons ca
also be inferred from this figure as the arctangent of
amplitude ratios. Figure 7~b! makes the exit velocity jump in
Fig. 7~a! easy to understand: across the jump, the rela
sizes of component amplitudes inside each exit-vector s

FIG. 7. Collision results forb52. ~a! Exit-velocity graph;~b!
component amplitudes of the right-moving exit vector solito
solid, A component; dashed,B component.
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YU TAN AND JIANKE YANG PHYSICAL REVIEW E 64 056616
ton have switched. One interesting feature about Fig. 7~a! is
that, as the collision-velocityV0 approaches 0, the exit ve
locity does not approach zero. In other words, slow collis
does not lead to slow separation. This is in contrast with F
6~a! whenb51.2. Another phenomenon atb52 is that, in a
certain collision-velocity range~around the interval@0.2,
0.6#!, a third vector soliton with zero velocity and low am
plitude appears as well. Below or above this velocity ran
we did not observe this third soliton.

As b increases above two, there is no qualitative cha
in the collision process. A quantitative difference is just th
at largerb values, the third vector soliton appears in wid
collision-velocity intervals. At sufficiently largeb values,
even the fourth or more vector solitons may appear.

III. THE VARIATIONAL MODEL

How can we analytically explain the emergence of w
dow sequences and fractal structures reported in the prev
section? Given the wide spectrum of collision behaviors
variousb values, this will not be a easy task. However,
smallb values, this study is indeed possible. The observa
we make is that, at smallb values, there is little pulse split
ting during collisions~see Figs. 1, 2, and 3!. Each of the
solitons~2.7! and~2.8! still remains as a single pulse, but i
width and amplitude may oscillate considerably. This su
gests to us a variational approach where we take an an
for each soliton that accounts for width and amplitude va
tions as well as position and velocity variations. Since init
solitons~2.7! and ~2.8! have sech profiles and collisions a
not violent at smallb values, it makes sense to adopt t
following sech ansatz for solitons throughout collision

A~x,t !5A2a1 sechS x2j1

w1
Dei [v1/2(x2j1)1b1/2w1(x2j1)21s1] ,

~3.1!

B~x,t !5A2a2 sechS x2j2

w2
Dei [v2/2(x2j2)1b2/2w2(x2j2)21s2] ,

~3.2!

whereak , wk , jk , vk , bk , andsk(k51,2) are the solitons’
amplitude, width, position, velocity, chirp, and phase, wh
are all functions of timet. The chirp term is introduced to
induce width and amplitude oscillations. The Lagrangian
the governing Eqs.~2.1! and ~2.2! is

L5E
2`

`

L~A,B!dx, ~3.3!

where the Lagrangian densityL is

L5 i ~AAt* 2AtA* !1 i ~BBt* 2BtB* !1~2uAxu22uAu4!

1~2uBxu22uBu4!22buAu2uBu2, ~3.4!

and superscript ‘‘*’’ represents complex conjugation. Wh
the ansatzs~3.1! and~3.2! are substituted into the Lagrangia
~3.3! and variations with respect to each of the soliton p
rameters taken, a system of ODE’s for these soliton par
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eters will be derived. In our situation, the two solitons a
always symmetric due to initial conditions~2.7! and ~2.8!.
Thus, the following relations hold at all times

j152j2[2
D

2
, v152v2[

v
2

, b15b2[b,

w15w2[w, a15a2[a. ~3.5!

Here,D is the pulse center-position separation, andv is the
relative velocity between the two pulses. Utilizing these
lations, the ODE’s for separationD, relative velocity v,
width w, and chirpb simply become

dD

dt
5v, ~3.6!

dv
dt

5
16Kb

w2
F8~a!, ~3.7!

dw

dt
52b, ~3.8!

db

dt
5

8

p2w2 H 1

w
2K23bK@aF~a!#8J , ~3.9!

where

F~a!5
a cosha2sinha

sinh3a
, ~3.10!

and

a5
D

w
, K5a2w5const. ~3.11!

