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In this paper, we extensively investigate the collision of vector solitons in the coupled nonlineadiSgaro
equations. First, we show that for collisions of orthogonally polarized and equal-amplitude vector solitons,
when the cross-phase modulational coeffici@ris small, a sequence of reflection windows similar to that in
the ¢* model arises. WheB increases, a fractal structure unliké’s gradually emerges. But whef is
greater than one, this fractal structure disappears. Analytically, we explain these collision behaviors by a
variational model that qualitatively reproduces the main features of these collisions. This variational model
helps to establish that these window sequences and fractal structures are caused entirely or partially by a
resonance mechanism between the translational motion and width oscillations of vector solitons. Next, we
investigate collision dependence on initial polarizations of vector solitons. We discovered a sequence of
reflection windows that iphase inducedather than resonance induced. Analytically, we have derived a simple
formula for the locations of these phase-induced windows, and this formula agrees well with the numerical
data. Last, we discuss collision dependence on relative amplitudes of initial vector solitons. We show that when
vector solitons have different amplitudes, the collision structure simplifies. Feasibility of experimental obser-
vation of these results is also discussed at the end of the paper.
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[. INTRODUCTION of this coupled NLS fractal is a sequence of multipass and
multibounce windows, while the basic structure of é
Collision of solitary waves is an important problem for fractal is a collection of two-pass windows. Very recently,
both physical and mathematical reasons. Physically, solitarybreather interactions in a weakly discrete sine-Gordon equa-
wave collisions are common phenomena in science and efion have been studied, and a fractal structure has been iden-
gineering. For instance, a popular technology in fiber comtified there as wel[20].
munication systems is wavelength-division multiplexing The fractal dependence is probably the most vivid mani-
(WDM). In a WDM system, optical pulses in different fre- festation of both complexity and regularity in solitary-wave
guency channels collide with each other all the tifhe 3]. collisions. Such dependence in the coupled NLS equations is
In waveguides such as crystals, photorefractives, and aiparticularly significant since those equations directly govern
beam collision is being utilized to achieve instant beampulse propagation in birefringent fibers and WDM systems
steering and control4—-10]. Water-wave collisions in the [1,2,29. Those equations are also closely related to beam
ocean and on the beach are even more familiat. Math-  propagation in crystals and photorefractive wavegujd€
ematically, solitary-wave collision is a major branch of non-In [27,28, this fractal structure was shown only for one
linear waves. In integrable systems, solitary waves collidecross-phase modulation@dPM) coefficient3=2/3 that cor-
elastically. But if the system is nonintegrable, this collisionresponds to linear fiber birefringence. In addition, only col-
may be highly nontrivial. Much work has been done onlisions of vector solitons with equal amplitudes and orthogo-
solitary-wave collisions in a large array of physical systemsnal polarizations were studied. In engineering applications,
Various collision scenarios such as transmission, reflectiorglliptical fiber birefringence is not uncomm¢@80]. Further-
annihilation, trapping, creation of solitary waves and evermore, initial solitons are not always in orthogonal polariza-
mutual spiraling have been reportgtP—2Q. In particular, tions or with equal amplitudes. Thus, how this fractal struc-
for kink-antikink collisions in theg* and related models, an ture changes when the XPM coefficient, initial polarizations,
interesting sequence of resonant reflection windows has beemd relative amplitudes vary is obviously a pressing ques-
discovered21-25. Near the edge of each resonance win-tion. In addition, in[27,28, the mechanism for this fractal
dow, other sequences of resonant windows with moralependence was argued as a resonance between the transla-
“bouncing” have also been reveald@2,23,26. This phe- tional motion and internal oscillations of vector solitons on
nomenon is the so-called fractal structuredifirelated sys- numerical and heuristic grounds. A more quantitative ana-
tems. In two recent articles, we found a somewhat differentytical theory to explain this fractal structure is clearly called
fractal structure in vector-soliton collisions in the noninte-upon. All these important questions will be addressed in the
grable coupled nonlinear Scliinger (NLS) equations present paper.
[27,28. When we zoom in to various collision-velocity win- The results of this paper may be summarized as follows.
dows, we obtain a copy, a horizontal reflection, or a verticaWe first investigate the collision dependence of orthogonally
reflection of the original graph with all the major geometric polarized and equal-amplitude vector solitons on the XPM
features preserved. Unlike thg* fractal, zooming opera- coefficient3(>0). We find that wherB is very small, vec-
tions for the vector-soliton fractal are performed not at edgesor solitons pass through each other at collision velockigs
of a resonant window. More importantly, the basic structureabove a critical value/., and trap each other at collision
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velocitiesVo<V.. When g increases, a sequence of reflec- qualitatively explains the collision structure and dynamics of
tion windows similar to that in thep* model gradually Sec. Il. In Secs. IV and V, we examine the collision depen-
emerges just below the critical velocit, . In all these win- ~ dence on polarizations and relative amplitudes, respectively.
dows, the two solitons pass each other only twice, but numln Sec. VI, we summarize our main results, and argue that
bers of width oscillations of vector solitorfer equivalently, —the experimental observation of our results is feasible.
collision time between the two passes differ. Whgnin-

creases further, a fractal structure unliéé&'s emergeg27). [l. COLLISIONS OF ORTHOGONALLY POLARIZED AND

As B approaches one, this fractal structure simplifies. When EQUAL-AMPLITUDE VECTOR SOLITONS

B=1 (the Manakov mode] the collision is elastic and com-

oo e ) The coupled NLS equations under study are
plexity disappears. Whep>1, the collision is not elastic,

but the collision structure remains simple. Theoretically, we A+ Ayt (|Al?+ B|B|?)A=0, (2.2
explain the above intricate collision structure and dynamics
by a simple variational model. With this model, we suc- iB{+ By + (|B|?+ B|A|?)B=0, (2.2

ceeded in qualitatively reproducing the key features of

vector-soliton collisions in the original partial differential WhereA andB are complex amplitudes of wave envelopes in
equations(PDE’S). This success helps to establish that thefwo orthogonal polarizations or two WDM chann¢&29]. -
mechanism for window sequences and fractal structures ifihe parametep is the XPM coefficient that is always posi-
vector-soliton collisions may be attributed to a resonancdiVe in optics applications. The systef@.1) and (2.2) is
between the translational motion and width oscillationsPhase, position, and Galilean invariant. Solitary waves in this
(breathing of colliding solitons. Next, we investigate colli- SyStem are of the form

sion dependence on initial polarizations of vector solitons. In
this case, we discovered a sequence of reflection windows
that is quite different from that in the collision of orthogo- o, .
nally polarized vector solitons. Collisions in these windows B(X,t) =T (x—vt—xg)eH2vxtiloy=(5alttive (2 4

are all simple and also similar to each other. We will show

that this window sequence is not induced by a resonanceherew? andw3 are frequencies of th& andB components,
mechanism. Rather, it is phase induced, i.e., it is caused bgnd initial positionxy, velocity v, phasesy,, 7y, are arbi-

the collision’s dependence on vector solitons’ relativetrary parameters. In the optics literature, these solitary waves
phases. Analytically we derived a simple formula for theare called vector solitons even though their collisions gener-
window locations in this sequence, and it agrees well withally are not elastic at all. The real-valued amplitude functions
the numerical data. Last, we study collision dependence on;(x) andr,(x) are related to frequenciasf andw§ through
relative amplitudes of initial solitons. We find that when vec-the following ordinary differential equatiof©DE’s):

tor solitons have different amplitudes, the collision structure

A(X, ) =ry(x—vt— Xo)e(1/2)ivx+i[wi—(v2/4)]t+i71' 2.3

simplifies. Fi— @31+ (r2+ Brayr,=0, (2.5
Complexity of vector-soliton collisions is remarkable
enough. Equally remarkable is the clear pattern and regular- Fawx— @3F o+ (r3+ Brir,=0. (2.6)

