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Adiabatic interaction of N ultrashort solitons: Universality of the complex Toda chain model
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Using the Karpman-Solov’ev method we derive the equations for the two-soliton adiabatic interaction for
solitons of the modified nonlinear Schro¨dinger equation~MNSE!. Then we generalize these equations to the
case ofN interacting solitons with almost equal velocities and widths. On the basis of this result we prove that
the N MNSE-soliton train interaction (N.2) can be modeled by the completely integrable complex Toda
chain ~CTC!. This is an argument in favor of universality of the complex Toda chain that was previously
shown to model the soliton train interaction for nonlinear Schro¨dinger solitons. The integrability of the CTC is
used to describe all possible dynamical regimes of theN-soliton trains that include asymptotically free propa-
gation of allN solitons,N-soliton bound states, various mixed regimes, etc. It allows also to describe analyti-
cally the manifolds in the 4N-dimensional space of initial soliton parameters that are responsible for each of
the regimes mentioned above. We compare the results of the CTC model with the numerical solutions of the
MNSE for two and three-soliton interactions and find a very good agreement.
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I. INTRODUCTION

The analytical description of the dynamics of picoseco
solitons in single-mode nonlinear fibers is based on the n
linear Schro¨dinger equation~NSE! @1,2#. The NSE serves a
a very good integrable model admitting comprehensive
vestigation in the framework of the inverse spectral tra
form ~IST! @3#. IST provides the complete analytical descri
tion of the soliton interaction in a generic case
asymptotically freeN solitons moving with pairwise differ-
ent velocities@3,4#. On the other hand, the practically impo
tant case, especially in a soliton-based fiber transmiss
deals with the so-calledN-soliton trains, i.e., with an ordere
sequence ofN (N>2) solitons that are spaced apart almo
equally and have almost~or exactly! equal amplitudes and
velocities. In a number of recent papers@5–8#, an effective
formalism was developed for studying the dynamics of we
separated NSE solitons within theN-soliton train. This ap-
proach is based on a generalization of the two-soliton qu
particle method by Karpman and Solov’ev@9# to the case of
N solitons. In the framework of this approach, the solit
interaction is governed by a dynamical system for 4N soliton
parameters. Such an approximation is called adiabatic
cause interaction between the solitons is displayed as a
deformation of their parameters, a possible presence o
diation being ignored. It is important to realize that the abo
generalization from two toN solitons is nontrivial because o
lack of the superposition principle for the nonlinear dynam
cal system.
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Under some additional restrictions imposed on the soli
parameters, which ensure the validity of the adiabatic
proximation, the above dynamical system is reduced to
complex Toda chain~CTC! equations withN nodes@10–12#.
Extensive use of the fact that the CTC is a completely in
grable model permits to classify soliton parameter regio
with different asymptotic regimes of theN-soliton train
@5–8#. It was also shown in Ref.@8# that the CTC can be
associated with any equation from the NSE hierarchy.

One of the purposes in the optical fiber soliton commu
cation is to achieve a bit rate as high as possible. A nat
way in this direction is the use of shorter optical pulses
should be noted, however, that when dealing with ultrash
optical pulses with duration<100 fs, the NSE should be
modified to take into account some additional effects, su
as the nonlinearity dispersion, the intrapulse Raman sca
ing, and the higher-order dispersion@1#. As a rule, the extra
terms added to the NSE violate its integrability. On the oth
hand, if these additional terms are small, the IST-based s
ton perturbation theory is usualy treated as the relev
method to account for their influence on the soliton behav
@13–15#.

It is remarkable that adding a term accounting for t
nonlinearity dispersion to the NSE preserves the integrab
of the equation. In other words, the modified nonline
Schrödinger equation~MNSE!

iut1
1
2 uxx1 ia~ uuu2u!x1uuu2u50, ~1!

is still integrable by means of IST, though the associa
spectral problem~the so called Wadati-Konno-Ichikaw
spectral problem@16#, or quadratic bundle! does not belong
to the familiar Zakharov-Shabat class. The parametera in
©2001 The American Physical Society17-1
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Eq. ~1! governs the strength of the nonlinearity dispersio
The casea50 corresponds to NSE. Thereby, the effect
the nonlinearity dispersion is considered nonperturbativel
Eq. ~1!. Moreover, we have to stress that it is the complet
integrable model~1! that should be considered as a true sta
ing point for analytical investigation of subpicosecond so
ton dynamics. Indeed, it was shown in Ref.@17# that numeri-
cal simulation of the soliton propagation according to t
MNSE ~1! revealed various kinds of dynamical behavior th
cannot be accounted for by treating the nonlinearity disp
sion term of the MNSE~1! as a perturbation term in th
NSE. Analogous idea in treating the perturbed NSE was
veloped by Kodama and Hasegawa in Refs.@18,19#. There
the NSE with perturbations like the third order dispersio
nonlinear gain, and nonlinear dispersion was treated a
perturbed higher-order NSE.

The relevance of Eq.~1! to the problem of ultrashort puls
propagation in fibers was demonstrated in Refs.@20,21#.
MNSE ~1! is also used in plasma physics@22# and is relevant
for description of a deformed continuous Heisenberg fer
magnet@23#. It is the Alfvén waves in magnetized plasm
where the first successful application of IST to the quadr
bundle was achieved on an example of the derivative N
@24#, which is Eq.~1! without the last term. Both equation
are interrelated by a gauge-like transformation, see, for
ample, Refs.@25–27#. The soliton solutions and the Hami
tonian structures of the MNSE were obtained for the fi
time in Refs.@26,27#. N-soliton solutions were further re
derived by different methods: by IST using the above re
tion with the derivative NSE@28#, by Bäcklund and Darboux
transformations@29#, by technique of determinant calcula
tions @30#, by the Hirota method@31#, and by the]̄ method
@32#. It should be noted that the solutions obtained in th
papers refer to the general case of asymptotically free s
tons and being exact were too complicated for practical u

Recently, a novel parametrization for the MNSE solito
was proposed within the framework of the Riemann-Hilb
formulation of IST@33#. The convenient parametrization o
the MNSE soliton facilitated the development of an effect
adiabatic soliton perturbation theory for the MNSE that
able to take into account nonzero terms in the right-hand
of Eq. ~1!, see@33#.

The next natural step is to derive dynamical equations
the Karpman-Solov’ev type for the adiabatic evolution of t
soliton parameters for the MNSEN-soliton train. Several
questions arise in the process of solving this problem. I
possible to associate anN-node chain model, like the CTC
with this dynamical system? Will this chain model be diffe
ent from the CTC and, therefore, is the CTC valid only f
the NSE hierarchy? How well do the numerical simulatio
of the MNSE with adiabaticN-soliton train initial conditions
agree with the chainlike model predictions? All these qu
tions will be answered below.