Corresponding to the initial solitons~2.7! and ~2.8!, the ini-
tial conditions for the above ODE’s are

D~0!5D0 , v~0!5V0 , w~0!5a~0!51, b~0!50, K51.

~3.12!

We note that the above variational model and ODE’s~3.6! to
~3.9! have been derived before by Ueda and Kath@38# to
study internal oscillations of vector solitons when initi
pulses~2.7! and~2.8! overlap with each other. Here, we us
this model to study the collision of these pulses where th
are initially far apart but moving toward each other.

At a given b value, we integrate ODE’s~3.6! to ~3.9!
numerically by the adaptive Runge-Kutta-Fehlberg meth
for various collision-velocitiesV0. The initial separationD0
may be chosen as any large value. To be consistent with
numerical simulations in the previous section, we selectD0
520 throughout this section. The exit-velocityV is thev(t)
value after the collision has completed and the solitons~3.1!
and~3.2! have separated far apart again@D(t)@1#. Interpre-
tation of an ODE solution requires caution however. Acco
ing to these ODE’s, solitons~3.1! and ~3.2! almost always
separate after a sufficiently long time. The reason is that
6-10
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FIG. 8. Collision results forb
50.2 in the variational model.~a!
Exit-velocity graph. ~b! (Vc

2

2Vn
2)21/2 graph ~circles!. The

solid line is the least-squares fi
given by Eqs. ~2.9! and ~3.13!.
~c,d! uAu ansatz contours withV0

at the bottoms of the second an
fifth windows with indicesn53
and 6 in ~a!. Contour levels are
both 0.6:0.15:1.35.~e! Collision
time graph~circles!. The solid line
is the least-squares fit given b
Eqs.~2.11! and ~3.14!.
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variational model does not allow any energy radiation. Th
these solitons always have enough energy to escape
each other, and they almost always do so when timing
right. But, if an ODE solution is such that solitons~3.1! and
~3.2! cross each other many times before they eventu
separate, in reality, that collision should be considered
trapping because energy loss to radiation during these cr
ings would be large enough that solitons become unabl
escape from each other~see Fig. 3!. In view of this, we will
only look for ODE solutions with a small number of solito
crossings. Comparatively, width and amplitude oscillatio
~breathing! of a soliton does not generate much radiation@see
Figs. 2~c! and 2~d!#. Thus, the ODE solution is still valid
after a large number of such oscillations.

Our extensive numerical study of the ODE model~3.6! to
~3.9! shows that at smallb values, there is a critical-velocity
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Vc above which all collisions are transmissional. BelowVc ,
a sequence of two-pass reflection windows exists. In the
lowing, we report these results forb50.2 and compare them
to numerical results in Sec. II. Restricting the number
passes between solitons in the ODE model to be less or e
to two, the exit-velocity versus collision-velocity graph
then shown in Fig. 8~a!. In this figure, we see a sequence
reflection windows just like Fig. 2~a! of the PDE system.
Contour plots ofuAu ansatz~3.1! at the bottoms of the secon
and fifth windows~with indicesn53 and 6! in Fig. 8~a! are
displayed in Figs. 8~c! and 8~d!, respectively~it is noted that
the uBu contour is simply a mirror reflection of theuAu con-
tour!. These contours show that in both windows, solito
~3.1! and ~3.2! pass each other twice, but numbers of wid
oscillations between passes are different. Obviously, th
collision dynamics are qualitatively identical to those in Fig
6-11
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YU TAN AND JIANKE YANG PHYSICAL REVIEW E 64 056616
2~c! and 2~d!, which confirms that the window sequence
Fig. 8~a! is indeed the sequence of two-pass windows. O
minor difference between collisions in the variational mod
and those in the PDE system is that, in the variational mo
the simplest two-pass window with indexn51 appears at
@0.7967, 0.8129# @outside the interval range of Fig. 8~a!#.
Comparatively, that window has not been born yet in
PDE system@see Fig. 2~a!#.