ity in these collisions. In addition to the fractal structure that
exhibits clear patterns amidst complicated collisions, we als@his ODE system supports a wide array of solitary-wave
find that window locations in a sequence are given by simpl&olutions. The single-humped vector solitons are linearly
formulas as well. Specifically, in the window sequence forstable, and all the others are believed to be linearly unstable
collisions of orthogonally polarized vector solitons at small[31—-34. In this paper, we only consider collisions of single-
B values, quantity ‘@—Vﬁ)‘”z, where V. is the critical humped vector solitons. Such solitons are of two types. One
velocity andV, is the center of theth window, is a linear type is degenerate where either theor B component van-
function of the window index. In the window sequence for ishes. In this case, the other component is simply a NLS
collisions of nonorthogonally polarized vector solitorsv‘;“;1 soliton that has a sech profile. The other type is true vector
is a linear function ofn. We also find that in the window solitons where bot#® and B components are nonzero. Such
sequence for orthogonally polarized vector solitons, the colsolitons exist only when the frequency ratig/ w, falls be-
lision time T,, depends linearly om. These surprisingly tween two values {1+88—1)/2 and 2/(/1+88—1)
simple formulas testify to the high regularity of vector- [15,32. In general, these solitons defy explicit analytical ex-
soliton collisions. It is noted that the linear dependence ofressions and have to be determined numerically.
quantity (\/g—vﬁ)_l/2 and collision timeT,, on window in- In this section, we focus on the collision of orthogonally
dex n occurs in theg*-related models as well21-25. polarized and equal-amplitude vector solitons. These colli-
Hence, this dependence appears to be universal in resonan&ens arise often in WDM systems and photorefractive ma-
induced window sequences. terials[3,5]. The initial conditions for such collisions may be
The structure of this paper is organized as follows. In Secwritten as
II, we study the collision dependence of orthogonally polar- 1
ized and equal-amplitude vector solitons on XPM coefficient _ + (LI4)V ox
B (>0). In Sec. Ill, we present a variational model that A(x,0)=12 secher ZAO)e . 27
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) collision is transmissional or reflectional, we have found that
e~ (aVox, (2.9 only two-vector solitons emerge out of collision, unless the
XPM coefficientg is relatively large &2). Polarizations of
these two exit vector solitons generally are different from 0
whereV,(>0) is the relative velocity of the two initial soli- and /2 of the initial solitons’. This phenomenon is the so-
tons, andA(>1) is the initial separation. In other words, called shadow formation in the literature. In each collision,
initially, the two-vector solitons are both degenerate, but theradiation of various amount is also observed. We note that in
left soliton (2.7) is polarized entirely in thed component, some rare cases, the transmitted energy and reflected energy
and the right soliton(2.8) is polarized in theB component. of pulses(2.7) and (2.8) are almost equal. When this hap-
For convenience, we will call the left soliton Aspulse, and pens, the two exit solitons both have approximately 45 ° po-
the right soliton asB pulse. These pulses initially move to- larization angles. In such cases, the distinction between
ward each other at relative velocitf,. This velocity will be  transmissional and reflectional collisions is blurfede Fig.
called collision velocity throughout this article. Due to phase6). We define the exit velocity of a transmissional or re-
invariances of Eqs(2.1) and (2.2), any initial phases in the flectional collision as the relative separation velocity of the
two solitons(2.7) and(2.8) may be removed. The amplitudes two exit solitons. For transmissional collisiod,is positive.
of these solitons are equal and have been normalize®to For reflectional collisionV is negative. In a trapping colli-
without loss of generality. The collision results of these soli-sion, we simply assigV as zero. To determine exit veloci-
tons do not depend on the specific value\gfas long as itis  ties numerically, we simulate each collision for a long time.
large enough. It is noted that with the present initial condi-Meanwhile, we track the positions ¢A| and |B|'s maxi-
tion, solutionsA(x,t) and B(x,t) are related by a simple mum values. After a long-time simulation, if these two po-
symmetry:B(x,t) =A(—x,t). Because of this, only contours sitions still remain very close to each other, we decide that
of the A component are shown in this section, as the contourthe solitons(2.7) and (2.8) have trapped each other and set
of the B component may be obtained by a simple mirror€Xit velocity as zero. Otherwise, we use the statistical least-
reflection ofA contours about positior=0. WhenB=0 or ~ squares method to fit the velocities ¢A| and |B|'s
1 (integrable cas@sthe two NLS soliton€2.7) and(2.8) will maximum-value positions. The difference between these two
simply pass through each other without change in amplitudevelocities is recorded as the exit velocity. Due to the sym-
velocity, or polarization35—37. In the Manakov cased  Mmetry of the initial condition(2.7) and (2.8), these two ve-
=1), polarization rotations do not occur here because initialocities must be opposite to each other. This relation serves
solitons are orthogonally polarizé86,37. Wheng#0 and  as an additional check of our numerical accuracy.
1 (nonintegrable cageamplitudes, velocities, and polariza- ~ We have carried out collision simulations of solitd@s7)
tions of initial solitons will all change after collision. This and(2.8) for a large number o values ranging from 0 to 2.
nonintegrable collision will be the focus of study in this sec-Below, we will present collision results at select@dsalues
tion. that highlight the main features of collision structure and
At each XPM coefficienf3, we have simulated Eq&2.1) dynamics as8 continuously increases from zero. Results at
and (2.2) extensively with initial conditiong2.7) and(2.8),  other values will not be displayed but briefly described. To
using collision velocityV, as a control parameter. We take restrict the scope of this paper, we will only report exit-
Ao=20 which proves to be large enough for the results wevelocity results for each case with the only exception at the
report in this section. The numerical scheme we use is &hysically significant valugg=2, where component ampli-
third-order split-step method. The interval was taken as tudes of exit pulses are also presenfede Fig. Tb)]. At
[—80,80], and 1024 grid points were used. The time step wagnother physically significant XPM coefficiet=2/3, com-
taken as 0.01. To minimize radiation that can feed back int@onent amplitudes of exit pulses may be found2s].
the system through periodic boundary conditions, a damping
condition has been applied in the boundary intervals A. B=0.05
[—80,—60] and [60,80. To assess numerical errors, we ' '
have selectively run our simulations with wideiintervals, Wheng=0, the systenf2.1) and(2.2) is decoupled. Soli-
larger grid points, and smaller time steps. The results showons(2.7) and(2.8) do not interact with each other, and there
that our choice of scheme parameters are adequate. As &hno collision. So, the exit-velocity is always exactly equal
independent check, we have also written a code that uses tf@ the collision-velocityV,. When g increases from 0, the
pseudospectral method along thdirection and fourth-order first nontrivial phenomenon is that, at small collision veloci-
Runge-Kutta method to advance in time. Our extensive comties, solitong2.7) and(2.8) trap each other and form a bound
parisons of these two numerical schemes show no disagrestate. At3=0.05, the exit-velocity versus collision-velocity
ment. All our simulations used double precisiabout 16 graph is shown in Fig. ). As we can see, whel, is
significant digits. smaller than a critical velocity/,=0.1715, trapping colli-
Our numerical simulations reveal three collision sce-sion always occurs. Here, the critical-velocWy is defined
narios: transmission, reflection, and trapping. In a transmisas the smallest collision velocity above which all collisions
sion scenario, most energy in the pulsgs?) and (2.8)  are transmissional. This definition will be used throughout
passes through. In a reflection scenario, most energy in thibis paper. To demonstrate, we tag=0.1, and show the
two pulses is reflected back. In a trapping scenario, the twdA| contour of the collision in Fig. (b). We remind the
pulses trap each other and form a bound state. When theader that théB| contour is just a horizontal reflection of