The purpose of this paper is to derive a dynamical sys
for the 4N soliton parameters for the MNSEN-soliton train.
To this end we will generalize to the quadratic bundle
similar investigations performed for the NSE. In the ne
section we apply the Karpman-Solov’ev approach to
MNSE ~1! and derive the dynamical system for the tw
05661
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soliton train. In Sec. III we show how this result can b
generalized to the MNSEN-soliton train forN.2. We show
in Sec. IV that after some additional assumptions the co
sponding dynamical system for the soliton parameters
quires the form of the CTC. Thus we find that the CTC
characteristic not only for the NSE hierarchy@8#, but has
wider field of applications. This is an argument in favor of
universality.

In Sec. V we show how the integrability of the CTC ca
be used to determine the dynamical regimes of theN-soliton
trains. We demonstrate on the examples ofN52 andN53
how one can describe analytically the manifolds in t
4N-dimensional space of initial soliton parameters that
responsible for the:~i! N-soliton bound state regime;~ii ! as-
ymptotically free regimes;~iii ! various mixed regimes, etc
Although the analysis follows closely the ideas developed
Refs. @5–7# the description of the corresponding manifol
differs from the ones for the NSE soliton trains. The reas
for this lies in the fact that the CTC fieldsQj (t) are param-
etrized in a different way; in particular, ImQj depend not
only on the soliton phasesd j ~as is the case for the NSE! but
also on the soliton amplitudes.

In Sec. VI predictions of the CTC model are compar
with the numerical results from the MNSE and find an e
cellent match for most regimes withN52 and N53. We
found some disagreement between the CTC and nume
MNSE solution in the regimes when CTC predicts a ve
slow soliton separation.

II. TWO-SOLITON INTERACTIONS FOR THE MNSE

First of all we summarize the basic results concerning
soliton solution of the MNSE~1! @33#. This equation admits
the Lax representation

Fx52
2i

a S k22
1

4D @s3 ,F#12ikQF, ~2!

F t52
4i

a2 S k22
1

4D 2

@s3 ,F#1S 4i

a
k3Q12ik2Q2s32

i

a
kQ

1kQxs322iakQ3DF.

Here the Hermitian matrix

Q5S 0 u

ū 0D ,

stands for the potential of the spectral problem~2!, k is a
spectral parameter. There exist various parametrization
the soliton solution of the MNSE, the first one having be
proposed in Refs.@26,27#. We follow here the parametriza
tion given in Ref.@33#, which was proven to be useful fo
practical calculations and admits a simple~though nontrivial!
reduction to the NSE fora→0. The one-soliton solution o
MNSE related to the discrete eigenvalues6k1 , 6 k̄1 of the
spectral equation~2! has the form
7-2
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us~z,t !5 i
n

a

ke2z1 k̄ez

~kez1 k̄e2z!2
eif, ~3!

where for notational simplicity we have dropped the index
Herek5kR2 ikI , kI.0, l[4k2215m2 in,

z52
n

a
@x2j~ t !#, f5

m

n
z1d~ t !,

j~ t !52
m

a
t1j (0) , d~ t !5

1

2a2
~m21n2!t1d (0) . ~4!

It should be stressed that the soliton~3! is not of the
hyperbolic-secant type with a real argument, characteri
for the NSE. It is specified by four real parametersm, n,
j (0) , and d (0) with (2m/a) being the soliton velocity,
(a/n) is its width,d (0) andj (0) are initial phase and positio
of the soliton. To carry out the limit reduction to the NS
one should decompose the spectral parameter in the fol
ing manner:

k5
1

2
2

a

2
~mNSE1 inNSE!1O~a2!, a→0, ~5!

which gives (2m/a)→2mNSE and (a/n)→(2nNSE)21, as
should be.

If there is a small perturbation in a system described
the MNSE, we will deal with a perturbed MNSE

iut1
1
2 uxx1 ia~ uuu2u!x1uuu2u5r ~x,t !, ~6!

wherer (x,t) describes a functional form of the perturbatio
In what follows we will restrict ourselves to the adiaba
approximation of the soliton perturbation theory. In oth
words, we suppose that a perturbation causes a slow v
tion of the soliton parameters only. The evolution equatio
for the perturbation-induced soliton parameters are given
Ref. @33#. Here we write them in terms of the parameters~4!.
The key equation has a very simple form

dk

dt
5

i

2
ak2E

2`

` R1ez

~ke2z1 k̄ez!2
dz, ~7!

where R65exp@2if(z,t)#r(z,t)6exp@if(2z,t)#r̄(2z,t). Tak-
ing into account Eq.~4!, we obtain

dm

dt
52iaE

2`

` k3ez2 k̄3e2z

~ke2z1 k̄ez!2
R1dz, ~8!

dn

dt
522aE

2`

` k3ez1 k̄3e2z

~ke2z1 k̄ez!2
R1dz. ~9!

Evolution of j andd is given by the following formulas:
05661
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1

an S E
0

t

dt8m~ t8! D dn

dt

1
4a2

n2 E2`

` dzR2

~ke2z1 k̄ez!2 Fz~k3ez1 k̄3e2z!

1
in

8
~kez1 k̄e2z!G , ~10!

dd

dt
5

m21n2

2a2
1

1

a2n
S E

0

t

dt8m~ t8! D S m
dn

dt
2n

dm

dt D
1

4ia

n E
2`

` dzR2

~ke2z1 k̄ez!2 F uk2u~ke2z1 k̄ez!

2
1

8
~ l̄kez2l k̄e2z!1

iz

n
~l̄k3ez1l k̄3e2z!G .

~11!

It should be noted that for the symmetric perturbations ob
ing the condition exp@2if(z,t)#r(z,t)5exp@if(2z,t)#r̄(2z,t),
i.e., R250, the complicated integrals in the right-hand sid
of Eqs.~10! and ~11! disappear.

