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Interactions of vector solitons
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In this paper, we study the interaction of two widely separated vector solitons in the nonintegrable coupled
nonlinear Schrdinger (NLS) equations. Using a modification of Karpman-Solov’ev perturbation method, we
derive dynamical equations for the evolution of both solitons’ internal parameters. We show that these dynami-
cal equations allow fixed points that correspond to stationary two-vector-soliton bound states if these solitons
have the same phase in one comporisame sighand 7-phase difference in the other componéspposite
sign). However, linear stability analysis indicates that these bound states are always unstable due to a phase-
related unstable eigenvalue. We also investigate vector-soliton interactions and show that, in contrast to soliton
interactions in the single NLS equation, vector solitons repel or attract each other depending not only on their
relative phases but also on their initial position separation. Lastly, interaction of an arbitrary number of vector
solitons is also studied in brief. All our analytical results are supported by direct numerical simulations.
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[. INTRODUCTION solitons can form a perfectly stationary bound state if they
have the same phase in one component afghase differ-
Optical fiber communications are advancing very rapidlyence in the other component. Physically, stationary two-
both in lab experiments and in field installations nowadaysvector-soliton states can be formed because the attracting
One of the major transmission formats is to use optical soliforce in the in-phase polarization balances the repelling force
tons as information bits. For each optical soliton, dispersiorin the out-of-phase polarizatiofY]. The existence of such
is balanced by fiber nonlinearity, thus the pulse can transmigtationary bound states was first established through numeri-
without change of shape. However, when the bit rates areal means by Haeltermaet al. [7] (see alsd8]). The ana-
pushed very high, the tail interaction between adjacent pulsdgtical construction of such bound states was first achieved
becomes non-negligible. This tail interaction causes a pulsby Yang by an asymptotic tail-matching methi@l. In that
to drift away from its expected position, a phenomenonwork, the spacing between vector solitons in a stationary
called timing jitter in the optics literature. This timing jitter configuration was obtained explicitly. Similar results were
leads to signal detection error at the receiver end, and igeproduced later in Ref{10] by dynamical system tech-
detrimental to system performance. Motivated by its physicahiques. Experimentally, stationary two-vector-soliton states
application, pulse-pulse interactions have been studied interave been observed in photorefractive matefiald.
sively in the past 20 years. Most of these studies used the One important open question is the stability of stationary
nonlinear Schrdinger (NLS) equation model, which is ap- two-vector-soliton bound states. A more general question is
propriate when fiber birefringence is neglected. In such ahe dynamics of interacting vector solitons. We note that the
case, it has been shown that when two equal-amplitudexperimental observation of stationary two-vector-soliton
pulses are inphasgero phase differengethey attract each states in Ref{11] does not necessarily imply the stability of
other. When they are out-of-phase-phase differendethey  such states. The reason is that the propagation distance in
repel each other. These results are confirmed experimentaltilfat experiment was relatively short, thus weak instability
in both optical fibers and photorefractive waveguifies3].  would not have been detected. In Rgf0], a special class of
The interference between pulses can be reduced if pulsesationary two-vector-soliton bound states where each vector
have different amplitude@ quasistationary two-pulse bound soliton has nearly 45° polarization was considered briefly. It
state can be formed1,4,5, but it can never be eliminated, was claimed that such states were linearly unstable, but that
i.e., two pulses can never form a perfectly stationary boundesult was not substantiated. In the wofl®,13, slightly
state. In real optical fibers, birefringence is an intrinsic prop-different physical systems where the phase birefringence was
erty and cannot be simply neglected. When fiber birefrin-weak or the nonlinearity was saturable were considered. In
gence is taken into consideration, pulse propagation is actuhe former case, two-soliton bound states were found linearly
ally governed by two coupled NLS equatiof®]. In this  unstable due to symmetry-breaking instability. In the latter
case, each pulse generally consists of two polarization conease, linearly stable multihump solitons were discovered.
ponents that trap each other through nonlinear Kerr effects. In this work, we study the interaction of two widely sepa-
Such a pulse is called a vector soliton in the optics literaturerated vector solitons that have nearly the same amplitudes,
We note that a “vector soliton” here is just a solitary wave polarizations, and velocities. However, the common polariza-
solution, not a soliton in the strict mathematical sense. A newion of the two solitons is arbitrarynot restricted to 45°
phenomenon in the coupled NLS equations is that two vectogingles, so are the relative phases between them. As a special
case, we will analytically reestablish the existence of station-
ary two-vector-soliton bound states and determine their sta-
*Email address: jyang@emba.uvm.edu bility properties. The method we will use is a modification of
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the Karpman-Solov'ev techniqul4] (see also Gorshkov solitons and show that, with the same phase differences, two

and Ostrovsky15]). We first derive the dynamical equations vector solitons can repel or attract each other for different

for each vector-soliton’s velocity, amplitude, position, andinitial position separations. In Sec. VII, we extend the results

phase parameters. Then we show that these dynamical eqd@-an arbitrary number of vector solitons. Sec. VIII summa-

tions allow fixed points, which correspond to stationary two-fizes all the results, and makes some general comments re-

vector-soliton bound states. There are two geometrically dislated to our results.