1
B(x,0)=+2 seciéx— 540
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(a) These oscillations decay over time. The energy radiation
03 caused by the collision is very small hetess than 1% At
L higher 8 values(to be discussed belgwenergy radiation
0.2 a f may increase slightly. But the radiation amount is still less
(© than 10% in most cases
0.1 Ve '
v o \ B. 8=0.2
As B increases from 0.05, a very interesting phenomenon
-0.1 (0) happens. That is, a sequence of reflection windows gradually
appears just below the critical-velocitj,. At 8=0.2, this
0.2 phenomenon is displayed in Fig@® Note that these reflec-
0.1 0.2 0.3 0.4 : ) . ) ) - e
v, tion windows are intertwined with trapping intervals. In ad-
dition, they are spaced closer and become narrower as
collision-velocity V, approaches the critical-velocity,,
300 which is equal to 0.935 63 in Fig(&. A note-worthy fact is
IA| that, asB increases from 0.05 to 0.2, reflection windows
250 closer to the critical velocity/, appear first. Windows fur-
200 ther away(to the lefy from the critical velocity appear later.
This explains why in Fig. @), the first window on the far
t150 left is so low since it was just born. No other reflection
100 windows were found below/;=0.9 in Fig. Za).
An important characteristic of this sequence of reflection
50 windows is that quantity\(2—V2) =2, whereV, is the criti-
cal velocity andV,, is the midpoint of thenth window, is
_020 _10 0 10 20 almost a perfect linear function of the window indexi.e.,
X (VE—V2)~ V2= yny g, 2.9
(c)
300 where . and 6 are constants. To demonstrate this, we first
assignn=2,3, ..., for thereflection windows in Fig. @)
250 - . .
starting from the left. The reason we did not assignl to
200 the first window in Fig. 2a) is that, an even lower window in
i this sequence does exist not@t 0.2, but at highep val-
150 ues. That window should be the first in this sequence of
100 reflection windows and should be given index 1. After
assignment of window indices, we numerically determine
50 each window’s midpoin¥,,, which is almost the same as the
bottom point of that window. Then we plot the quantity
9% ~10 0 10 20 (V2—V2)~ %2 yersus window index in Fig. 2(b) (circles.
X We see that these points fall onto a straight line almost per-

FIG. 1. Collision results fog=0.05:(a) exit-velocity graphjb,

fectly. A least-square line fit gives the slope and
y-intercepté as

¢) |A| contours at collision velocities marked by respective letters in
(a). Contour levels are both 0.2:0.2:1.4.

w=2.0588, §=0.0375. (2.10

the |A| contour aboutk=0 axis. We see in this figure that

after the first pass, the two solitons are dragged toward each Collision dynamics in this sequence of reflection windows
other. Then they trap each other and engage in internal o$s very interesting. It turns out that in all these reflection
cillations [38—41]. In this collision, translational energy of windows, the two solitons pass each other only twice. But
initial solitons has been transferred into internal-oscillationthe time between these two passes varies from one window
energy. Small amount of radiation is emitted as well. Weto another. In addition, solitons between passes show a sig-
note in passing that the state of internal oscillations in thisiificant amount of width and amplitude oscillations. To il-
graph may last for a very long time. But, eventually theselustrate, we pick the bottom points of windows with indices
oscillations will decay algebraicly due to radiation damping,n=3 and 6 in Fig. 2a), and display their collision contours
and the solution asymptotically approaches a stationarnin Figs. 2c) and 2d), respectively. We see that in both
vector-soliton stat¢40,42. WhenV,>V,, the collision is cases, solitons pass each other twice: the first pass occurs
transmissional. An example is shown in Figcidwith V,  when they come together, and the second pass occurs when
=0.3. Note that the solitons slow down a bit after collision.they escape from each other. But numbers of width oscilla-
In addition, their amplitudes and widths oscillate mildly. tions between the two passes are different. These features are
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(@)
0.2
0.1 |A|
n=2 n=3
(0] ] -
oa| ¥ i
v |
i
-0.3 /;l
-0.4 (c)
3 0.91 0.92
’ ’ y 5 10
Vo
(b) FIG. 2. Collision results foB
85 100 =0.2. (a) Exit-velocity graph.(b)
30 IA| (V2—V2)~2 graph(circles. The
80 solid line is the least-squares fit
Q 25 given by Egs(2.9) and(2.10. (c,
220 60 d) |A| contours withV, at the bot-
= s t toms of the second and fifth win-
o 40 dows with indicesn=3 and 6 in
~10 (). Contour levels are both
5 20 0.6:0.15:1.35.(e) Collision time
graph (circles. The solid line is
0 ke the least-squares fit given by Egs.
0 5 10 15 20
-10 5 10 (2.1 and (2.12.

window index n

150

-
[=]
o

collision time T,
a
o

0 5 10 15 20
window index n

common to all those reflection windows. Below, we will call width oscillation frequency, and is an offset parameter.

these reflection windows as two-pass windows. This turns out to be the case indeed. When collision flijpe
Why do these reflection windows appear amidst trappingvhich is measured numerically as the time between the two
intervals? The answer is suggested by Figs) 2nd 2d).  intersections of A| and |B|'s maximum-value positions, is

We see that during collisions, each soliton still holds(np  plotted versus window inder in Fig. 2(e) (circles, these

splitting), but its amplitude and width oscillate considerably points fall onto a straight line very nicely. A least-square line

(breathing. After collision, these oscillations become much fit of this data gives frequency and offset parametef as

weaker. This suggests an energy exchange mechanism be-

tween solitons’ translational motion and width oscillations. 0=0.7976, 6=0.9764. (2.12

This energy exchange would be the strongest if time between

the two passes is multiples of the W|dth—oscnlat|qn peno_dAn analytical study of the above sequence of reflection win-

(plus a constant offset parameter to account for mtncameaowS will be carried out in Sec. IIl.

near the passgsin other words, we expect that At this moment, we would like to draw the reader’s atten-

(2.1 tion to the remarkable similarity between collisions of Fig. 2
and those of kink-antikink collisions ig*-related models

whereT,, is the time between two passes when the collision{21-26. First of all, ¢* models also have a sequence of

velocity V, is at the bottom of thenth window, o is the  reflection windows just like Fig. (@). Second, collision dy-

oTy=2nm+ 9,
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namics in¢* models is analogous to that in FiggcRand
2(d). Third, locations of reflection windows ig* models 120
have the same functional form as Eg.9). Fourth, collision

time in ¢* models is given by the same formy11). Fifth, 100

the mechanism for those reflection windowsdfi models is 80

a resonance between translational motion and internal

(shape modes of kinks and antikinks, similar to the one for t 6o

our model. Even though kinks and antikinks are topological 0

solitons that have infinite mass, while solitoi2s7) and(2.8)