Now we have all the necessary information to derive
Karpman-Solov’ev-like dynamical system of equations
the adiabatic interaction of two well-separated MNSE so
tons. Below we will formulate more precisely, the conditio
of sufficient separability of solitons. We suppose that a tw
soliton solution to the MNSE~1! is well approximated by the
sum of two MNSE solitons

u~x,t !5u1~z1 ,t !1u2~z2 ,t !, ~12!

whereuj (zj ,t), j 51,2, is given by Eq.~3! with

zj52
n j

a
~x2j j !,

f j5
m j

n j
zj1d j .

j j~ t !52
1

aE0

t

dt8m j~ t8!1j j 0 ,

d j~ t !5
1

2a2E0

t

dt8@m j
2~ t8!1n j

2~ t8!#1d j 0 ,

where we took into account the possible evolution ofm j and
n j . Now, by substituting Eq.~12! into the MNSE~1!, it is
easy to see that, because of the nonlinearity, each so
feels the presence of the other one and the interactio
described by the perturbed MNSE

iu jt1
1
2 ujxx1 ia~ uuj u2uj !x1uuj u2uj5r j , ~13!

where
7-3
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r j52 ia~2uuj u2u32 j1uj
2ū32 j !x2~2uuj u2u32 j1uj

2ū32 j !.
~14!

It should be stressed that the perturbation~14! arises effec-
tively as a result of treating two-soliton solution as the s
~12! of the one-soliton ones.

Now we formulate the conditions that provide the rep
sentation~12! as a two-soliton solution of the MNSE~1!. At
first we expressz2 in terms ofz1,

z25S 11
n22n1

n1
D z11

n2

a
~j22j1!.

We suppose that solitons have almost equal widths, i.e.,

un22n1u
n0

!1, ~15!

wheren05(1/2)(n11n2). Hence, we have

z22z1.
n0

a
~j22j1!. ~16!

Calculation of the overlap integralu*2`
` u1(z1 ,t)u2(z2 ,t)dxu

~or, equivalently,*2`
` dxuu1(z1 ,t)u2(z2 ,t)u) gives an ex-

pression containing the factor exp@2(n0 /a)(j22j1)#[e for
j2.j1. Just this exponential factor determines a measur
overlapping neighboring solitons. We take in the followin

n0

a
uj22j1u@1 ~17!

~or e!1), which means weak overlapping between the s
tons.

Let us consider now the phase differencef22f1
5(m2 /n2)z22(m1 /n1)z11d22d1. Accounting for Eqs.
~15! and ~16! we may write

f22f15
1

n2
Fm22S 11

n22n1

n1
Dm1Gz11

m2

a

n0

n2
~j22j1!

1d22d1 .

Since we consider solitons moving with small relative v
locities we assume

um22m1u
n0

!1. ~18!

Then the phase difference will not contain thez dependence
Furthermore,

m2

a

n0

n2
~j22j1!5

m2

a S 11
n02n2

n2
D ~j22j1!.

As the last condition we suppose
05661
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un j2n0u~j22j1!!1, ~19!

hence, the phase difference takes the form

f22f15
m0

a
~j22j1!1d22d1 .

Therefore, the conditions~15!, ~17!, ~18!, ~19! provide a pos-
sibility to consider a two-soliton solution of the MNSE~1! as
the sum of the form~12!.

To derive the Karpman-Solov’ev-like equations for th
soliton parameters, we use Eqs.~7!–~11! with the perturba-
tion ~14!. Accounting for the above conditions, we obta
after simple but tedious calculations (j 51,2),

dl j

dt
5~21! j4kj S wjn j

a D 2w32 jn32 j

k̄32 j

e2D2 ic, ~20!

dm j

dt
5~21! j

2

a2
n j

2n32 j3S wj
2w32 j

kj

k̄32 j

e2 ic

1w̄j
2w̄32 j

k̄ j

k32 j
eicD e2D, ~21!

dn j

dt
5~21! j 11

2i

a2
n j

2n32 j S wj
2w32 j

kj

k̄32 j

e2 ic

2w̄j
2w̄32 j

k̄ j

k32 j
eicD e2D, ~22!

dj j

dt
52

1

a
m j1~21! j

2i

a3
n jn32 j S E

0

t

dt8m j~ t8! D
3S wj

2w32 j

kj

k̄32 j

e2 ic2w̄j
2w̄32 j

k̄ j

k32 j
eicD e2D

1
i

a
n32 j S @~11w̄j

2!~122w̄j
2!

14isj #wj
2w32 j

kj

k̄32 j

e2 ic2@~11wj
2!~122wj

2!

24isj #w̄j
2w̄32 j

k̄ j

k32 j
eicD e2D, ~23!
7-4
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dd j

dt
5

1

2a2
~m j

21n j
2!2~21! j

2i

a4
n jn32 j S E

0

t

dt8m j~ t8! D
3S l jwj

2w32 j

kj

k̄32 j

e2 ic2l̄ j w̄ j
2w̄32 j

k̄ j

k32 j
eicD e2D

2
i

a2
l̄ jn32 j S @~11w̄j

2!~122w̄j
2!

14isj #wj
2w32 j

kj

k̄32 j

e2 ic

2@~11wj
2!~122wj

2!24isj #

3w̄j
2w̄32 j

k̄ j

k32 j
eicD e2D. ~24!

Above we used the notations

wj5
kj

k̄j

5exp~22isj !, D5
n0

a
uj22j1u,

c5
m0

a
~j22j1!1d22d1 , sj5

1

2
arctan

n j

11m j
,

where the last relation follows froml j54kj
2215m j2 in j .

Equations ~21!–~24! are the analog of the Karpman
Solov’ev equations in the case of the adiabatic interaction
two well-separated MNSE solitons and reduce to the N
dynamical system in the limit~5!.

The dynamical system~21!–~24! is rather complicated
and needs further simplification to perform its analytical
vestigation. Integrable approximation is of special imp
tance, and finding such an approximation is one of our p
poses. But first of all we will generalize these equations
the case ofN MNSE solitons.

III. N-SOLITON TRAIN INTERACTIONS FOR THE MNSE

Since the Karpman-Solov’ev-like dynamical system
nonlinear, it does not allow the superposition principle. It
physically clear because in the case of theN-soliton train
with N>3 a middle soliton will be influenced by its neigh
bors from both sides. Hence, it is not possible to describe
interaction ofN>3 solitons within the framework of two
soliton interaction like~21!–~24!.

The first remark we should keep in mind is that the int
action force between the solitons is of the order of th
overlap. Therefore, we can take into account only
nearest-neighbor interaction. Indeed, for theN-soliton train
we assume that

u5(
j 51

N

uj , ~25!
05661
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whereuj is the MNSE soliton~3! whose center of mass i
located atj j . Assume thatj1,j2, . . . ,jN . Inserting this
ansatzinto the cubic term of the MNSE~1! gives

uu2uu5(
j 51

N

uuj
2uuj1(

j Þ l
~ uuj

2uul12uj
2ūl !1 (

j Þ lÞn
uj ūlun .