tinctive stationary bound states: one is that the larger-

amplitude components of the two vector solitons are in Il. ONE-VECTOR-SOLITON PERTURBATION THEORY

phase, and the smaller-amplitude components are out-of-

phase; the other one is that the larger-amplitude components

are out-of-phase, and the smaller-amplitude components are

in phase. These results reproduce those in Ré#s9], which

were obtained differently. Next, we show that both these sta-

tionary bound states are linearly unstable. However, their iBi+ Byt (|B[>+ BIA]*)B=0, (2.2

instability characteristics are different. For the stationary

bound state whose larger-amplitude components are inwhereA andB are complex amplitudes of the electrical fields

phase, there are two unstablpurely rea) eigenvalues, in the two orthogonal polarizations of an optical fiber, ghd

which are position- and phase related, respectively. But fois the cross-phase modulational coefficigl For linearly

the bound state whose larger-amplitude components are olirefringent fibers 8= 2/3. If the birefringence is ellipticg

of-phase, there is only one unstable eigenvalue which isan take other valueg16]. In a wavelength-division-

phase related. The position-related eigenvalues are nomultiplexed systemB=2 (see[1,2]). If 8=0, the system

stable. Next, we discuss the full interaction dynamics of twobecomes two decoupled NLS equations@it 1, it is called

vector solitons. We show that, in contrast to the single NLShe Manakov model. In both cases, the system is integrable

equation, repulsion or attraction of two vector solitons de{17,18. For otherg values, it is nonintegrable. In this article,

pends not only on their phase differences, but also on theiwe allow 8 to be an arbitrary non-negative value except 1,

initial position separation. This can be understood intuitivelyi.e., we consider the general non-Manakov case.

by considering the attracting and repelling forces in vector Vector solitons of Eqs(2.1) and (2.2) have the general

solitons’ two components. Lastly, we study the interaction ofform,

an arbitrary number of vector solitons. We present the dy-

namical equations for these solitons’ internal parameters, and Vv

show that stationary bound states can be formed as well if A=r(x—Vt—x0)exp{| 5 (X=Vi=Xo)

neighboring solitons have the same phase in one component

and mr-phase difference in the other component, just like the

two-vector-soliton case. But these bound states are also lin-

early unstable. All our analytical results are confirmed both

qualitatively and quantitatively by the direct numerical simu- v

lations. B=R(x—Vt—xo)exr{i = (X—Vt—Xgp)
We emphasize that the modification of the Karpman and 2

Solov’ev method as used in this paper does not depend on

the integrability of the underlying wave equation. The key +i

requirements are just thatl) each individual pulse is lin-

early stable;(2) all pulses are nearly identical, moving at . ,

nearly the same velocities, and widely separated;(@nthe ~ Wherew and(l are frequency parameteig,is the velocity,

internal modes and radiation modes generated by tail-tail inXo IS the initial position, andy, andI’, are phase constants.

teractions are negligible. These requirements are satisfied Mithout 10ss, we take» and() as positive numbers. Due to

many integrable and nonintegrable equations in addition t®hase, position and Galilean invariances of E@sl) and

the coupled NLS equations considered in this paper. Thu&2-2: the vector-soliton parametexsxo,yo and I’y are all

our generalized method can be widely applied for the Stud@rbltrary and can be_ normallzeq to be zero. But if one needs

of pulse-pulse interactions. to study _vect_or-sollt(_)n evolution under perturbations or
The structure of this paper is arranged as follows. In Sec\_/ectorisohton interactions, all these parameters must be kept

Il, we develop a one-vector-soliton perturbation theory,@S Variables as they will not be constants anynieee later

which is the foundation for the study of vector-soliton inter- In this section and Sec. )l Amplitude functionsr(x) and

actions. In Sec. lll, we derive dynamical equations for inter-R(X) can be made entirely real due to phase invariances of

nal parameters of two interacting vector solitons. In Sec. IVEds-(2.1) and(2.2). Then these real amplitude functions sat-

we reestablish the existence of stationary two-vector-solitorsfy the following ordinary differential equation®©DES:

bound states by examining the dynamical equations of inter-

The coupled NLS equations are

A+ A+ (|A]?+ B|B|?)A=0, (2.1

V2
w4 —

N
! 2

2

V
24
Q+4

t—iFo}, (2.4)

acting vector solitons. In Sec. V, we show that the stationary M~ @7 +(r?+ BR?)r =0, (2.9
two-vector-soliton bound states are linearly unstable. In Sec.
VI, we study the full interaction dynamics of two vector Ry — Q2R+ (R2+ Br?)R=0. (2.6)
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Solutions to Egs(2.5 and (2.6) have been studied exten- where
sively before(see[8] and the references thergirt has been
shown that for any frequency paiw({}) with Q/w lying .
inside the interval[(y1+84—1]/2, 2[V1+8B-1]) and I x— f Vdt—x,, (2.1
B#1, this ODE system has a unique single-hump vector- 0
soliton solution that is symmetric in bothand R compo-
nents. Thus we can use»((}) to characterize this unique . .
§|ngle-hump splutlon. The asymptotic behavior of this solu- y:f (2 +V2/8)dt—y,, F:f (Q2+V2/4)dt—T,.
tion at infinity is 0 0
(2.12