are localized entities, similarities of collision dynamics be- 20

tween them are surprising. A minor difference between reso-

nance mechanisms of these two models is worth mentioning. _010 10

In the ¢* models, the resonance is with internal modes of

kinks and antikinks. These modes are discrete eigenfunctions

of ¢* models linearized around kinks and antikinks. In the

present paper, width oscillations of solitons as seen in Figs. 120

2(c) and 2d) are due to radiation moddg3]. Thus, the 100

resonance here is with radiation modes of solitons. Since

radiation modes exist in every conservative wave system, 80

while internal modes are relatively rare, we believe that reso- t

nance with radiation modes is more common in physical 60

wave systems. 40
A visually distinctive difference between the collision

structure of Fig. 22) and that of¢* models is that, ing* 20

models, at the edge of each reflection window, another se-

guence of windows with one more “bouncing” can be found _010 10

[21,26. In Fig. 2a), we do not see such edge sequences.
This is not because we missed such edge windows in our o o
numerics. Rather, the reason is energy radiation, which FIG. 3. CoII_|S|on _contour_s|A|) at two velqcme_SJust below the
wipes out such edge windows. However, remnants of sucfecond reflection windowwith index n=3) in Fig. 2a): (@ Vo
edge windows still persist in the present collisions. For in--0-92022; (b) V(=0.92049. Both contours are at levels
stance, we take the window with index-8 in Fig. 2a) and ~ 0-6:0-15:1.35.
select two collision velocities 0.920 22 and 0.920 49 just be-
low its left edge. Collision contours at these two velocitiescreases further, a pass-bounce-pass window appears on the
are shown in Figs. (& and 3b). In both contours, we see left of the two-pass window sequence. The collision dynam-
that the initial collision dynamics is almost the same as thaics of this pass-bounce-pass window is as shown in Kig. 4
in Fig. 2(c), obviously because these two collision velocitiesdescribed below. In addition, this pass-bounce-pass window
are so close to the left edge of the-3 window in Fig. 28).  starts to develop its own sequence of windows inside the
But then instead of escaping, the two solitons in Figs) 3 two-pass window sequence. Meanwhile, other windows of
and 3b) engage in different numbers of width oscillations, eyven more complex collisions continue to emerge. Here, by a
followed by a third pass. If solitons escaped after this passyindow sequence, we mean a sequence of windows whose
we would have observed edge windows agfhmodels. But  collision dynamics are the same, except that numbers of
solitons after the third pass seem to have lost too much efwidth and position oscillations at a certain stage of the col-
ergy to escape. So they subsequently trap each other angion are different(see Figs. 2 and)4 These developments
form a bound state. This is the only difference on edge colsubsequently lead to the fractal structure reportedi2i.
lisions betweenp® and our models. AB=0.2, those edge That is, when we zoom into the neighborhood of higher-
windows did not come out. However, wheh gets larger  indexed two-pass windows, we get a copy of the entire struc-
(say 0.6 or 2/3 edge windows of one more pass do finally ture (qualitatively. This development is illustrated in Fig. 4
appear. Itis helpful to note here that in the variational modehkt 3=0.6. The whole exit velocity graph is displayed in Fig.
of Sec. Ill where energy is never radiated, sequences of edgga). The wide reflection window whose bottom is marked
windows indeed exist g8=0.2 (see Fig. 9. by letter “(c)” is the simplest pass-bounce-pass window.
The other wide reflection window whose bottom is marked
C. p=06 by letter “(d)” is the simplest two-pass window with index
' ’ n=1. Collision contours at the bottoms of these two win-

As B increases from 0.2, the two-pass windows of Fig.dows are shown in Figs.(d and 4d), respectively. Now, if
2(a) move closer to the critical-velocity,, and the lowest we zoom into the neighborhood of the second two-pass win-
two-pass window with indexa=1 finally emerges at #8 dow, specifically, we zoom into the intervdll.265 50,
value somewhere between 0.3 and 0.4. After it is born, thd.267 19, which is highlighted by two vertical dashed lines
sequence of two-pass windows is then completes Iin- in Fig. 4(a), we get Fig. 4b), which is roughly a copy of Fig.
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(@) (b)
1 . 1
0.5 ¥ 0.5
v (08 d ! \' O‘ e v o
i .
-05 -05
" ()
1 (c) (d) ;;
- -1
12 122 124 126 128 13 {5655 1.266 1.2665 1.267
Vo Vo

A| A FIG. 4. Collision results fo
=0.6. (a) Exit-velocity graph;(b)
enlargement of the interval
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4(a). Thus, Fig. 4a) has a fractal structure. Note that this tions of Figs. 4a) and 4b), the collision in Fig. 4b) is just
zoomed-in window preserves the main features of Fig).4 one more oscillation after the first pass. The rest of the col-
In particular, we see counterparts of pass-bounce-pass wifision is the same as that in Fig(a}. A similar finding has
dow in Fig. 4a) and two-pass window in Fig.(8) [marked been reported if27,2§ at 3= 2/3. There are some minor but
by (e) and (f), respectively. Collision dynamics at the bot- significant differences between Figgadand 4b). First, the
toms of these two reflection windows in Fig(b} are dis-  left end of Fig. 4a) is broken into a few pieces, while at the
played in Figs. 4e) and 4f). Comparing Figs. &) and 4d) same position in Fig. @), the structure is a rather smooth
with 4(e) and 4f), we see clearly that the reflection window curve. Asg increases from 0.6, these broken pieces in Fig.
marked by ‘{f)” in Fig. 4(b) is the next two-pass window 4(a) do merge into a smooth cursee[28]). Another dif-
with index n=2, and the reflection window marked by ference is that some windows in Fig(a# get lost in the
“(e)” in that figure is the next pass-bounce-pass window.zoomed-in window in Fig. é). For instance, the high trans-
Notice that in Figs. &) and 4f), after the first pass, solitons mission window in the center region of Fig(al disappears
oscillate once about their positions. The rest of the collisionsn Fig. 4(b).

are qualitatively the same as those in Fig&)4and 4d). The collision structure in Fig.(4) is actually much richer
This pattern is true everywhere in Figafand its zoomed-in  than those reported above. First, at the lower edge of the
window Fig. 4b). In other words, at the same relative posi- simplest two-pass windol\marked by ‘{d)” in that figure]
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and at the upper edge of the simplest pass-bounce-pass win- (a)
dow [marked by ‘(c)” there], windows of one more pass 0.8
(transmission windowsdfinally emerge. These edge windows

are hallmarks ofp* fractals[21,26. At 8=0.2, when we see 06
a beautiful two-pass window sequence similag{ts in Fig. 0.4
2(a), such edge windows did not appear due to energy radia- Vv
tion. But now they have. Second, some of the newly emerged 02
windows cluster together and form other structures. When 0 {
we zoom into such structures, we get pictures that are related
to the whole picture. An example is the cluster in the interval -0.2 \_/1
[1.215, 1.224 on the left of the pass-bounce-pass window 04
marked by ‘(c)” in Fig. 4(a). When we zoom into this clus- 02 0.4 v 086 0.8
ter, the graph we get is qualitatively a horizontal reflection of 0
the original graphit looks very much like a reflection of Fig. (b)
4(b)]. Collision dynamics in this zoomed-in window is also
closely related to that in the original graph. This phenom- 1200
enon has been reported [ia8], thus details will be omitted 1000 Al
here. Another example is the cluster in the interjdall 98,
1.213 which is on the far left of Fig. &). Zooming into 800
different locations of this cluster produces a copy or horizon- t 600
tal reflection of this cluster itself. In addition, these
zoomed-in graphs bear similarities to the whole structure of 400
Fig. 4(a). 200
To conclude this section, we would like to emphasize the
difference betweewp* fractals and our present coupled NLS % T o 10 20
fractal. In ¢* fractals, the basic structure is a sequence of h - X

two-pass windows just like Fig.(@), all of which have two-

pass collisions of varying collision timgR1-25. At the FIG. 5. Collision results fog=0.95.(a) exit-velocity graphib)
edge of a two-pass window, a sequence of three-pass wiA| contour atV,=0.528 45, which is inside the spike (). The
dows may be foundl21,26. These edge-window sequences contour levels are 0.2:0.2:1.4.

make thep? collision structure a fractal. In the coupled NLS . . . .
& P Here, at low-collision velocities, the collision is reflectional,

fractal, the basic structure isot the sequence of two-pass '~ . " . Y .