~26!

Straightforward analysis shows that the integrals in Eqs.~7!–
~11! corresponding to each type of terms in Eq.~26! are of
the following order of magnitude:

uuku2um , uk
2ūm↔O~e2uk2mu!,

uj ūlun , j , l ,n↔O~e2u j 2 l u2u l 2nu!.

Heree is of the order of exp@2(n0 /a)ujj2jlu# for u j 2 l u51.
Because we keep only terms of the order ofe, we see that it
is enough to take into account only terms withu j 2 l u51. In
other words, the ‘‘triple’’ terms likeuj ūlun can be neglected
Quite analogous is the situation with the cubic terms conta
ing x derivative.

Second, as in Sec. II, we pose the conditions

un j2n l u!n0 , um j2m l u!n0 ,

n0uj0 j2j0l u@1, un j2n l uuj0 j2j0l u!1,

wheren05N21( j 51
N n j , m05N21( j 51

N m j . They mean that
we consider the chainlike configuration ofN solitons with
equal or nearly equal velocities and widths. Substituting
soliton solutions~3! into the perturbation

r j52 (
l 5 j 61

@ ia~2uuj u2ul1uj
2ūl !x1~2uuj u2ul1uj

2ūl !#,

~27!

and calculating the integrals in Eq.~7!, we obtain

dl j

dt
52kj S 2wjn j

a D 2

(
l 5 j 61

sl j

wln l

k̄l

e2uD l j ue2 isl j c l j , ~28!

where

sl j 5H 1 for l 5 j 11,

21 for l 5 j 21,
D l j 5

n0

a Uj l2j jU,
c l j [c l2c j5

m0

a
~j l2j j !1d l2d j . ~29!

The corresponding formula form j and n j follow from Eq.
~28! as real and imaginary parts. It is not difficult to deriv
also the equations for the rest two parametersj j and d j ,
generalizing those in Eqs.~23! and ~24! for the two-soliton
interaction. Keeping in mind, however, our aim to formula
the equations for the adiabatic interaction of the MNSE s
tons in the form tractable analytically, it is sufficient to re
resent the equations forj j andd j in the following form:
7-5



a
ic
e

he

tio

to

n

e

ing

ises
v-

i-

he
of
f
he

le
TC
ex-
ical

en
mi-

V. S. GERDJIKOV, E. V. DOKTOROV, AND J. YANG PHYSICAL REVIEW E64 056617
dj j

dt
52

m j

a
1O~e!, ~30!

dd j

dt
5

m j
21n j

2

2a2
1O~e!. ~31!

Indeed, let us impose the conditions on the scattering dat
the spectral problem~2!, which correspond to the adiabat
approximation. Just as for the NSE, we require that the
genvalues of the Lax operator are clustered around t
mean value,

ul j2l0u2.O~e!, l05
1

N (
j 51

N

l j .

Thus we obtain the estimates in Eqs.~30! and ~31!, which
mean that we can neglect the perturbation-induced evolu
of the parametersj j andd j as compared to their main~un-
perturbed! evolution. At the same timesj andwj characterize
the initial conditions and it is important to take them in
account in the right-hand side of Eq.~28!.

IV. DERIVATION OF THE COMPLEX TODA
CHAIN MODEL

The next important step towards deriving a model ofN
MNSE-soliton interactions tractable analytically consists i
careful account for the terms of the order ofe. First note that
because the right-hand side of Eq.~28! is of the order ofe,
we may approximatekj by uk0ue2 isj , wherek0 is the mean
value

k05
1

N (
j 51

N

kj .

Thereby we neglect terms such asun02n j ue and um02m j ue,
which due to Eqs.~15! and~18! are of the higher order ine.
Hence, Eq.~28! is written as follows:

dl j

dt
5

4n0
3

a2
~eQj 112Qj f j2eQj 2Qj 21gj !, ~32!

where

Qj 112Qj52
n0

a
~j j 112j j !2 i Fp1

m0

a
~j j 112j j !1d j 11

2d j14sj 1114sj G , ~33!

f j5exp@ i ~sj 112sj !#, gj5exp@ i ~sj 212sj !#. ~34!

The recurrent relation~33! can be solved forQj with the
result

Qj52
n0

a
j j2 i F j p1

m0

a
j j1d j1d01 (

k51

j 21

8sk14sj G ,
05661
of
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n

a

d05
1

N (
j 51

N

d j . ~35!

The next step is to derive the evolution equation forQj
~35!. It should be noted first of all that up to terms of th
order ofe,

dd0

dt
5

1

2a2N
(
j 51

N

~m j
21n j

2!

5
1

2a2N
(
j 51

N

@m0
21n0

212m0~m j2m0!

12n0~n j2n0!1O~e!#

5
1

2a2
@m0

21n0
21O~e!#.

Then, in view of Eqs.~30! and ~31!, we get

dQj

dt
5

i

a2
~m02 in0!m j2

i

2a2
~m j

21n j
21m0

21n0
2!

5
i

2a2
@2~m j2m0!22~n j2n0!222in0~m j2 in j !#

5
n0

a2
l j1O~e!. ~36!

Finally, keeping only the leading-order terms and replac
f j.1 andgj.1 we find from Eqs.~33! and ~36!

d2Qj

dt2
54S n0

a D 4

~eQj 112Qj2eQj 2Qj 21!, ~37!

i.e., the CTC model. Hence we see that the CTC model ar
naturally as the integrable limit of the Karpman-Solov’e
like equations describing the adiabatic interaction ofN
MNSE solitons within the train of solitons with near veloc
ties and widths.

As we will see in the next section the interactions of t
MNSE solitons are substantially different from the ones
the NSE. As it can be seen from Eq.~33!, the dependence o
Qj on the soliton parameters is different from that for t
NSE case. An important point here is that ImQj depends
explicitly also on the amplitudes of the solitons throughsj
5arctan@nj /a(11mj)#.

V. DYNAMICAL REGIMES OF THE N-SOLITON TRAINS

It is well known that the CTC is a completely integrab
dynamical system. Most of the results concerning the C
such as the Lax representation, the integrals of motion,
plicit solutions, etc., are direct consequences of the class
results by Toda and Moser@34–36# on the real Toda chain
~RTC!. However, there is a qualitative difference betwe
the RTC and the CTC when one tries to analyze the dyna
7-6
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cal regimes of the two systems, see Refs.@5,7,37,38#.
Indeed, the Lax representation of the CTC~37! is of the

form

dL

dt
5@L,M #, ~38!