Other aspects of collision structure and dynamics in
variational model atb50.2 closely resemble those in th
PDE system as well. First, we look at window locations
Fig. 8~a!. Here, the critical-velocityVc50.863 38. In each
reflection window, we take its midpointVn . Then we plot
the quantity (Vc

22Vn
2)21/2 versus window indexn in Fig.

8~b!. Clearly, (Vc
22Vn

2)21/2 here is also a linear function o
n, just like in the PDE case@see Fig. 2~b!#. A least-squares
line fit shows that the slopemv and y-interceptuv of the
linear function~2.9! now is

mv51.3234, uv50.5496, ~3.13!

which are a little different from the true values given in E
~2.10!. Second, we examine collision times at bottoms
these reflection windows. The collision time here is natura
defined as the time between the two position intersection
theA andB ansatzs~3.1! and~3.2!. Not surprisingly, we find
that collision timeTn is also a linear function of the window
index n in the same form of Eq.~2.11!, and a least-squar
line fit shows that the frequencyvv and offset parameterdv
now are

vv50.9993, dv53.9494, ~3.14!

which are again a little different from those in Eq.~2.12! for
the PDE system.

Differences between the variational model and true co
sion dynamics are mostly quantitative. Comparing Figs. 2~a!
to Fig. 8~a!, locations of reflection windows are a little o
from each other. Coefficients in linear functions~2.9! and
~2.11! are different too. But the variational model has clea
captured the key collision structure and dynamics of
original PDE system qualitatively.

In collisions of the PDE system atb50.2, transmission
windows at edges of two-pass reflection windows never
peared, even though their ‘‘quasiexistence’’ was sugges
by collision contours in Fig. 3. In the variational model, w
find that such edge windows do appear. To illustrate, let
choose the second two-pass window in Fig. 8~a! ~with index
n53), as we did in Fig. 3. Below its left edge, we disco
ered a sequence of three-pass transmission windows. T
edge windows are shown in Fig. 9~a!. Picking the second and
sixth transmission windows as marked by letters ‘‘~b!’’ and
‘‘ ~c!,’’ we show their peak-point ansatz contours~3.1! in
Figs. 9~b! and 9~c!, respectively. In both collisions, soliton
pass each other three times, but numbers of width osc
tions between the second and third passes are different.
characteristic is true of all the edge windows in Fig. 9~a!.
Thus, these windows do belong to the same sequenc
three-pass windows. Comparing contours in Fig. 9 to th
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in Fig. 3, we see that they are quite similar, except t
solitons in Fig. 3 trap each other instead of escaping fr
each other after the third pass. Since the main differe
between the variational model and the PDE system is that
variational model does not allow energy radiation, while t
PDE system does, we conclude that the eventual trappin
solitons in Fig. 3 is caused by energy radiation. In oth
words, energy radiation wipes out edge windows of the P
system.

As b increases, other windows of more complex col
sions gradually emerge in the ODE model. This proc

FIG. 9. Edge windows and their dynamics just below then
53 reflection window of Fig. 8~a! in the variational model.~a!
Edge windows;~b,c! uAu-ansatz contours withV0 at peaks of the
second and sixth transmission windows marked by respective le
in ~a!; contour levels are both 0.6:0.15:1.35.
6-12
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closely mirrors that in the PDE system. The ability of t
variational model to qualitatively reproduce true collisio
dynamics of the PDE system indicates that our variatio
ansatzs have fully or partially captured the main features
true collisions. In the variational model, width oscillation
play a critical role, and the resonance between width os
lations and translational motion of solitons is responsible
the rich collision structures. For soliton collisions in the PD
system, at smallb values, this resonance appears to be
only mechanism for the creation of the two-pass wind
sequence~see Fig. 2!. At moderateb values, pulse splitting
during collisions produces two nondegenerate vector s
tons. Then oscillations of relative positions between t
components inside each vector soliton may also get invol
in the resonance mechanism@27,28#. Incorporation of posi-
tion oscillations into the variational model may be done, b
it is fairly complicated. Thus, it will not be pursued in th
article.