windows. Rather. it is a collection of windows whose colli- while at high-collision velocities, the collision is transmis-
sions have vario’us numbers of passing and bouncing Iﬁional. But the transition from reflectional collisions to trans-
other words, complex collisions directly enter the baéicmissional collisions is still nontrivial. In fact, as the reflec-

structure of the coupled NLS fractal. Our zooming operationtional (left) branch and transmissiongight) branch of the

is not at the edge of a two-pass window either. In addition inexit—velocity curve come toward a critical transition velocity

z0omed-in windows, collision dynamics is not one more(which is about 0.5283 each branch starts to oscillate more
pass. Rather, it is or;e more position oscillatisee Fig. 4. and more rapu;ily(thls OSC'IIat'On phenomer)on has been ob-
Traces of¢-type fractals may still be found here through served before if18]). The right branch oscillates between a

the existence of edge windows just mentioned abtsee high-exit velocity of about 0.48 and a low-exit velocity of
also Figs. 2 and )3 But that perspective does not capture theabOUt 0. The left branch oscillates between a low-exit veloc-
main collision structures and dynamics of Figa/(see also ity of about —0.48 and a high-exit velocity of about 0. Al

[27,28)). Thus, that perspective will not be adopted in the iNese oscillations are very close together S0 t_hat iq F‘r@’ >
res'E of this se(’:tion those curves appear just as a spike. Collisions inside this

spike are very interesting. We found that colliding solitons
D. B=0.95 may form a quasistationary two-vector-soliton bound state
‘ : for a long time before they eventually separate. To demon-
As B continues to increase from 0.6, more reflection andstrate, we pick a velocity/,=0.528 45 inside this spike and
transmission windows emerge. Meanwhile, the brokerdisplay thelA| contour in Fig. Bb). Here, after solitons come
pieces at the left side of Fig.(@ merge together. These together and pass each other the first time, they form a qua-
developments lead to the fractal structure reportd@h28  sistationary bound state for about 1000 time units. In this
whereB=2/3. Wheng increases further from 2/3, the fractal bound state, each vector soliton’s polarization is very close
structure persists, but the details of this fractal are even mor® 45 °. The spacing between the two vector solitons is about
complex. However, whe gets very close to {the Mana- 14 units. Phase differences between them are abdutin
kov mode}, the collision structure simplifies. AB=0.95, the A component, and 1 in thB component. Eventually, the
the exit-velocity graph is shown in Fig(&. As we can see, two-vector solitons come together again, pass through each
all those fractal structures and complicated reflection anather, and escape. In different cycles of oscillations inside
transmission windows in Fig.(d) have now disappeared. the spike, we have observed different pass/bounce combina-
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tions such as pass-bounce-pass collisions. In each cycle, veeeases. AV,~0.7403, the transmitted energy is about the
found collisions in which a quasistationary two-soliton same as the reflected energy. s decreases below 0.7403,
bound state is present. more energy is reflected back, thus, collision becomes reflec-
tional, andV becomes negative according to our definition.
E.B=1.2 In short, across this jump in Fig.(®, collision does not
undergo dramatic qualitative changes. The transition is a

Wheng is equal to 1, the systefi2.1) and(2.2) becomes Fmooth one.

the Manakov model, and the exit velocity becomes identica
to the collision velocity everywhere. In other words, the exit
velocity graph is a straight line of slope one. Whgrcon- F.B=2

tinues to increase above one, the collision structure remains As 8 increases beyond 1.2, the collision structure always
simple. For instance, g8=1.2, the exit-velocity graph is remains simple. For example,, wh@+ 2, the exit-velocity
shown in Fig. 6a). Above a critical velocity that is about graph is shown in Fig.(@). This figure is as simple as Fig.
0.7403, collisions are all transmissional. Below it, collisions6(a). The reason for the jump in Fig. 7 is the same as that in
are all reflectional. The transition from reflection to transmis-Fig. 6(a): just below the jump, slightly more energy is re-
sion in this figure is a jump. However, this jump is only an flected back; just above the jump, slightly more energy is
artifact of our definitions of reflectional and transmissionaltransmitted through. Sincg=2 is a physically significant
collisions. On the right-hand side of the jump, more energwalue that arises in WDM systems, we have also presented
passes through, but the energy that is reflected back is alsmplitudes of exit-vector solitons in Fig(j. Plotted in this
significant and is comparable to the transmitted energy. Thifigure are component amplitudes of the right-moving exit-
is illustrated in Fig. 6b), where thg/A| contour is displayed vector soliton. The amplitudes of the left-moving exit-vector
at collision velocityVy,=0.7407, which is slightly above the soliton may be readily obtained by the symmetry relation
jump. Here, theA-component amplitude of the left exit- A(x,t)=B(—x,t). Polarizations of exit vector solitons can
vector soliton is 1.074, and that of the right exit-vector soli-also be inferred from this figure as the arctangent of the
ton is 1.075. According to our definition, this collision is amplitude ratios. Figure(B) makes the exit velocity jump in
transmissional, thusy is positive. WhenV,, decreases, the Fig. 7(a) easy to understand: across the jump, the relative
transmitted energy decreases, and the reflected energy isizes of component amplitudes inside each exit-vector soli-
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ton have switched. One interesting feature about Fig.i8  eters will be derived. In our situation, the two solitons are
that, as the collision-velocity, approaches 0, the exit ve- always symmetric due to initial conditior®.7) and (2.8).
locity does not approach zero. In other words, slow collisionThus, the following relations hold at all times
does not lead to slow separation. This is in contrast with Fig.
6(a) whenB=1.2. Another phenomenon gt=2 is that, in a I é . _Yv b.—b.=b
certain collision-velocity rangdaround the interval0.2, ! 2= 7 g N1T V2= g BT =0
0.6]), a third vector soliton with zero velocity and low am-
plitude appears as well. Below or above this velocity range, Wi =Wo=W, a;=a=a. (3.9
we did not observe this third soliton. ) - ) )

As B increases above two, there is no qualitative chang&'€re. A is the pulse center-position separation, ani$ the
in the collision process. A quantitative difference is just that,/élative velocity b'etween the two pulses. Utilizing these re-
at larger 8 values, the third vector soliton appears in wider'ations, the ODE's for separatiod, relative velocityv,
collision-velocity intervals. At sufficiently largegg values, ~Width w, and chirpb simply become

even the fourth or more vector solitons may appear. dA
FTE (3.6)
I1l. THE VARIATIONAL MODEL
How can we analytically explain the emergence of win- dv 16KB _,
dow sequences and fractal structures reported in the previous ar W F'(a), 3.7

section? Given the wide spectrum of collision behaviors at
various B values, this will not be a easy task. However, at

small 8 values, this study is indeed possible. The observation d—W =2h, (3.9
we make is that, at smagB values, there is little pulse split- dt
ting during collisions(see Figs. 1, 2, and)3Each of the
solitons(2.7) and(2.8) still remains as a single pulse, but its db_ 8 |1 K —38K[ aF () 3.9
width and amplitude may oscillate considerably. This sug- dt  z2p2|w BRLaF ()], '
gests to us a variational approach where we take an ansatz
for each soliton that accounts for width and amplitude varia-where
tions as well as position and velocity variations. Since initial
solitons(2.7) and (2.8) have sech profiles and collisions are a cosha —sinha
not violent at small values, it makes sense to adopt the Fla)= T sintffa (3.10
following sech ansatz for solitons throughout collision
and
3.1) a= K=a“w=const. (3.11
X— . 2 Corresponding to the initial soliton®.7) and(2.8), the ini-
B(x,t)=2a, SeCV( sz) /lV2f20 et haf2nale )l tial conrt)jitionsgfor the above ODEf(s a7r)e 28

B2 A(0)=Ag, 0(0)=Vy, W(0)=a(0)=1, b(0)=0, K=1.

whereay, wy, &, vk, by, ando(k=1,2) are the solitons’ (3.12
amplitude, width, position, velocity, chirp, and phase, which
are all functions of timeg. The chirp term is introduced to
induce width and amplitude oscillations. The Lagrangian o
the governing Eqs2.1) and(2.2) is

We note that the above variational model and ODB'$) to
f(3.9) have been derived before by Ueda and KEgdB] to
study internal oscillations of vector solitons when initial
pulses(2.7) and(2.8) overlap with each other. Here, we use

o this model to study the collision of these pulses where they
L=f L(A,B)dx, (3.3 are initially far apart but moving toward each other.