L~t!5(
j 51

N

@bjEj , j1aj~Ej , j 111Ej 11,j !#, ~39!

M ~t!5(
j 51

N

aj~Ej 11,j2Ej , j 11!, ~40!

where

t5c0t, c052n0
2/a2, aj5

1
2 exp~Qj 112Qj !/2,

bj52 1
2 dQj /dt52l j /4n0 , ~Ei , j ! ln5d i l d jn ;

see Eq.~36!. In fact, without loss of generality we can a
sume that trL50. This can be achieved by subtractingz01
from L, wherez05( j 51

N z j /N5( j 51
N bj /N. Note thatz0 is

obviously an integral of motion for the CTC, i.e.,dz0 /dt
50.

The explicit solution to the CTC is given by

qk~t!5q1~0!1 ln
Ak~t!

Ak21~t!
, ~41!

whereA0[1,

A1~t!5 (
k51

N

r k
2e22zkt, ~42!

Ak~t!5 (
1< l 1, . . . , l k<N

~r l 1
. . . r l k

!2

3W2~ l k ,l k21 , . . . ,l 1!exp@22~z l 1
1 . . . 1z l k

!t#,

~43!

and

AN5W2~N,N21, . . .,2,1!exp@22~z11•••1zN!t#)
k51

N

r k
2 .

~44!

Here z j are the eigenvalues of the Lax matrixL,
W( l k ,•••,l 1) denotes the Vandermonde determinant:

W~ l k , . . . ,l 1!5 )
s.p

s,pP$ l 1 ,•••,l k%

~2zs22zp!, ~45!

and r j are the first componentsr j5vW j ,1 of the eigenvectors

LvW j5z jvW j , ~46!

normalized by
05661
~vW j ,vW j ![(
k51

N

~vW j ,k!
251. ~47!

Due to the fact thatL is a symmetric matrix we find also

(
j 51

N

r j
251. ~48!

Using the explicit solution forQj (t) we can estimate the
asymptotic behavior ofQj (t) for t→`.

Such an analysis for the RTC, i.e., whenQj , aj , andbj
are real, shows that~i! r j andz j are real valued,~ii ! z jÞzk
for j Þk. Therefore, one finds that fort→` each ‘‘particle’’
Qj moves uniformly with a velocity 2z j @35,36#. Sincez j are
pairwise different we conclude that the only possible d
namical regime is the asymptotically free~AFR! one.

The same considerations applied to the CTC lead, h
ever, to a qualitatively different results. Indeed, nowr j and
z j5k j1 ih j become complex valued and there are no
strictions on the eigenvaluesz j . Then evaluating the limits
of Qj (t) for t→` we find that the asymptotic velocity ofQj
is determined by 2k j52Rez j . As a result we have much
wider spectra of dynamical regimes. The reason for tha
also in the fact that CTC can be viewed as a dynam
system ofN ‘‘complex’’ particles that are characterized no
only by their positions ReQj and velocitiesv j5Rebj , but
also by their phases and phase velocities; the latter are
lated to ImQj and Imbj . Physically speaking these ‘‘com
plex’’ particles have, just like the bright NLE solitons, a
internal degree of freedom. This makes the interaction
tween the particles more complicated and as a result
number of the possible dynamical regimes increases subs
tially.

The AFR that takes place ifk jÞkk for j Þk is just one of
the options. Another option isk15k25 . . . 5kN50, which
corresponds to a bound state regime~BSR! of all N ‘‘com-
plex’’ particles ~solitons! in the train. There is also a larg
class of intermediate or mixed regimes~MR! for which only
several of the parametersk j are equal. For example, ifk1
5k25k3.k4•••.kN then the first three particles~solitons!
will form a bound state while the restN23 particles will be
asymptotically free.

Note that this variety of regimes exist in the generic ca
when the eigenvaluesz j of L are pairwise different; so in the
previous case we assume thath1Þh2Þh3. One may con-
sider also degenerate regimes~when two or more of the ei-
genvaluesz j become equal! and singular regimes@when one
or more of the functionsQj (t) develop singularities for fi-
nite t#.

There is also another important consequence from the
tegrability of CTC. From the Lax representation one eas
finds that the eigenvaluesz j are the integrals of motion fo
the CTC, i.e.,z j are time independent. Therefore, we c
evaluate them, for example, at the initial momentt50 using
for this the initial values of the soliton parameters. The
knowing z j and, more specifically,k j we can predict the
asymptotic regime of the correspondingN-soliton train.
7-7
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We can also answer another question: describe the s
initial soliton parameters for which the correspondi
N-soliton train will develop a specific dynamic regime.
other words, we can describe the set of initial soliton para
eters for which we will have, say, anN-soliton bound state
regime. To describe the BSR all we need to do is to solve
corresponding characteristic equation

det~L2z1!50, ~49!

and impose the conditionk15k15•••5kN50. Since the
coefficients of Eq.~49! and consequentlyk j will be ex-
pressed in terms of the initial soliton parameters, we w
have a set of nonlinear equations describing the BSR. An
gously, if we need to describe the AFR we must solve
k jÞkk for kÞ j .

We will show how this can be done analytically for th
simplest nontrivial cases withN52 andN53. For generic
values ofN this can always be done by numeric means; o
needs only to solve algebraic equation~49! of orderN.

Let us briefly describe the manifolds of soliton paramet
responsible for each of the dynamical regimes forN52 and
N53. As it is clear from the above considerations, we ha
to solve the characteristic equation~49! and to express the
eigenvaluesz j of L in terms of the soliton parameters.

A. NÄ2 case

For simplicity, from now on we shall consider trains wi
zero initial velocities,m j (0)50, i.e., in the relevant moving
coordinate system. The matrix

L0[L~ t50!5S b a

a 2bD ,

with tr L50 is built from the initial soliton parameters

a52
i

2
expS 2

n0

2a
r 02

i

2
G D , b5

i

4
d,

where

r 05j2(0)2j1(0) , G5d2(0)2d1(0)14s114s2 ,

d5~n1(0)2n0!/n0 . ~50!

Then

z1,256Ab21a256
iDcr,2

4
Ay0

21e2 iG, ~51!

with

Dcr,252 exp@2n0r 0 /~2a!#, y05
d

Dcr,2
. ~52!

Obviously if GÞ0,p then Rez1,2Þ0 and we will have an
AFR. If G50, then Rez1,250 and we have a BSR. IfG
5p, then Rez1,250, i.e., we will have a BSR only provide

udu.Dcr,2. ~53!
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If udu,Dcr,2, both rootsz1,2 become real and we go into th
AFR.