IV. COLLISION DEPENDENCE ON POLARIZATION

The collisions studied in previous two sections are
tween vector solitons of orthogonal polarizations and eq
amplitudes@see Eqs.~2.7! and ~2.8!#. Such collisions are
rather special. In practical situations, it is quite likely th
initial solitons are not orthogonally polarized, or they ha
different amplitudes. Thus, an important question is how
collision structure of previous sections changes when in
solitons become nonorthogonally polarized or have differ
amplitudes. This question will be addressed in this and
next sections.

In this section, we study how the collision structure a
dynamics change when initial vector solitons are not
thogonal, i.e., their initial polarization angles are not 0 a
p/2. For this purpose, we take the initial condition as

A~x,0!5r 1S x1
D0

2 De(1/4)iV0x1r 2S x2
D0

2 De2(1/4)iV0x1 ig1,

~4.1!

B~x,0!5r 2S x1
D0

2 De(1/4)iV0x1r 1S x2
D0

2 De2(1/4)iV0x1 ig2,

~4.2!

whereD0(@1) is the initial vector-soliton separation,V0 is
the collision velocity, and (g1 ,g2) are initial relative phases
of the two solitons in theA and B components. Function
@r 1(x),r 2(x)# are nondegenerate vector solitons with fr
quencies (v1

2 ,v2
2), and they satisfy the ODE systems~2.5!

and ~2.6!. By rescaling variables, we can always normal
v151. As we have mentioned in Sec. II, in order to ge
nondegenerate single-hump vector soliton, the frequency
tio v2 /v1 must lie inside the interval @(A118b
21)/2,2/(A118b21)#. At the end points of this interval
the vector soliton is degenerate again, and initial conditi
~4.1! and~4.2! reduce to Eqs.~2.7! and~2.8!. It is noted that
the two polarized vector solitons in Eqs.~4.1! and~4.2! have
the same total energy. In addition, they satisfy the symm
A(x,0)5B(2x,0) if g15g250. This initial symmetry
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guarantees that the solution holds this same symmetry a
times. This feature is the same as initial conditions~2.7! and
~2.8!.

For collisions of nondegenerate vector solitons, init
relative phases between the two solitons may no longe
removed, and they will affect the collision in a nontrivia
way. This is why we introduced such phases (g1 andg2) in
initial conditions ~4.1! and ~4.2! in the first place. Another
feature is that collisions of nondegenerate vector solitons
pend on initial position separationD0 as well, no matter how
large is D0. The reason is simple to explain. Suppose
initial separation has been changed fromD0 to D01h. At
collision-velocityV0, it takes extra timeh/V0 for vector soli-
tons to move to the original separationD0. During this time,
theA component of the left vector soliton has gained a ph
increase (v1

22V0
2/16)h/V0 @see Eq.~2.3!#, while the same

component of the right vector soliton has gained a ph
increase (v2

22V0
2/16)h/V0. Thus, theA-component phase

difference at separationD0 is g11(v2
22v1

2)h/V0 instead of
g1. Similarly, theB-component phase difference at sepa
tion D0 is g22(v2

22v1
2)h/V0 instead ofg2. Due to phase

dependence of collisions, it is evident that the collision
separationD01h is generally different from that at separa
tion D0. The above argument also shows that, under
transformation

D0→D01h, g1→g12~v2
22v1

2!
h

V0
,

g2→g21~v2
22v1

2!
h

V0
, ~4.3!

the collision remains the same as long asD0@1.
We have carried out collision simulations atb52/3 with

initial phasesg15g250 and vector-soliton frequenciesv1
51 and v250.78. The initial separationD0 is allowed to
vary so that collision dependence onD0 may be assessed
First, we takeD0540. For these system parameters, the i
tial vector solitons~4.1! and~4.2! are displayed in Fig. 10~a!.
As we can see, each vector soliton here has a wave-sha
structure@15#, and the two vector solitons are weakly nono
thogonal. It turns out that even a weak nonorthogonality
a profound effect on collision structure and dynamics. In F
10~b!, the exit-velocity versus collision-velocity graph is di
played. Clearly, this graph is quite different from that whe
initial solitons were perfectly orthogonal@27,28#. Its struc-
ture is simpler than the orthogonal case. The jump atV0
51.30 here is similar to those in Figs. 6~a! and 7: below the
jump, slightly more energy is reflected; above the jum
slightly more energy is transmitted.