r(x)—ce X, Rx)—Ce M |x|-w, (2.7

wherec andC are tail coefficients. Whep=1, the interval Here velocityV, frequency parametets, (1, initial position
[(VIT8B-1)/2, 2/(J1+8B—1)] shrinks to a single Xo. initial phasesy, andT are all functions of slow timd.
point 1. In this case, a single-hump vector soliton exists only! Nis slow time evolution can be determined when we pursue
whenw= 0, but the polarization of this vector soliton is now th€ perturbation theory to order This will be done next.
arbitrary due to a rotational symmetry. Consequently, the pa- e first substitute Eq2.10 into the evolution equations
rameters to characterize Manakov solitons arand polar-  (2.8) and(2.9). Then equations for andR are found to be
ization, rather thand,(2). In this article, we study the inter-

action of single-hump vector solitons in non-Manakov

systems. Thus we usew({)) to characterize each vector ir+1gp— w’r +(|r|?+ BIRIA)r
soliton during their interaction. Similar analysis can be done

) ) : ) — - - 1 1 -
for the interaction of Manakov solitons, but the formulation =eF—e¢|lirt—ixgrr o+ | sVXor— 5 V10+ yor|r|,
needs a little modification. The ODE systdth5) and (2.6) 2 2
also supports many multihump vector-soliton solutip8k (2.13

But we are not interested in the tail interaction of such vector
solitons since evidence shows that they are all linearly un-

stable[8]. iR+ Ry— Q2R+ (|RI2+8|r )R

When two vector solitons are placed next to each other, . 1
they will interact due to tail overlapping. This pulse-pulse =~ I ST < o o
interaction has been studied intensively for the NLS equation €G- €[ IRr=ixorRyt| 5VXor— 5 Vr0+ Tor [R).
and sine-Gordon equation, among others. The basic idea of (2.14

Karpman and Solov'ey14] (also Gorshkov and Ostrovsky

[15]) is that, this tail overlapping acts as a small perturbation

to each individual pulse. This perturbation causes each puldgere

to evolve adiabatically on a slow time scale. The radiation

generated by the perturbation is small and negligible. In this _ _

article, we are going to use this idea to study vector soliton F=Fe V02 v G=Ge V21T, (2.15
interactions. Since this idea critically depends on the pertur-

bation theory for a single pulse, we will first develop this . .

theory for a perturbed vector soliton in the remainder of thisWe now expand amplitude functiomsandR into a pertur-
section. bation series:

Consider the perturbed coupled NLS equations
iA+ At (|A]2+ BIB|2) A= €F, 2.9 r=r(0;0,Q)+er+0(e?), (2.1
iBi+ By + (|B|?+ B|A|?)B=€G, (2.9

R=R(0;0,0)+ eR+0(€?). (2.17

where functiond= and G are perturbation terms, andis a
?zmgllaﬁgr(aznx)at; r'axvgggg: s;[}tlijg?]at;)nn ds’it;hi?\ t(\a/(rar::;(l)r ;?;:fno_nAt the zeroth order, functions and R just need to satisfy

) : ' P Egs. (2.5 and (2.6), and we take them as a single-hump
etersw,(,V,Xq, v, andl'y are constants. When the pertur- . . ~ =
bation is turned on, this vector soliton will evolve slowly on VECtor soliton. At ordere, equations forr and R can be

the time scalél = et. The multiple-scale perturbation theory Written as
for this kind of evolution is well known(see[19], for in-
stancé. We write the perturbed solution as W+ LT =W, (2.18
A:F(e,t,T)eiV(}/2+i7, Bzﬁ(elt,T)eiV(}/ZJriF,
(2.10 Here
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Jgg— 0>+ 2r2+ BR? r2 BrR BrR
—r? — 9ot w?—2r2— BR? —BrR —BrR
L= 2 2. pp2 2 , (219
BrR BrR dgo— QO+ 2R+ Br R
—BrR —BrR —R? — gt Q2—2R?—pBr?
v=_rr*RR")T, (2.20
W: (Wll_M IWZY_Wz)T! (22])

the superscript T” represents the matrix transpose, the su-Here the inner product is defined as
perscript “*” represents the complex conjugate,

(f,g}zfichdiagl,— 1,1—-1)gds, (2.32

_ 1 1
W]_:FO_ iI’T—iXOTI‘9+ VXOT VT9+ ’yOT

(2.22 where “diag(.)” represents a diagonal matrix with diagonal
' elements inside the parentheses. Evaluating the above six
integrals in Eq(2.31), the slow-time evolution equations for
X0:Y0,10,V,» andQ will be obtained. Defining masses of
the unperturbed vector-soliton’s two components as

_ 1 1
WZZGO_|:iRT_iX0TR9+( VXOT VT6+FOT

(2.23
and functionsF, and G, are justF and G evaluated ai M(w.O) = f” 200 0.0)d0
=r(0)eV??"17 andB=R(6)e"V??"'"" In order for the per- (@, () - (6;0,0)d6,
turbation theory to hold, functior’s, andG, must be slowly
varying with time. _ Jw 20
Operatorl has three discrete eigenstates with zero eigen- N(w,2) ﬂcR (6,0,8)d6, (233
value:
these evolution equations can be written as
v, =(r,~r,00", (2.24
d™m o _
\PZZ(O,OR,_R)T’ (225 dT ZJ‘_ r |m(F0)d0, (234)
W3=(ry,ry,Ry,Ry)". (2.26 dN o o
. o 2| RmGoan, (2.35
These eigenstates are related to the phase and position invari- dT -

ances of the vector soliton solutid®.3) and(2.4). Operator

L also has three generalized eigenstates for the zero eigen- (M +N)—V—4fc Re(rgfo+ Rgao)de, 2.38

value:
- T
q)l_( [OR] waRauRw) ’ (227) (M+N) Vd 2M %—i_ZN ﬁ
®,=(rg,ra,Ro,Ra)7, (2.28 dT “dT “dT
®3=(6r,— 0r,0R,~ OR)". (2.29 :4f Re(r,Fot R.Go)do, 2.3