* At a given B value, we integrate ODE’$3.6) to (3.9
numerically by the adaptive Runge-Kutta-Fehlberg method
for various collision-velocitied/,. The initial separatior\

where the Lagrangian density is

_ *_ *) 4 * £y 1 2 |al4 may bg cho_sen as any_large valug. To be gonsistent with our
L=TAN —AAT) FI(BE —BB*)+ (2IA"~[Al%) numerical simulations in the previous section, we selegct
+(2|B%—|B|Y)—2B|A[}B|?, (3.4 =20 throughout this section. The exit-velocyis thev(t)

value after the collision has completed and the solit@d
and superscript “*” represents complex conjugation. Whenand(3.2) have separated far apart agpix(t)>1]. Interpre-
the ansatz§3.1) and(3.2) are substituted into the Lagrangian tation of an ODE solution requires caution however. Accord-
(3.3 and variations with respect to each of the soliton pa-ng to these ODE'’s, soliton§3.1) and (3.2) almost always
rameters taken, a system of ODE’s for these soliton paranseparate after a sufficiently long time. The reason is that our
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variational model does not allow any energy radiation. ThusyY. above which all collisions are transmissional. Beldy,
these solitons always have enough energy to escape fromsequence of two-pass reflection windows exists. In the fol-
each other, and they almost always do so when timing isowing, we report these results fgr=0.2 and compare them
right. But, if an ODE solution is such that solitof®.1) and  to numerical results in Sec. Il. Restricting the number of
(3.2) cross each other many times before they eventuallpasses between solitons in the ODE model to be less or equal
separate, in reality, that collision should be considered a two, the exit-velocity versus collision-velocity graph is
trapping because energy loss to radiation during these crostiien shown in Fig. &). In this figure, we see a sequence of
ings would be large enough that solitons become unable teeflection windows just like Fig. @) of the PDE system.
escape from each othésee Fig. 3. In view of this, we will  Contour plots ofA| ansatz3.1) at the bottoms of the second
only look for ODE solutions with a small number of soliton and fifth windows(with indicesn=3 and 6 in Fig. 8a) are
crossings. Comparatively, width and amplitude oscillationsdisplayed in Figs. &) and &d), respectivelyit is noted that
(breathing of a soliton does not generate much radiafis®e  the |B| contour is simply a mirror reflection of thé| con-
Figs. 4c) and 2d)]. Thus, the ODE solution is still valid tour). These contours show that in both windows, solitons
after a large number of such oscillations. (3.1 and (3.2 pass each other twice, but numbers of width
Our extensive numerical study of the ODE mo¢&b) to  oscillations between passes are different. Obviously, these
(3.9 shows that at smaJB values, there is a critical-velocity collision dynamics are qualitatively identical to those in Figs.
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2(c) and 2d), which confirms that the window sequence in (a)

Fig. 8@) is indeed the sequence of two-pass windows. One

minor difference between collisions in the variational model 1 B~ 9

and those in the PDE system is that, in the variational model, /\

the simplest two-pass window with index=1 appears at 05 i

[0.7967, 0.812P[outside the interval range of Fig.&]. ! H l

Comparatively, that window has not been born yet in the \ ok - 4 1 a4 —— —
]

PDE systenjsee Fig. 2a)].

Other aspects of collision structure and dynamics in the
variational model ai3=0.2 closely resemble those in the -05
PDE system as well. First, we look at window locations in
Fig. 8@). Here, the critical-velocityV.=0.86338. In each
reflection window, we take its midpoint,. Then we plot
the quantity ¥/2—V2) =2 versus window indexn in Fig.
8(b). Clearly, (v2—V2)~*2 here is also a linear function of

-1 . . . . .
0.828 0.83 0.832 0.834 0.836 0.838

n, just like in the PDE casgsee Fig. 2)]. A least-squares 100
line fit shows that the slopg, and y-intercepté, of the
linear function(2.9) now is 80
n,=1.3234, 6,=0.5496, (3.13 60
t
which are a little different from the true values given in Eq. 40
(2.10. Second, we examine collision times at bottoms of

these reflection windows. The collision time here is naturally 20
defined as the time between the two position intersections of
the A andB ansatzg3.1) and(3.2). Not surprisingly, we find
that collision timeT, is also a linear function of the window
index n in the same form of Eq(2.11), and a least-square
line fit shows that the frequenay, and offset parametes,

now are 100
w,=0.9993, §,=3.9494, (3.149 80
which are again a little different from those in EG.12) for 60
the PDE system. t
Differences between the variational model and true colli- 40
sion dynamics are mostly quantitative. Comparing Fidga) 2
to Fig. 8a), locations of reflection windows are a little off 20

from each other. Coefficients in linear functiof®9) and
(2.1 are different too. But the variational model has clearly
captured the key collision structure and dynamics of the
original PDE system qualitatively.

In collisions of the PDE system g@=0.2, transmission FIG. 9. Edge windows and their dynamics just below the
windows at edges of two-pass reflection windows never ap=3 reflection window of Fig. &) in the variational model(a)
peared, even though their “quasiexistence” was suggesteHdge windows;(b,0 |A|-ansatz contours witW, at peaks of the
by collision contours in Fig. 3. In the variational model, we second and sixth transmission windows marked by respective letters
find that such edge windows do appear. To illustrate, let us (a); contour levels are both 0.6:0.15:1.35.
choose the second two-pass window in Fig) §with index
n=3), as we did in Fig. 3. Below its left edge, we discov- in Fig. 3, we see that they are quite similar, except that
ered a sequence of three-pass transmission windows. Theselitons in Fig. 3 trap each other instead of escaping from
edge windows are shown in Fig(&. Picking the second and each other after the third pass. Since the main difference
sixth transmission windows as marked by lettefg)” and between the variational model and the PDE system is that the
“(c),” we show their peak-point ansatz contou{3.1) in variational model does not allow energy radiation, while the
Figs. 9b) and 9c), respectively. In both collisions, solitons PDE system does, we conclude that the eventual trapping of
pass each other three times, but numbers of width oscillasolitons in Fig. 3 is caused by energy radiation. In other
tions between the second and third passes are different. Thigords, energy radiation wipes out edge windows of the PDE
characteristic is true of all the edge windows in Figa)9  system.

Thus, these windows do belong to the same sequence of As g increases, other windows of more complex colli-
three-pass windows. Comparing contours in Fig. 9 to thossions gradually emerge in the ODE model. This process
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closely mirrors that in the PDE system. The ability of the guarantees that the solution holds this same symmetry at all
variational model to qualitatively reproduce true collision times. This feature is the same as initial conditi¢é2s) and
dynamics of the PDE system indicates that our variationa(2.8).