A feature of Fig. 10~b! is the appearance of a sequence
reflection windows on the left-hand side of the graph. T
window sequence is fundamentally different from that in F
2~a! on the geometrical feature, dynamics, and mechani
Geometrically, this window sequence converges toward
left. The first window in this sequence with indexn51 is
6-13
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FIG. 10. Collision results of
weakly nonorthogonal vector soli
tons atb52/3. The initial condi-
tion is Eqs. ~4.1! and ~4.2! with
v151, v250.78, D0540, and
g15g250. ~a! The initial condi-
tion A(x,0) ~solid! and B(x,0)
~dashed!; ~b! the exit velocity
graph;~c,d! uAu contours withV0

at midpoints of then54 and 2
windows in~b!; both contours are
0.2:0.2:1.4; ~e! (v2

22v1
2)D0 /Vn

graph ~circles!. The solid line is
the least-squares fit given by Eq
~4.4! and ~4.5!.
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located at@1.0948, 1.2944#. The next window with indexn
52 is at@0.7400, 0.8698#. Higher-indexed windows are fur
ther to the left. Dynamically, collisions in all windows in th
sequence are simple one-bounce collisions. To demonst
we show in Figs. 10~c! and 10~d! collision contours at the
midpoints of then54 andn52 windows as marked by re
spective letters. OnlyuAu contours are shown because t
reflectional symmetryB(x,t)5A(2x,t) still holds here. As
we can see from these contours, both collisions are sim
reflections. Their similarity is obvious. Collision contours
other windows of this sequence are similar.

What mechanism creates this sequence of reflection w
dows? Apparently, the mechanism here is not the resona
discussed in previous sections. The similarity of collisions
these windows offers the following answer. When a vec
soliton travels, its phases change according to Eqs.~2.3! and
~2.4!, thus, these phases at the soliton centerx5vt1x0 are
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(v1
21(1/4)v2)t1(1/2)vx01g1 for A and (v2

21(1/4)v2)t
1(1/2)vx01g2 for B. Now, when the two vector solitons in
the initial conditions~4.1! and~4.2! move toward each other
the relative phases between their soliton centers arev2

2

2v1
2)t for A and2(v2

22v1
2)t for B ~note thatg15g250 in

our choices of parameters!. We know that collisions of non-
degenerate vector solitons depend on relative phases.
vector solitons in Eqs.~4.1! and ~4.2! with initial separation
D0 and collision-velocityV0, collision occurs att'D0 /V0.
At this time of collision, the relative phases of soliton cente
are (v2

22v1
2)D0 /V0 for A and2(v2

22v1
2)D0 /V0 for B. Our

key observation is that, at two collision velocities, if th
above relative phases at collision differ by a multiple of 2p,
then the collision outcomes should be roughly the same~the
reader is reminded that a vector soliton’s amplitude pro
remains the same at all velocities!. Mathematically, it means
that at collision velocitiesVn (n51,2, . . . ,)where
6-14
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~v2
22v1

2!D0

Vn
5tn1f, ~4.4!

slopet52p andf is a constant, collision dynamics shou
be about the same. To check this formula, we have de
mined the midpointsVn of those reflection windows. Whe
quantities (v2

22v1
2)D0 /Vn are plotted in Fig. 10~e! versus

window indexn ~circles!, we see that the dependence is
deed linear. A least-square line fit shows that the actual s
t andy-interceptf in Eq. ~4.4! are

t56.7525, f55.9289. ~4.5!