These generalized states are related to amplitude and velocity

iati ' iti dxg dyo dr
variations of the vector solitof2.3) and(2.4). In addition, (M+N)gV—— +2|\/|Q T +2NQ dTO

LCI>1=2w‘I’1, L(DZZZQ‘Pz, L¢)3:2‘P3 dT
(2:30 =4f Re(roFo+RnGo)d#, (2.38
In order for the inhomogeneous solutidh of the first- w7
order equation(2.18 to be non-secular at large time, the .
inhomogeneous term in E€R.18 must be orthogonal to the (M+ N)%zzj |m(9r|:_o+ gRgo)dg_ (2.39
above eigenstates and generalized eigenstates of eigenvalue daT —
zero, i.e.,

Here “Re” and “Im” represent the real and imaginary parts
(W, ¥ )=(W,d,)=0, k=1,2,3. (2.3)  of a complex number. These six equations are the main re-
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sqlts of the single-vector-soliton perturbation Fheory. They Gy=—2|By|?B3_— BﬁBé’_k—ﬂ(BkAkAé‘_ﬁ BlAY As_y

will be critical for the development of vector-soliton interac-

tion theory in the next section. We note that in the above +|A?B3_), (3.9
analysis, we have focused on the evolution of the vector-

soliton itself under perturbations. We have not paid any atandk=1,2. Note that term&, andG, are due to tail over-
tention to the radiation that is generated by the perturbatioriapping of the two vector solitons. These terms now act as
nor have we considered the internal modes of opetatbhat  perturbations on each vector soliton, as E@s5 and(3.6)

can also be excited by perturbatioftise existence of internal indicate. This idea has been mentioned before in this article.
modes for vector solitons has been extensively studied in To proceed further, we need to recall our assumptions,
[20,21)). This is legitimate for weak perturbations, as radia-which are that the two vector solitons have nearly the same
tion and internal modes in that case are indeed small andmplitudes, polarizations and velocities, and are separated
negligible. far apart. With the notations

lil. VECTOR-SOLITON INTERACTIONS w=(w+w)2, Q=(Q,+Q0)/2, V=(V,+V,)/2,

In this section, we study the interaction of two vector (3.9
solitons that have nearly the same amplitudes, polarizations
and velocities, and are syeparated far ap%rt. Here the tail over- A@=wz— 01, AQ=0,-0Q,, AV=V,—V,,
lapping can be considered as a small perturbation, which (3.10
causes each vector soliton to evolve on a slow time sdale
Here € is the magnitude of tail overlapping, which is expo-
nentially small with soliton spacing. For convenience, we
will not introduce e explicitly in the analysis below. But we Ay=y,—v1, Al=Tp-Ty,  Ax=Xp—xy,
do need to distinguish between fast variables and slow vari- (3.1
ables as in Sec. Il ] .

As the leading order approximation, the solution is a suthese assumptions are simply
perposition of two widely separated vector solitons:

and

[Aw|<w, |AQ|<Q, |AVI<|V|, wAx>1,

A=A;+A,, B=B;+B,, (3.1

where QAx>1, |AwAx|<1, |AQAX|<1. (3.12

Ac=r (0, 0)exd iV b2+ v, Since|AV|<|V|, we get

B =Ri( 0, t)exdiV 6 /2+iT ], (3.2 (V20,—V161)[2~—VAX/2. (3.13

oxn xe [t (@a T NG e snolewectorsalton pertaton ey

equations for each vector-soliton’s internal parameters as
Y= f;(wﬁwﬁm)dt— Yo, Ti= fot(ﬂﬁ+vﬁl4)dt—l“k0. M, i ,
(3.4 W—Z(—l) J_wrk(rkJﬁBRk)rs—kdX

For the convenience of description, we put the first pulse on Xsin(VAx/2—Avy), (3.19

the left side, and the second pulse on the right side,x,e.,
<X,. Now we substitute Eq(3.1) into the original system

dN o
(2.1) and(2.2). Since the two solitons are widely separated, d—tk=2(— 1)k*1f Re(RZ+ Br2)Ry_dx
collecting terms that are the dominating contribution to the o
evolution of each pulse, we can split E¢®.1) and(2.2) into X Sin(VAX/2—AT) (3.19

two systems, one for each pulse:
At Aot (JAL2+ BIB2) A= F,, (3.5 dVy =
ket Aot (|AK“+ BIBi9) Ac=Fy (Mk+NK)W=4f7wrk(rﬁ+,3R§)r3fk,de

iB it Bixxt (|Bil?+ B Ay %) Bx= G, (3.6
X cog VAx/2—Ay)
where .
+4f Re(R2+ Br3)Rs_ dx
Fi=—2|A?As_— AZAS(— B(ABBS_(+ABK B3« EURA NS k) R3-kx