It was already noted that the conditionsG50,p involve,
besides the phasesd j , also the amplitudes of the soliton
throughsj . In particular, forn05a51 andm j50 we have
s11s25p/4. Therefore, two such MNSE solitonsattract
each other and form a bound state providedd22d15p and
repulse each other~which leads to AFR! for d22d150.
Such behavior of the two-soliton interaction is quite to t
contrary to that known for the NSE two-soliton interaction

The explicit solution to the CTC withN52 is of the form

Q1~ t !52Q2~ t !5 ln
cosh~2z1c0t2g1!

2z1
,

g15 ln
r 1

r 2
, ~54!

wherez1 is expressed in terms of the soliton parameters~51!
and

g15
1

2
ln
Ay0

21e2 iG1y0

Ay0
21e2 iG2y0

. ~55!

Obviously forG50 the solutionQ1(t),

Q1~ t !5 ln
2 cos~Y0c0t/21 ig10!

iY0
, ~56!

Y05Dcr,2Ay0
211, g105

1

2
ln

Ay0
2111y0

Ay0
2112y0

,

becomes a periodic function oft5t/c0 with period depend-
ing on y0:

T2s;15
4p

c0Dcr,2Ay0
211

. ~57!

Analogously forG5p from Eq. ~55! we have

Q1~ t !52Q2~ t !5 ln
2cosh~ iDcr,2Ay0

221c0t/22g11!

iDcr,2Ay0
221

,

~58!

g115
1

2
ln

Ay0
2211y0

Ay0
2212y0

.

The solution is periodic only ify0.1 and the period is

T2s;25
4p

c0Dcr,2Ay0
221

. ~59!

As a conclusion, the BSR forN52 provides periodic solu-
tions. ForG5p, y0,1 we have AFR and the solution is no
periodic.

The final remark in this section is that fory0→0 the so-
lution ~54! becomes singular and blows up periodically wi
7-8
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period 4p/(c0Dcr,2). In this limit we have two ‘‘equal’’ soli-
tons with amplitudesn j5n051 with phase differencep.

B. NÄ3 case

For the case of the three-soliton train with zero init
velocities the matrixL0 has the form

L05S b1 a1 0

a1 b2 a2

0 a2 b3

D , tr L050,

with

aj52
i

2
expS 2

n0

2a
r 02

i

2
G j D , bj5

i

4
dj ,

where

dj5
n j (0)2n0

n0
, r 05j2(0)2j1(0)5j3(0)2j2(0) ,

G j5d j 11(0)2d j (0)14sj 1114sj . ~60!

Then the characteristic equation takes the form

z31pz1q50, ~61!

where

p52 1
16 ~d1d21d2d31d1d3!1 1

4 e2r 0n0 /a~e2 iG11e2 iG2!,

q5
i

64
d1d2d32

i

16
e2r 0n0 /a~d1e2 iG21d3e2 iG1!. ~62!

It is natural to make use of the well known Cardano fo
mulas for solving cubic equations. We first consider t
cases whenp andq are real. The roots of Eq.~61! are given
by

z15A1B, z25vA1v2B, z35v2A1vB, ~63!

where

A5A3 2
q

2
1AQ, B5A3 2

q

2
2AQ, ~64!

Q5
q2

4
1

p3

27
, v5expS 2p i

3 D .

If both p andq are real, then so isQ. Here we have four
subcases corresponding to qualitatively different sets of ro
for real p andq.

~i! Q,0. This is possible only if p,pcr , pcr5
23(q2/4)1/3. ThenA5B* and all three rootsz j become real
z j5k j and pairwise different,

k152uAucosV0 , k2,352uAucosS V06
2p

3 D , ~65!
05661
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with V0Þ0,p. Obviously this leads to AFR. IfV050 or p
thenk25k3 and a MR follows.

~ii ! Q.0 andqÞ0. Here bothA andB are real and for-
mula ~63! shows that one rootz1 is real, while the other two
are complex conjugate:

Rez1522 Rez2522 Rez3 , or k1522k2522k3 ,
~66!

which corresponds to a MR.
~iii ! Q.0 andq50. Now p.0, the cubic equation~61!

simplifies and is trivially solved by

z150, z2,356A2p. ~67!

All the roots have zero real parts that obviously correspo
to BSR.

~iv! Q50. If p and q are nonzero, all the roots are re
and pairwise different,

z153q/p, z25z3523q/2p,

we have AFR. Ifp andq are zero, we get a degenerate ca
with all three zero roots.

The symmetry in the eigenvalues leads also to a sym
try in the solutions of the CTC. Therefore, the configurati
~67! corresponds to a particular type of BSR’s. This is due
the fact that we restricted so far bothq andp to be real. Of
course this is not necessary; moreover, from Eq.~62! we see
that generically bothq and p are complex. If we want to
specify the soliton parameters that are responsible for
BSR we may also use Viette formulas which show that
characteristic equation~61! will have purely imaginary roots
if p is real and negative andq is purely imaginary. That is
why we will consider also the configuration~v! below.

~v! p5 p̄,q52q̄. In this case we have two qualitativel
different possibilities depending on whetherQ is positive or
negative.

Note that sinceq52q̄ we should modify our reasoning
as compared to the above analysis. Indeed, withq5 iq8, q8

real andQ>0 we find thatA52B̄. Therefore, from Eqs.
~63! and ~64! we have that all the rootszk satisfy zk5

2 z̄k , i.e., are purely imaginary and BSR takes place.
Analogously, ifQ,0 then the rootszk satisfy z152 z̄1

andz352 z̄2 which leads to AFR.
Hence, we revealed two possibilities to realize bou

state regime: subcase~iii ! and subcase~v! with Q.0.
Let us now briefly describe the sets of soliton paramet

relevant to each of the regimes mentioned above. For d
niteness we will use two configurations of soliton widths

d152d3 , d250, W1 ~68!

d15d3 , d2522d1 , W2. ~69!

The condition thatp is real immediately means that

G152G2[F. ~70!

Then
7-9
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p52 1
16 ~d1d21d1d31d2d3!1 1

2 e2n0r 0 /a cosF, ~71!

q5
i

64
d1d2d32

i

16
e2n0r 0 /a~d1eiF1d3e2 iF!, ~72!

F5d22d114s114s2 . ~73!

Choosing the sets of widths to beW1 andW2 we get, re-
spectively,

p(1)5
d1

2

16
1

e0
2

2
cosF,

q(1)5
d1e0

2

8
sinF, ~74!

wheree05exp@2n0r0 /(2a)#, and

p(2)5
3d1

2

16
1

e0
2

2
cosF,

q(2)52
id1

3

32
2

id1e0
2

8
cosF. ~75!