The slope is rather close to the theoretical value 2p. This
surprisingly good agreement confirms that this sequenc
reflection windows is indeed caused by the phase dep
dence of collisions as described above. Furthermore, lin
relation ~4.4! does hold very well. We attribute the mino
difference between the theoretical slope 2p and the actual
slope 6.7525 to the fact that phase variations across e
vector soliton, which depend onx in the form of6(1/4)V0x,
also affect the collision outcome. This effect is understa
ably small. The reason is that in this window sequence,V0 is
about one or smaller. In addition, the half width of ea
vector soliton, defined as one half of the full width at ha
maximum ~FWHM!, is about 0.88. Thus, phase variatio
across a vector soliton are about 0.22 or smaller. Con
quently, differences of these phase variations at different
lision velocities would be even smaller, thus, are insign
cant compared to overall phase differences between the
solitons~which are multiples of 2p).

As we have said before, collisions of nonorthogonal v
tor solitons depend on initial separationD0. To study this
separation dependence, we now choose another separ
valueD0520 while keeping the other system parameters
same. The exit-velocity graph for this case is shown in F
11. This graph is somewhat similar to Fig. 10~b!. However, it
is a little simpler. There are less reflection windows in th
sequence. Window locations are changed significantly
The midpointsVn of windows in this sequence satisfy th
same relation~4.4!, but the slopet here is 7.2849, which is
slightly different from that atD0540.

FIG. 11. Exit-velocity graph at initial separationD0520. The
other parameters in the initial conditions~4.1! and ~4.2! are the
same as in Fig. 10.
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The scope of collision dependence on polarizations
ported in this section is rather limited. We only investigat
this dependence at small polarization angles for one X
coefficientb52/3. However, the phase-induced sequence
reflection windows we have discovered is expected at o
b values and different polarization angles as well, as ph
dependence is present in such collisions too. Last, possi
ties still exist that other interesting collision structures m
arise in different parameter regions of polarization angl
relative initial phases and XPM coefficients. This remains
be seen.

V. COLLISION DEPENDENCE ON RELATIVE
AMPLITUDES

Collision dependence on relative amplitudes of tw
vector solitons is another important issue. This will be stu
ied briefly in this section. To isolate this effect, we will aga
make initial vector solitons orthogonally polarized. Thus, w
take the initial condition as

A~x,0!5A2a sechaS x1
1

2
D0De~1/4!iV0x, ~5.1!

B~x,0!5A2 sech~x2~1/2!D0!e2(1/4)iV0x, ~5.2!

where the right soliton’s amplitude has been normalized
be A2, anda is the relative amplitude of the left soliton~in
the orthogonal polarization!. Note that for this collision, the
symmetryA(x,t)5B(2x,t) is lost, and the exit pulses gen
erally have different velocities~in magnitude!. Also, note
that this collision now is independent of the initial positio
separationD0 again as long asD0@1. We have simulated
this collision at various collision-velocitiesV0, relative am-
plitudesa, and XPM coefficientsb. In these simulations, the
initial separation is always taken asD0520. The general
conclusion is that when the amplitude difference betwe
these solitons increases, the collision structure simplifies.
demonstrate, we selectb52/3 anda51.2. For each colli-
sion, we found that two-vector solitons with velocities n
opposite of each other emerge after collision. The veloci
of these emerged solitons are displayed in Figs. 12~a! and
12~b!. Obviously, these velocity graphs are very simplifi
compared to those in@27,28# wherea51. In fact, the fractal
structure has disappeared now. At highera values, the veloc-
ity graph would be even simpler. It is noted that the collisi
of solitons ~5.1! and ~5.2! has been studied before by th
multisoliton perturbation method for the Manakov syste
@18#. The collision structure in Fig. 12 is consistent with th
results of@18#.