+|BW?As_p), (3.7 X cog VAX/2—AT), (3.1
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dyko dlyo

kaO
(Mict Ny, Vige =+ 2M 2+ 2N 2

= _4f [r(rE+ BRE) ], M3 kX COS VAX/2—Ay)

—4f [Re(Rg+ Bri) ], Rs-dxcog VAX/2—AT),
(3.17

d ko dl'yo

dXko
(Mt No, Vg T 2Mio, g T2Nko, 51

= _4f [rk(rﬁ+,BRﬁ)]rig,_kdxcos{VAxlz—Ay)

—4f [Re(Ri+ Bri)]o Rs—dxcog VAX/2—AT),
(3.189

dXo
(My+ Nk)T

=2<—1)k+1f°° (X=X (124 BRE) 5

o0

X sin(VAX/2— Ay)+2(— 1)k+1f (X=X )Ry

—o0

X (R2+ Bri)Rs_ydxsin(VAx/2—AT').  (3.19

PHYSICAL REVIEW E 64 026607

f NPt BROT 3 udx= (= 1)K 20?2,
(3.23

and

J Ry(RE+ Br) Ry xdx=(—1)k"1202C%e™ 4%,
(3.2

Further simplification of Eqs(3.14), (3.195, and(3.16 can

be achieved if we derive dynamical equations for parameter
differencesAw, AQ), and AV instead of these parameters
themselves. For this purpose, we notice from Eg§sl4) and
(3.2)) that, to leading order,

(M1+M;3)=0, (3.29
(M,—M;),=—8wc%e “**sin(VAX/2—Ay).
(3.29
Then, since
Mi=M (@, Q) o+ Mg, Q) Qi  k=1,2,
3.29
and
o=o+(—DAw2, O=0+(-1)*A02, k=1,2,
(3.28
Egs.(3.295 and(3.26) become
M, w+MgQ,=0, (3.29

and

Here k=1 and 2. The above dynamical equations can be > wAx
simplified greatly. First, recall that, and R, satisfy the or- MoAw+MoAQ=—8wce Sin(VAX/2—=Ay).
dinary differential equation&2.5) and (2.6). In addition, the (3.30
tail behavior of the vector soliton with averaged frequencieggre partial derivative , and M, are evaluated at aver-

(,2) is given by Eq.(2.7). Then, in view of the assump- aged frequenciesa{,{)). Similar calculations show that
tions (3.12), the integrals in Eqs(3.14), (3.15, and (3.16 9 q suf,(2).

can be calculated explicitlyto the leading order For in- N,w;+NgQ,=0, (3.3D)
stance,
N, Aw,+NoAQ,=—80C% *Xsin(VAx/2—AT),
f rl(r§+,8R§)r2dx=f (w?r —ry,)ce’*=40dx (3.32
- e V=0, (3.33

=ce “ wre®—r.e”x]”

=2wc2e WAX,

In this calculation, integration by parts has been carried out.

(3.20

and
(M+N)AV,= — 16 w?c?e” “**cog VAX/2—Ay)
+02C2%e % cog VAX/2— AT ].

Similarly, we can show that (3.39
- We note that Eq93.29 and(3.31) are equivalent to
2 2 24— wAX
r(ri+ BRY)rz_dx=2wce 2%, 3.2
| et RYe dx-20 (3.21 = 0= 0, (3.39

. To simplify Egs.(3.17), (3.18, and(3.19, we notice that
f Ry R§+ﬁr§)R3,kdx= 20C% 4% (329 the two vector soliton_s are nearly identi(tabe as_sumptions
—w (3.12)]. Thus, to leading order, the right-hand sides of Egs.
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(3.17, (3.18 and(3.19 are the same fok=1 and 2. From
Egs.(3.3) and(3.4), we see that

1
_ _ 2 2
Xiot= Xkt~ Vi, Ykot= @kt ka_')’ktv

2 1 2
FkOt:Qk+ ka_rkt. (336)
We also know that
V, =V+(—1)kAV/2. (3.37)

Then equating the left-hand sides of E¢3.17), (3.18, and
(3.19 for k=1 and 2, these equations simplify to

dAX—AV 3.3
W_ ) ( . &
9271y avi20a 3.39
T—E +2w w, ( )
and
dAT 1
F=§VAV+ZQAQ. (3.40

Now, we summarize the evolution equations for vector-
soliton parameters after the above simplifications. If we in

troduce two new notations:

1 1
A¢=—§VAX+A7, A(I)Z—EVAX+AF,
(3.4)

the final evolution equations can be deduced from Egs.

(3.29 to (3.40 as follows:

w=0,=V,=0, (3.42
M, Mgl[Aw, 8wc?e “**sinA ¢
{Nw N, || A0, ~| sacze3xsinap| 343
(M+N)AV,=—16(w?c?e ***cosA ¢
+0%C% "XcosAd),  (3.49
Ax=AV, (3.45
Ap=20wAw, (3.46
AD,=20AQ. (3.47

We remind the reader thtdl (w,) andN(w,{)) are a vec-
tor soliton’s two component masses defined in Ej33,
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plitude and polarizationand velocity of the two vector soli-
tons remain unchanged during this interaction. The param-
eter differences are governed by E¢343 to (3.47).