ansatzs have fully or partially captured the main features of For collisions of nondegenerate vector solitons, initial
true collisions. In the variational model, width oscillations relative phases between the two solitons may no longer be
play a critical role, and the resonance between width oscilremoved, and they will affect the collision in a nontrivial
lations and translational motion of solitons is responsible forway. This is why we introduced such phaseg é&ndy,) in

the rich collision structures. For soliton collisions in the PDEinitial conditions (4.1) and (4.2 in the first place. Another
system, at smalB values, this resonance appears to be thdeature is that collisions of nondegenerate vector solitons de-
only mechanism for the creation of the two-pass windowpend on initial position separatiak, as well, no matter how
sequencedsee Fig. 2 At moderateg values, pulse splitting large isA,. The reason is simple to explain. Suppose the
during collisions produces two nondegenerate vector soliinitial separation has been changed fradmg to Ay+h. At
tons. Then oscillations of relative positions between twocollision-velocityV,, it takes extra timén/V for vector soli-
components inside each vector soliton may also get involvetbns to move to the original separatidr. During this time,

in the resonance mechanidi®7,28. Incorporation of posi- the A component of the left vector soliton has gained a phase
tion oscillations into the variational model may be done, butincrease (2—\V3/16)h/V, [see Eq.(2.3)], while the same

it is fairly complicated. Thus, it will not be pursued in this component of the right vector soliton has gained a phase

article. increase (35— V§/16)h/V,. Thus, theA-component phase
difference at separatiofy is y; + (05— w3)h/V, instead of
IV. COLLISION DEPENDENCE ON POLARIZATION v1. Similarly, the B-component phase difference at separa-

tion Ag is y,— (w3— w3)h/V, instead ofy,. Due to phase

The collisions studied in previous two sections are be q f collisi it i ident that th llisi t
tween vector solitons of orthogonal polarizations and equeﬂjepen ence ot collisions, 111S evident that the collision a

amplitudes[see Eqs.2.7) and (2.8)]. Such collisions are separatiomy+ h is generally different from that at separa-

rather special. In practical situations, it is quite likely thatiOn &o. The above argument also shows that, under the
transformation

initial solitons are not orthogonally polarized, or they have
different amplitudes. Thus, an important question is how the
collision structure of previous sections changes when initial
solitons become nonorthogonally polarized or have different Ag—Agt+h, y1—y1— (w%— wi)v—,
amplitudes. This question will be addressed in this and the 0
next sections.

In this section, we study how the collision structure and h
dynamics change when initial vector solitons are not or- Yo— y2+(w§—w§)v—, 4.3
thogonal, i.e., their initial polarization angles are not 0 and
/2. For this purpose, we take the initial condition as

the collision remains the same as longlas>1.

A(X,o):rl(xJr ﬂ e(l/4)ivox+r2(x_ & g~ (Ua)iVoxtiyy We have carried out collision simulations @t 2/3 with
2 2 initial phasesy;=y,=0 and vector-soliton frequencies,;
(4.9) =1 andw,=0.78. The initial separation, is allowed to
vary so that collision dependence dry may be assessed.
B(X,O):rZ(XJr ﬂ e(l/4)iV0x+rl(X_ ﬂ e~ (UAVox+ivy Eirst, we take40=40. For these systgm parametgrs, the ini-
2 2 tial vector solitong4.1) and(4.2) are displayed in Fig. 1@).

(4.2 As we can see, each vector soliton here has a wave-shadow

) o ) . . structure[15], and the two vector solitons are weakly nonor-
whereAq(>1) is the initial vector-soliton separatiol is  thogonal. It turns out that even a weak nonorthogonality has
the collision velocity, and 4, ,y,) are initial relative phases g profound effect on collision structure and dynamics. In Fig.
of the two solitons in theA and B components. Functions 10(p), the exit-velocity versus collision-velocity graph is dis-
[ri(x).r2(x)] are nondegenerate vector solitons with fre-pjayed. Clearly, this graph is quite different from that where
quencies {3, ®3), and they satisfy the ODE systen®5 initial solitons were perfectly orthogon&27,28. Its struc-
and(2.6). By rescaling variables, we can always normalizeture is simpler than the orthogonal case. The jump/at
w;=1. As we have mentioned in Sec. Il, in order to get a=1.30 here is similar to those in Figgaand 7: below the
nondegenerate single-hump vector soliton, the frequency rgamp, slightly more energy is reflected; above the jump,
tio w/w; must lie inside the interval[(y1+8B  slightly more energy is transmitted.
—1)/2,2/(y1+8B—1)]. At the end points of this interval, A feature of Fig. 1(b) is the appearance of a sequence of
the vector soliton is degenerate again, and initial conditionseflection windows on the left-hand side of the graph. This
(4.1) and(4.2) reduce to Eqs(2.7) and(2.8). It is noted that  window sequence is fundamentally different from that in Fig.
the two polarized vector solitons in Eq4.1) and(4.2) have  2(a) on the geometrical feature, dynamics, and mechanism.
the same total energy. In addition, they satisfy the symmetrgseometrically, this window sequence converges toward the
A(x,0)=B(—x,0) if y;=v,=0. This initial symmetry left. The first window in this sequence with index=1 is
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FIG. 10. Collision results of
weakly nonorthogonal vector soli-
tons atB=2/3. The initial condi-
tion is Egs. (4.1 and (4.2) with
0)1:1, 0)2:0.78, A0:40, and
v1=7v,=0. (8 The initial condi-
tion A(x,0) (solid and B(x,0)
(dashedt (b) the exit velocity
graph;(c,d) |A| contours withV,
at midpoints of then=4 and 2
windows in(b); both contours are
0.2:0.2:1.4; (6) (w3—w3)Ao/V,

0 & graph (circles. The solid line is
05 1 15 -20 -10 0 10 20 the least-squares fit given by Eqgs.
0 X (4.4) and (4.5).

(€)

i

|
o
)

-1

0 2 4 6 8 10
window index n

located aff1.0948, 1.2944 The next Windovy with indexn (w§+(1/4)v2)t+(1/2)vx0+yl for A and (w§+(1/4)v2)t
=2 is at[0.7400, 0.8698 Higher-indexed windows are fur- | (1/2y,x+ y, for B. Now, when the two vector solitons in
ther to the left. Dynamically, collisions in all windows in this  the initial conditions(4.1) and(4.2) move toward each other,
sequence are simple one-bounce collisions. To demonstraige relative phases between their soliton centers arg (
we shpw in Figs. 1@) and 1Qd) .CO||ISIOI’1 contours at the — wd)t for Aand - (w3— w?)t for B (note thaty; = y,=0 in
midpoints of then=4 andn=2 windows as marked by re- oy choices of parameterdVe know that collisions of non-
spective letters. OnlyA| contours are shown because the degenerate vector solitons depend on relative phases. For
reflectional symmetrB(x,t) =A(—x,t) still holds here. As  vector solitons in Eqs(4.1) and (4.2) with initial separation
we can see from these contours, both collisions are simplg, and collision-velocityV,, collision occurs at~Ay/V,.
reflections. Their similarity is obvious. Collision contours in At this time of collision, the relative phases of soliton centers
other windows of this sequence are similar. are (wa— w2) Ay /V, for Aand— (w5— w3) Ay /V, for B. Our
What mechanism creates this sequence of reflection wirkey observation is that, at two collision velocities, if the
dows? Apparently, the mechanism here is not the resonanabove relative phases at collision differ by a multiple of,2
discussed in previous sections. The similarity of collisions inthen the collision outcomes should be roughly the sétme
these windows offers the following answer. When a vectoreader is reminded that a vector soliton’s amplitude profile
soliton travels, its phases change according to Efj8) and  remains the same at all velocitje#athematically, it means
(2.4), thus, these phases at the soliton certewt+xy are  that at collision velocitie¥/, (n=1,2, ... ,)where
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1.5f The scope of collision dependence on polarizations re-
.,-" ported in this section is rather limited. We only investigated
T I this dependence at small polarization angles for one XPM
: coefficient=2/3. However, the phase-induced sequence of
0.5} ’ . . , .
v reflection windows we have discovered is expected at other

B values and different polarization angles as well, as phase
dependence is present in such collisions too. Last, possibili-
-0.5} ties still exist that other interesting collision structures may
arise in different parameter regions of polarization angles,
relative initial phases and XPM coefficients. This remains to