VI. DISCUSSION

In previous sections, we have presented a numerical
analytical study of vector-soliton collisions in the couple
nonlinear Schro¨dinger Eqs.~2.1! and ~2.2!. We have shown
that for collisions of orthogonally polarized and equa
amplitude vector solitons, when the XPM coefficientb is
small, a sequence of reflection windows similar to that in
6-15
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f4 model arises. Whenb increases, a coupled NLS fract
gradually emerges. But whenb is greater than one, this frac
tal disappears. Analytically, we have explained these co
sion behaviors by a variational model that qualitatively
produces the main features of these collisions. T
variational model indicates that these window sequences
fractal structures are caused entirely or partially by a re
nance mechanism between the translational motion
width oscillations of vector solitons. We have also inves
gated collision dependence on initial polarizations, and d
covered a sequence of reflection windows that isphase in-
duced. Our analytical formula for the locations of thes
phase-induced windows agrees well with the numerical v
ues. Last, we have examined collision dependence on
tive amplitudes and showed that when vector solitons h
different amplitudes, the collision structure simplifies.

There are three key collision structures in the coup
NLS Eqs. ~2.1! and ~2.2!. The first one is the resonance
induced sequence of reflection windows similar tof4’s in
collisions of orthogonally polarized and equal-amplitu
vector solitons at smallb values@see Fig. 2~a!#. The second
one is the coupled NLS fractal at moderateb values@see Fig.
4~a! and @27,28##. The third is a phase-induced sequence
reflection windows in collisions of nonorthogonally pola
ized vector solitons~see Fig. 10!. The first structure has bee
discovered in many sine-Gordon-type equations@21–25#. Its
reappearance in the coupled NLS system suggests its un
sality. The second structure is a fractal that is distinctiv

FIG. 12. Collision results for solitons of unequal amplitudes
b52/3. The initial condition is~5.1! and ~5.2! with a51.2. ~a!
Velocity Vl of the larger vector soliton emerged;~b! velocity Vs of
the smaller vector soliton emerged.
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different fromf4’s. Its basic structure is a collection of mu
tipass and multibounce windows. Whether this coupled N
fractal can reappear in other wave systems remains an in
esting question. On the other hand, these two structures
intimately related at least in the coupled NLS system in t
respects:~1! the first structure bifurcates into the second o
as b continuously increases;~2! the mechanisms for both
structures are resonances between translational motion
internal oscillations of vector solitons. The third structure
unrelated to the first two: it is phase induced, and its collis
dynamics is different.

It is noted that only the main collision structures are
ported in this article. Some minor features have been om
ted. For instance, in collisions of orthogonally polarized a
equal-amplitude vector solitons, asb steadily increases
some reflection or transmission windows may mysteriou
appear out of nowhere, then disappear with no trace
Results on polarization rotation~shadow formation! and am-
plitude changes after collision are omitted too.

Last, we discuss potential experimental verifications
our results. The model Eqs.~2.1! and ~2.2! we have studied
are widely accepted as governing pulse propagations in b
fringent nonlinear optical fibers@29# ~without random bire-
fringence!. For fibers of linear birefringence, the XPM coe
ficient isb52/3 @29#. For elliptical birefringence,b can take
other values@30#. The dimensionless collision velocityV0 in
our model is related to physical parameters as@29#

V05
4pDn

l2uDu
3

t

1.763
, ~6.1!

whereDn is the index difference of the fiber’s two polariza
tions,t is the pulse’s FWHM,l is the wavelength, andD is
the dispersion parameter~note thatD in @29# was defined
differently!. For step-index single-mode fibers, the typic
value for D is 15.6 ps/nm/km at wavelengthl51.55mm
@1#. According to@44#, Dn varies between 531029 and 8
31024. Typical values concentrate in the range 1026 to
1025. If we let t55 ps, then the total range forV0 is from
4.831023 to 7.63102, while typical values fall between
0.95 and 9.5. Many of the interesting collision structur
discovered in this paper such as the resonance-induced
quence of reflection windows in Fig. 2~a!, the coupled NLS
fractal in Fig. 4 and@27,28#, and the phase-induced sequen
of reflection windows in Fig. 10~b! fall entirely or partially in
the range of typical experimental parameters. Equally imp
tantly, some of these windows such as those induced
phase in Fig. 10~b! are very wide, so they should surviv
under inevitable birefringence fluctuations in real expe
ments. Thus, experimental observation of collision results
this paper is quite feasible.
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