When 8=0, system(2.1) and(2.2) becomes two decou-
pled NLS equations. Therefore, the dynamical equations
(3.42 to (3.47 should reproduce those for the single NLS
equation as a special case. This is true indeed. We note that
when =0,

r(x)= \/Ew sechwx, R(x)= \/EQ sech)x. (3.48

Thus

M=4w, N=4Q, (3.49

and

c=2\20, C=2.2Q. (3.50

When these relations are substituted into dynamical equa-
tions (3.42 to (3.47), we find that those equations can be
split into two independent sets of equations. Each set of
equations governs the evolution of a NLS soliton, and they
are precisely the ones derived by Karpman and Sold\dy
and Gorshkov and OstrovsKyl5] (see alsd1]). Thus our
results reproduce the previous ones as a special case. But our
results are much more general, applying to any cross-phase
coupling coefficien3# 1. Wheng=1 (Manakov casg vec-
tor solitons are characterized layand the polarization angle
instead ofw and (). In that case, the dynamical equations
need to be formulated a little differently. This could be easily
done, but we will leave it elsewhere.

One important fact about the dynamical equati¢®€?2
to (3.47) is that they allow a simple reduction. It proves to be
consistent if we ask that

Aw=A0=0, A¢=0o0rm, AdP=0orw. (3.5)

Then, those equations reduce to a single second-order equa-
tion for the vector-soliton separatiakx:

(M+N)Ax+ 16 w?c?e” “** cosA ¢

+02C?%e X cosAP]=0. (3.52

We note that similar reduction exists for the single NLS
equation as well. Equatio3.52 may allow fixed points
when cos\¢ and co\® are of opposite sign. This fixed
point then gives the spacing for a stationary two-vector-
soliton bound state. This issue will be examined in greater
detail in the next section.

IV. EXISTENCE OF STATIONARY TWO-VECTOR-
SOLITON BOUND STATES

With the dynamical equation@.42 to (3.47) now avail-

andc andC are tail coefficients of a vector soliton defined in able, one can proceed to study interaction dynamics for vari-

Eq. (2.7).

ous initial conditions, as has been done extensively for the

Dynamical equation§3.42 to (3.47) are the main results NLS equation(see[1] and the references thergitHowever,
of this paper. They completely determine the evolution ofin this and the next sections, we take a different path and

two vector solitons under tail interactions. Equati@42

indicates that the averaged frequendi@sequivalently, am-

study the formation of stationary two-vector-soliton bound
states and their linear stability. The existence of these station-

026607-7



JIANKE YANG PHYSICAL REVIEW E 64 026607

ary bound states holds only for the coupled NLS equations,
not for the single NLS equation. This existence has been
established before both numerically and analyticdkge

[7-9]). But the stability problem has not been resolved yet.
In this section, we rederive stationary two-vector-soliton
bound states by virtue of the dynamical equati¢®€?2 to

(3.47). Stability issue will be considered in the next section. -

amplitudes
°
=] o« —-

amplitudes
o

Stationary two-vector-soliton bound states in the coupled % o 5 20 RS —Ts 5 o 2
NLS system(2.1) and(2.2) simply correspond to fixed points x x
of the dynamical equation§3.43 to (3.47). There are two FIG. 1. Numerically obtained stationary two-vector-soliton
fixed points in these dynamical equations: bound states fo=2/3, w=1, andQ=0.85(solid: r; dashedR).

(a) Type | state withr antisymmetric andk symmetric;(b) type Il
(DAw=AQ=AV=0, A¢=m ADP=0, (4.1 state withr symmetric andR antisymmetric. Analytical approxima-

tions by Eqs(4.1), (4.2), and(4.3) are indistinguishable from the
(N Aw=A0=AV=0, A¢p=0, Ad=7m. (4.2 numerical curves and thus not shown.