é

1}

0.5 1 15 be seen.
Vo
FIG. 11. Exit-velocity graph at initial separatiak,=20. The V. COLLISION DEPENDENCE ON RELATIVE
other parameters in the initial conditiort4.1) and (4.2) are the AMPLITUDES

same as in Fig. 10. Collision dependence on relative amplitudes of two-

vector solitons is another important issue. This will be stud-
ied briefly in this section. To isolate this effect, we will again

make initial vector solitons orthogonally polarized. Thus, we
take the initial condition as

sloper=2m and ¢ is a constant, collision dynamics should

(wg—wi)Ao

v =+, (4.4)

be about the same. To check this formula, we have deter- 1 i

mined the midpoints/,, of those reflection windows. When A(x,0) = y2a secha| x+ =40 eMiVex  (5.9)

quantities 35— w?)Ay/V, are plotted in Fig. 1®) versus

window indexn (circles, we see that the dependence is in- B(X,0)= /2 seclix—(1/2)A,)e” (VAVox, (5.2)

deed linear. A least-square line fit shows that the actual slope

7 andy-intercepté in Eq. (4.4) are where the right soliton’s amplitude has been normalized to
be \/2, anda is the relative amplitude of the left solitdim

7=6.7525, ¢=5.9289. (4.5  the orthogonal polarizationNote that for this collision, the

symmetryA(x,t) =B(—x,t) is lost, and the exit pulses gen-
The slope is rather close to the theoretical value Zhis  erally have different velocitiegin magnitude. Also, note
surprisingly good agreement confirms that this sequence qhat this collision now is independent of the initial position
reflection windows is indeed caused by the phase depereparationA, again as long ad,>1. We have simulated
dence of collisions as described above. Furthermore, lineahis collision at various collision-velocitieg,, relative am-

relation (4.4) does hold very well. We attribute the minor plitudesa, and XPM coefficients. In these simulations, the
difference between the theoretical slope 2nd the actual initial separation is always taken as,=20. The general
slope 6.7525 to the fact that phase variations across eagdnclusion is that when the amplitude difference between
vector soliton, which depend oqin the form of = (1/4)VoX,  these solitons increases, the collision structure simplifies. To
also affect the collision outcome. This effect is understanddemonstrate, we sele@=2/3 anda=1.2. For each colli-
ably small. The reason is that in this window sequeiggis  sion, we found that two-vector solitons with velocities not
about one or smaller. In addition, the half width of eachopposite of each other emerge after collision. The velocities
vector soliton, defined as one half of the full width at half of these emerged solitons are displayed in Figga)land
maximum (FWHM), is about 0.88. Thus, phase variations 12(b). Obviously, these velocity graphs are very simplified
across a vector soliton are about 0.22 or smaller. Conse&ompared to those if27,28 wherea=1. In fact, the fractal
quently, differences of these phase variations at different colstructure has disappeared now. At highefalues, the veloc-
lision velocities would be even smaller, thus, are insignifi-ity graph would be even simpler. It is noted that the collision
cant compared to overall phase differences between the twesf solitons (5.1) and (5.2) has been studied before by the
solitons(which are multiples of zr). multisoliton perturbation method for the Manakov system
As we have said before, collisions of nonorthogonal vec{18]. The collision structure in Fig. 12 is consistent with the
tor solitons depend on initial separatidy. To study this  results of[18].
separation dependence, we now choose another separation
valueAy= 20 while keeping the other system parameters the
same. The exit-velocity graph for this case is shown in Fig.
11. This graph is somewhat similar to Fig.(D However, it In previous sections, we have presented a numerical and
is a little simpler. There are less reflection windows in thisanalytical study of vector-soliton collisions in the coupled
sequence. Window locations are changed significantly toanonlinear Schrdinger Eqs.(2.1) and(2.2). We have shown
The midpointsV,, of windows in this sequence satisfy the that for collisions of orthogonally polarized and equal-
same relatior(4.4), but the sloper here is 7.2849, which is amplitude vector solitons, when the XPM coefficightis
slightly different from that at\ ;= 40. small, a sequence of reflection windows similar to that in the

VI. DISCUSSION
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(a) different from¢*'s. Its basic structure is a collection of mul-
15 T tipass and multibounce windows. Whether this coupled NLS
fractal can reappear in other wave systems remains an inter-
esting question. On the other hand, these two structures are

05 intimately related at least in the coupled NLS system in two
v respects(1) the first structure bifurcates into the second one
I o/\,\' as B continuously increases?) the mechanisms for both
05 structures are resonances between translational motion and

internal oscillations of vector solitons. The third structure is
unrelated to the first two: it is phase induced, and its collision

15 ) dynamics is different.
05 1 1.5 It is noted that only the main collision structures are re-
Vo ported in this article. Some minor features have been omit-
ted. For instance, in collisions of orthogonally polarized and
(b) equal-amplitude vector solitons, g8 steadily increases,
1.5 some reflection or transmission windows may mysteriously
1 2 appear out of nowhere, then disappear with no trace left.
\J.-"A'v',‘ Results on polarization rotatidishadow formationand am-
05 plitude changes after collision are omitted too.
Ve oo Last, we discuss potential experimental verifications of
. our results. The model Eq&2.1) and(2.2) we have studied
-05 i are widely accepted as governing pulse propagations in bire-
-1 b \ fringent nonlinear optical fiberf29] (without random bire-
fringence. For fibers of linear birefringence, the XPM coef-
‘1'505 ] 15 ficient is 8=2/3[29]. For elliptical birefringenceB can take

v, other value$30]. The dimensionless collision velociy, in

o , ] our model is related to physical parameterd 28
FIG. 12. Collision results for solitons of unequal amplitudes at

B=2/3. The initial condition is(5.1) and (5.2 with a=1.2. (a) 47 An T
Velocity V, of the larger vector soliton emerge() velocity V¢ of VOZW XFGB’ (6.7)
the smaller vector soliton emerged. DI '

¢* model arises. Whep increases, a coupled NLS fractal whereAn is the index difference of the fiber's two polariza-
gradually emerges. But whefis greater than one, this frac- tions, 7 is the pulse’s FWHM\ is the wavelength, anD is
tal disappears. Analytically, we have explained these collithe dispersion parameténote thatD in [29] was defined
sion behaviors by a variational model that qualitatively re-differently). For step-index single-mode fibers, the typical
produces the main features of these collisions. Thissalue for D is 15.6 ps/nm/km at wavelength=1.55um
variational model indicates that these window sequences arfd]. According to[44], An varies between 810 ° and 8
fractal structures are caused entirely or partially by a resox 10 *. Typical values concentrate in the range 0o
nance mechanism between the translational motion andi0 °. If we let 7=5 ps, then the total range fa#, is from
width oscillations of vector solitons. We have also investi-4.8x 102 to 7.6x10?, while typical values fall between
gated collision dependence on initial polarizations, and dis0.95 and 9.5. Many of the interesting collision structures
covered a sequence of reflection windows thaphisse in-  discovered in this paper such as the resonance-induced se-
duced Our analytical formula for the locations of these quence of reflection windows in Fig(&, the coupled NLS
phase-induced windows agrees well with the numerical valfractal in Fig. 4 and27,28§, and the phase-induced sequence
ues. Last, we have examined collision dependence on relaf reflection windows in Fig. 1(®) fall entirely or partially in
tive amplitudes and showed that when vector solitons havéhe range of typical experimental parameters. Equally impor-
different amplitudes, the collision structure simplifies. tantly, some of these windows such as those induced by
There are three key collision structures in the couplecphase in Fig. 1(®) are very wide, so they should survive
NLS Egs. (2.1 and (2.2). The first one is the resonance- under inevitable birefringence fluctuations in real experi-
induced sequence of reflection windows similargd's in ments. Thus, experimental observation of collision results in
collisions of orthogonally polarized and equal-amplitudethis paper is quite feasible.
vector solitons at smaJ values[see Fig. 2a)]. The second
one is the coupled NLS fractal at moder@ealuessee Fig. ACKNOWLEDGMENTS
4(a) and[27,28]]. The third is a phase-induced sequence of
reflection windows in collisions of nonorthogonally polar-  The authors thank T.I. Lakoba for a careful reading of the
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