1. Case I: qÄ0

The characteristic equation~61! has the roots

z150, z2,356A2p. ~76!

From Eq.~74! we get that for theW1 configuration the con-
dition q(1)50 holds provided

F5kp, k50,1, ~77!

which means that

p(1)5
d1

2

16
1~21!k

e0
2

2
. ~78!

As a consequence we find thatp(1).0 for k50; for k51 we
get thatp(1).0 only providedud1u is greater than the critica
value

ud1u.Dcr,3, Dcr,352A2e0 . ~79!

In all these casesz2,3 are purely imaginary, i.e., these sets
parameters lead to BSR.

Note that Eq.~77! means

d25d11kp24s124s2 , k50,1. ~80!

If instead of Eq.~79! we haveud1u,Dcr,3 then p(1),0
and the rootsz2,3 become real. That means that takingd1
below the critical value we will see a transition from BSR
AFR.

The same considerations applied to theW2 configuration
lead to different results. From Eq.~75! we see thatq(2)50
holds if
05661
cosF52
d1

2

4e0
2 , ~81!

which implies that

ud1u<2e05
Dcr,3

A2
~82!

and

p(2)5
d1

2

16
>0. ~83!

Such configurations obviously lead to BSR. Ifud1u is chosen
to be greater than the critical value in the right-hand side
Eq. ~82! we find that thenq(2) becomes purely imaginary
such situation is considered below.

Let us briefly treat also the case of ‘‘equal’’ solitons, i.e
dj50. Then obviously q50, s15s25s35p/8, and p
5(e0

2/2)cosF. As a result we find that if

2
p

2
,F,

p

2
, i.e.,

p

2
,d22d1,

3p

2
, ~84!

thenp.0 and we have BSR; if

p

2
,F,

3p

2
, i.e., 2

p

2
,d22d1,

p

2
, ~85!

thenp,0 and AFR follows.

2. Case II pÄ0

In this case the characteristic equation~61! has as roots

zk5A3 2qvk, v5e2p i /3, k50,1,2. ~86!

If in addition q is real then Eq.~86! leads to a MR; otherwise
we get AFR.

For theW1 configurationp(1)50 means

cosF52
d1

2

~Dcr,3!
2

; ~87!

this is possible only ifud1u<Dcr,3. From Eq.~74! we get that
q(1) is real and such configuration leads to MR.

For theW2 configurationp(2)50 holds if

cosF52
3d1

2

8e0
2 52

3d1
2

~Dcr,3!
2

, ~88!

which is possible only ifud1u<Dcr,3/A3. From Eq.~75! we
find thatq(2) is purely imaginary, i.e., AFR follows.

3. Case III: pÄp̄ and qÄÀq̄Å0.

This is possible only for theW2 configuration, sop andq
are given by Eq.~75!. The resolvent of the cubic equatio
~61! in this case takes the form
7-10
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Q5
~p(2)!3

27
1

~q(2)!2

4
5

e0
6

8 F S y21
c

3D 3

2y2S y21
c

2D 2G
5

e0
6

8

c2

12S y21
4c

9 D , ~89!

wherey5d1 /Dcr,3 andc5cosF.
It is easy to check thatQ(y,c) is non-negative for allc

.29y2/4 and vanishes forc50 andc529y2/4. We have
to keep in mind also thatucu<1. Therefore, if 9y2/4.1 then
Q>0 in the whole interval21<c<1. Following the argu-
ments in~v! above we conclude that this configurations lea
to BSR.

If we choose

ud1u, 2
3 Dcr,3, ~90!

then there will be an interval forF ~73!,

wcr<F<2p2wcr , wcr5arccosS 2
9d1

2

4~Dcr,3!
2D , ~91!

for which Q,0; i.e., if Eq. ~91! holds we have AFR.
If F belongs to the complementary interval

2wcr<F<wcr , ~92!

thenQ(y,c)>0 and we have BSR.
An interested reader can easily extend these studie

other relevant configurations of soliton parameters.

VI. THE CTC VERSUS NUMERICAL SOLUTIONS
OF MNSE

It is our aim here to compare the predictions of the C
model with the numerical solutions of the MNSE. Since t
full numerical investigation of the problem is a volumino
and ambitious task we limit ourselves withN52 andN53
soliton trains and fix upa51 and the average widthn051.

With this choice ofa51 the derivative term in the MNSE
cannot be treated as a perturbation to the NSE. With
choice we are able to exhibit the differences between
MNSE and NSEN-soliton train interactions. As we men
tioned above, the dependence of the soliton interaction of
MNSE solitons on the soliton phase difference is qual
tively different from the one of the NSE solitons.

Indeed, let us start withN52 soliton trains. The formulas
from Sec. V A with a51 and n051 show that ‘‘equal’’
solitons~i.e., solitons with equal widths! with phase differ-
enced22d15p ~or G50) attract each other. In fact, thi
choice of the soliton parameters corresponds toy050 and
according to Eqs.~54!, ~55! the solution to the CTC become
singular. From Fig. 1 we see that apart from a small nei
borhood around the singular points the CTC gives a g
description of the two-soliton train of the MNSE; the sing
lar points match rather well with the points at which the tw
solitons are closest to each other. The distance to the
singular points matchesT2s,1/4 with T2s,1 given by formula
~57! with y050.
05661
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Choosing the solitons to have different widths leads
g10Þ0 in Eq. ~56! and removes the singularity of the corr
sponding solution of the CTC system even ifG50. This can
be seen from Fig. 2 that corresponds to a BSR. Of cou
now the match between the MNSE simulation and the C
solution is better than in the previous case.

The situation changes if we consider solitons with pha
differences such thatG5p. There we find a threshold valu
for d152d25(n12n0)/n0, see Eq. ~53!. Whenever d1
,Dcr,2 we get an AFR@see Fig. 3~a!# while for d1.Dcr,2 we
get an BSR@see Fig. 3~b!#.

Let us now consider the three-soliton interactions. T
choices of the soliton parameters illustrates each of the th
main configurations outlined in Section V B above.

Figure 4 provides examples of three-soliton configu

FIG. 1. Two-soliton interactions and their comparison with t
CTC model. Solid curve, numerical results; dashed curve, pre
tions from the Toda chain model.n15n251.0, d150, andd25p.