In the first case, thé components of the two vector solitons given in[7] in terms of force balances as follows. It is well
are out-of-phasest-phase differenceand theB components  known that in the single NLS equation, if two solitons are in
are in phasdzero phase differengeln other words, theA  phase, they attract each other. But if they are out-of-phase,
components are antisymmetric, and tBecomponents are they repel each other. Vector solitons in the coupled NLS
symmetric. In the second case, the situation is just the oppquations have two components &ndB). If solitons are in
site, i.e., theA components are symmetric, and tBBecom-  phase in one component, but out-of-phase in the other com-
ponents are antisymmetric. In both cases, the spakik)gis  ponent, then a stationary bound state can be formed if the
found from Eq.(3.52) as attracting force in the in-phase component exactly balances
the repelling force in the out-of-phase component. This is
exactly what happens in the two types of stationary bound
states(4.1) and(4.2). We note that this force balance occurs
only at a specific position separatidx, which is given in
Of course, the spacing obtained from this formula has to bé&q. (4.3). At other position separations, the forces will not be
such thatAx, >1, an assumption we have made throughouin balance, thus the two solitons will move relative to each
the paper. A fact we have found is that only whera <1  other(see Sec. Vl
can positive spacing\x, be obtained from formuld4.3). Next, we compare the above analytical results on station-
When 8— 1", spacings from this formula approach infinity ary two-vector-soliton bound states with numerical results.
for every (w,Q) pair where a single-hump vector soliton is We choose the following parameter valugs=2/3 and w
allowed. Thus stationary two-vector-soliton bound states do=1. Then for each ) lying inside the interval
not exist in the Manakov mode|3=1). We note, however, (0.7583,1.3187), there is a unique single-hump vector soli-
that other stationary bound states not of two-vector-solitorion solution. The tail coefficients and C of single-hump
type do exist in the Manakov modésee[22]). When 8 vector solitons can be easily determined numerically by
>1, Ax, from formula(4.3) is negative, thus no stationary shooting techniques. Our analysis above predicts two types
state of two well-separated vector solitons is predicted fronof stationary two-vector-soliton bound states in E(&5)
our analysis above. However, numerical results7i8] show  and(2.6): type | hasr antisymmetric, andR symmetric; type
that such stationary states still exist f6>1 whenQ~w. Il hasr symmetric, andR antisymmetric. The analytically
This dilemma needs to be resolved in the future. Below wherpredicted spacingAx, are given by formuld4.3). To con-
we discuss stationary bound states, we takg33<1, so that  firm these analytical results, we have numerically determined
our analysis gives the correct prediction. Note that formulanultihump solitary waves in Eqs$2.5) and(2.6) by shooting
(4.3 was first obtained by this author using an entirely dif-techniques(see also[7,8]). Sure enough, we numerically
ferent technique, namely, the asymptotic tail-matchingfound both types of stationary two-vector-soliton bound
method[9]. That method and its results were very generalstates. These states wifd=0.85 are shown in Fig. 1 for
(not restricted to the coupled NLS equatipnBut it could illustration. The numerical spacings of these two bound
not be used to study the stability problem. These same resulgates, measured as the distance between the two highest
were later reproduced in Ref10] by dynamical systems points in the graph, are 13.0622 and 13.0644, respectively.
techniques. But the stability issue was barely touched therd-or thisQ value, tail coefficients of the single-hump vector
The current perturbation method, however, could establisisoliton are found a€=2.6592 andC=1.1744. Thus, the
the existence of stationary two-vector-soliton bound statesnalytical spacing from formul&4.3) is 13.0635 for both
and resolve their stability issue completéee later in this bound states. The analytical spacing agrees very well with
section and the next sectipn the numerical spacings. If we plot the analytical approxima-
The existence of stationary two-vector-soliton boundtions for the two-vector-soliton bound states, which are su-
states is a phenomenon which is absent in the single NL$erpositions of two single-hump vector solitons with Omor
equation. An intuitive explanation for this existence has beemphase differences and separated apart at spadirg

In Q2C2%—In w?c?
Ax, = 0= o

4.3
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17 very good. As() approaches 1, the numerical results diverge
16 solid: type | from the analy_tical prediction. Sp_ecifically, élsapproaghes
215 dashéd:type I 1 type I spacing plgmmets, .whll_e type 1l spacing rises to
<44 dotted: formula (4.3) !nflmty. One'm'te.restmg question is that, while type Il spac-
o, ing goes to infinity af) approach_es_l, why cannot the per-

S turbation theory formul&4.3) predict it? The reason may lie
812 in the fact that the perturbation theory predicts the same
S spacing for both type | and Il bound states, while the actual
10 spacings for the two bound states go different ways when
9 approaches 1. But this question needs further investigation.

0.8 0.85 0.9 0.95 1

frequency Q
V. LINEAR STABILITY OF STATIONARY

FIG. 2. Spacings of type | and Il two-vector-soliton bound states TWO-VECTOR-SOLITON BOUND STATES
for B=2/3, =1, and varioud) values. Solid curve, type | spac-
ing (numerical; dashed curve, type Il spaciigumerical; dotted
curve, analytical formuld4.3).

In this section, we analytically determine the linear stabil-
ity of type | and Il bound stategt.1) and (4.2 [see Fig. 1
This will be done by examining the linear stability of fixed
points(4.1) and(4.2) in the ODE systen(3.43 to (3.47). We

=13.0635, the analytical curves and exact numerical onefyst consider the fixed point I. When this point is perturbed,
are indistinguishable. Thus the analytical curves are Nnofye can write

shown in Fig. 1.

Further comparison between the exa@uimerical soliton Aw=Aw, AQ=AQ, AV=AV, (5.1
spacing in a stationary two-vector-soliton state and the ana-
lytical formula (4.3) can be made when we vafy continu- Ap=m+ AZ& AD=AD Ax= Ax, + AX, (5.2

ously. This is done in Fig. 2, where we plot the numerical

spacings for type | and Il bound states and the analyticalvhere the tilded quantities are small perturbations. Substitut-
spacing(4.3) simultaneously. As we can see, wh@nis not  ing these perturbed quantities into the dynamical equations
close to 1, the agreement between numerics and theory {8.43 to (3.47) and neglecting higher-order terms, we get

AP 1 —16w2Cc?Nge “  —16wQC2Mge 4% A
AB|  MuNo—MoN,| 160QC?N,e % 160°C*M e "% |[ A 53
|
and When Eq.(5.5) is substituted into Eq5.3), phase-related
_— eigenvalues\ ,, are found to satisfy the fourth-order polyno-
5 16(w—Q)wc 0% AY—0 (5.4) mial equation
t M+N : '
. . .. 4 16w2C2(NQ_Mw) —wA 2

Notice that the above equations for the phase and position Apnt M N —M-N_ ¢ @ X*)\ph
perturbations are decoupled. Now we put the perturbed quan- w N 2%
tities in the normal-mode form: 1620202c2C2