FIG. 2. Two-soliton interactions and their comparison with t
CTC model. Solid curve, numerical results; dashed curve, pre
tions from the Toda chain model.n150.95, n251.05, d150, and
d25p.
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FIG. 3. Two-soliton interactions and their comparison with the CTC model. Solid curve, numerical results; dashed curve, pre
from the Toda chain model.~a! n150.97, n251.03, d150, andd250; ~b! n150.96, n251.04, d150, andd250.
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tions withq50 characteristic for case I. Both sets of para
eters are such thatF5p. Besides on Fig. 4~a! we haved1
,Dcr,3 and as a consequence an AFR must follow. In F
4~b! we haved1.Dcr,3 for which the CTC model predicts
BSR; the match with the simulation here is not that good

Figure 5 shows a three-soliton configurations withp50
characteristic for case II. In Fig 5~b! the set of widths isW1
andd1,Dcr,3 and, therefore, a MR follows.

In Fig. 6 we usedW2 set of soliton widths and a choice o
parameters characteristic for case III, i.e.,p is real whileq is
purely imaginary. In Fig. 6~a! Q.0 with BSR, and in Fig.
6~b!, we haveQ,0 and AFR.

VII. CONCLUSIONS

In this paper we extend the formalism by Karpman a
Solov’ev proposed to describe the NSE two-soliton inter
05661
-

.

d
-

tion @9# and generalized to arbitrary number of solito
@5–8#, to the case of the modified nonlinear Schro¨dinger
equation. The aim of our paper was twofold. First, we wou
like to investigate a possibility to apply an integrable cha
like model to capture adiabatic dynamics of MNSE solito
within the N-soliton train. Because a functional form of th
MNSE soliton is not of the familiar hyperbolic-secant typ
with a real argument, we might expect an existence of so
important features as compared with the NSE case. We s
that, under specific well-defined conditions, the dynami
system of 4N equations for soliton parameters is reduced
the completely integrable complex Toda chain model withN
nodes. This is a strong argument in favor of universality
the CTC model forN-soliton interactions. Though the sam
CTC arises also for the NSE, there are a few peculiari
inherent in the MNSE solitons. In particular, we found o
edictions
FIG. 4. Three-soliton interactions and their comparison with the CTC model. Solid curve, numerical results; dashed curve, pr
from the Toda chain model.~a! n151.04, n251.0, n350.96, d150, d2520.0392, andd350.0016;~b! n151.07, n251.0, n350.93,
d150, d2520.0676, andd350.0049.
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FIG. 5. Three-soliton interactions and their comparison with the CTC model. Solid curve, numerical results; dashed curve, pr
from the Toda chain model.~a! n151.04, n251.0, n350.96, d150, d252.1703, andd350.0016;~b! n151.02, n250.96, n351.02, d1

50, d2521.0862, andd350.0420.
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more complicated phase behavior of theN-soliton train. Us-
ing the integrability of the CTC, we are able to predict va
ous asymptotic regimes of the MNSEN-soliton train evolu-
tion. Besides, we point out the sets of the initial solit
parameters corresponding to each of the dynamical regim
Numerical simulations of the MNSE two- and three-solit
interactions are in very good agreement with the CTC-ba
predictions. Evidently, the results obtained can be exten
to treat also multicomponent~vector! generalizations of both
the NSE~see, e.g., Refs.@39–41# and references therein! and
MNSE @42–44#. Work in this direction is now in progress
We note that in nonintegrable wave systems, Toda-ch
type equations may still be derived for the adiabatic inter
tion of N nearly identical solitary waves, but such equatio
05661
s.

d
d

in
-

s

are generally nonintegrable as well@10–12,40#.
Second, we consider the MNSE as a true starting in

grable model to describe subpicosecond pulse evolution
nonlinear media. Strictly speaking, to justify a relevance
our results to actual ultrashort pulses, we should also acc
in our model at least two additional effects, the third-ord
dispersion and intrapulse Raman scattering. These eff
break the integrability of the MNSE, and we are faced with
truly perturbed CTC. Following the lines of recently esta
lished interrelations between the perturbed NSE and p
turbed CTC@8#, we can extend the above formalism to a
count for small actual perturbations that act along with
effective perturbation~14!. The corresponding results will b
published elsewhere. The single MNSE soliton dynamics
edictions
FIG. 6. Three-soliton interactions and their comparison with the CTC model. Solid curve, numerical results; dashed curve, pr
from the Toda chain model.~a! n151.02, n250.96, n351.02, d150, d253.142, andd350.0420, and~b! n151.02, n250.96, n3

51.02, d150, d250.0, andd350.0420.
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the presence of the intrapulse Raman scattering is discu
in a recent paper@45#.

The MNSE is not the only candidate to describe subpi
second optical pulse dynamics. The other equations stu
in this respect are of more general form

i
]q

]T
1

1

2

]2q

]X2
1uqu2q1 i«S b1

]3q

]X3
1b2uqu2

]q

]X
1b3q

]uqu2

]X D
50, ~93!

due to the presence of third-order dispersion and additio
types of nonlinearities. If we assume thatb1 :b2 :b3
51:6:0 we obtain Hirota equation @46# while for
b1 :b2 :b351:6:3 we getanother integrable nonlinear equ
tion known as the Sasa-Satsuma equation@47–49#. It is
rather natural to study theN-soliton interactions also fo
these equations. Although it may seem that Eq.~93! is simi-
lar to Eq.~1!, the method of solution is much more comp
cated. The corresponding Lax operator is provided by
33 matrix-valued operator with specialZ2-symmetric poten-
tial. As a result the equation~93! like the sine-Gordon equa
tion, has two types of soliton solutions: ‘‘simple’’ soliton
and breathers. That is why the study of the soliton inter
tions of Eq.~93! requires substantial efforts and will be a
dressed in subsequent papers.

Recently we were informed@50# that the CTC model
arises also in the case of the soliton-train propagation
E.
od

v,

i-

nd

-

05661
ed

-
ed

al

3

-

a

system governed by the classical Thirring model@51,52#.
This seems natural in view of the facts that:~i! CTC de-
scribes the adiabatic soliton interactions for all nonline
equations of the NSE hierarchy;~ii ! the massive Thirring
model is just another representative of the MNSE hierarc

There remain several natural questions that will be
dressed in sequels of this paper. The first one is the lima
→0 in which we should recover the results for the NS
N-soliton trains. We have proved that the Karpma
Solov’ev-like equations for MNSEN solitons transform un-
der this limit to the known NSE formulas. The second o
concerns the treatment of the perturbed versions of
MNSE and the corresponding perturbed CTC model; for
NSE such perturbed CTC models have been briefly analy
in Ref. @8#.
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