_ T T T T Ao (0t Q)AX, —
5 _ _ e *=0. (5.7
AD=aeM, AD=apeM, Ax=ase™, (5.5 MuNo—MoN,,
where\ is the discrete eigenvalue. When this form is sub-The roots of this equation are\(}) and \(}), where
stituted into Eq.(5.4), position-related eigenvalues,, are
2 20)2~20-2
found as A2y (22 _ 1670707c"C e (0TMdx (59
ph Tph M,No—MgN ' '
) 1&9_(1))(1)202 w'™NQ QNe

—wAX,
po= VN e . (5.6

To determine the stability of these phase-related eigenvalues,
There are two such eigenvalues) ., where\ , is a root it is necessary to_obtain the sign of the d.etermiqu;NQ.

of the right-hand-side quantity in E¢.6). Notice thatx ,, is —MgN,,. For this purpose, we normalize the solutions
either purely real, or purely imaginary, depending on the sigid"-R) in Egs.(2.5 and(2.6) as

of w— Q. Whenw>(), itis purely imaginary, thus is stable. L

If @<Q, N\, is purely real, thus unstable. r(x;w,Q)=owr(x;p), (5.9
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R(X;®,Q)=wR(x;p), (5.10

where

x= wx, p=02%w? (5.11

and the normalized solutiongx;p) andR(x;p) satisfy the

new ODEs:
oI +(r2+BRY)r=0, (5.12
R PR+ (R2+ Br3)R=0. (5.13

With the further mass notations

Vo= | Poepdx Np- | RGapdx

PHYSICAL REVIEW E 64 026607

Similar stability analysis can be done for the other fixed
point Il [see Eq.(4.2)]. We can readily show that the six
eigenvalues for fixed point Il are exactly

*ikgo, TN, =N, (5.17)
where N0, A and A7) are given by Egs(5.6) and
(5.7). This means that=ir{}) are now stable eigenvalues
sincei\{}) is imaginary, and one ofix(7) is unstable since
i)\f,zh’ is now real. The position-related eigenvalues\ ,, are
stable or unstable depending on whethek,, for fixed
point | are unstable or stable. Specifically, whes (), i\,
is real, thus one ofti\y, is positive and unstable. When
0>, both £i\, are imaginary and stable. We note that
for 0<pB<1, ther component in the single-hump vector
soliton is larger than thdk component whenw>(, and

smaller whenw< (). Thus, for both type | and Il stationary

(5.14  bound states, when the larger-amplitude component changes
sign (w-phase differende the position-related eigenvalues

we see that are stable. When the larger-amplitude component does not
_ _ change signisame phageone of the position-related eigen-

M(w,Q)=oM(p), N(w,Q)=wN(p). (519 values becomes unstable. Whether the larger-amplitude com-

With these relations, we readily find that the determinant iseglrsjeenitscglaxlgyessusrlg?aglrer?ot, exactly one phase-related eigen
given by Our stability results obtained above can be summarized as
follows. Both type | and Il stationary bound states are lin-
- . (5.16 early unstable because there is always Gaed only ong
M(p) phase-related eigenvalue that is unstable. When the larger-
amplitude component does not change sign, there is one
When 0<pB<1 where meaningful stationary two-vector- position-related eigenvalue that is unstable as well. Other-
soliton bound states exigtl(p)/M(p) is an increasing func- Wise, position-related eigenvalues are stable.
tion of p. This can be understood heuristically as follows. For Below we compare the above analytically obtained eigen-
the ODE systent5.12) and (5.13), single-hump vector soli- Values for stationary bound states with numerical results. Nu-
tons exist whenp lies in the interval [y1+8p  merically, we determined the discrete nonzero eigenvalues
—1]/2, 2[{J1+8B8-1]) (see Sec. ) If 0<g<1, and corresponding eigenfunctions of the linearization opera-
[V1+8B8—1]/2<1<2[1+8B—1], thus[ V1+83—1]/2 tor gxparjded around Fhe underlying stationary bound_ state,
is the lower bound, and R{1+88— 1] is the upper bound. again using the sho_otl_ng method. We note_that for_ this lin-
Whenp is close to the lower bound, the vector soliton is a€a71zation operator, it is easy to show thahifis an eigen-

— — value, so are—\ and \*. Thus, when\ is purely real or
wave and daughter-wave structure wh&x)<<r(x), thus purey

Mhehig) i ) imaginary, it leads to a pair of eigenvalues. Wheis truly
N/M is very small(see[8]). As p increases, functioR(X)  comple, it leads to four eigenvalues. Numerically, we only

becomes larger relative to(x), thus N/M also increases. look for discrete eigenvalues that are close to zero, as the
When p=1, we haveR(x)=r(x), so N/M=1. As p in-  eigenvalues we have obtained analytically above are of this

creases furtherR(x) becomes larger, and(x) becomes type. Altogether, we found exactly six such discrete eigen-
smaller. Wherp is close to its upper bound, the vector soli- values, all of them either purely real or purely imaginary.

ton is again a wave and daughter-wave structure, but nowhus they always come in pairs with opposite signs. This
r_(x)<§(x), thus N/M>1. We see that ap steadily in- agrees perfec_tly with the analysis. In addition, twq of thgse
creases from its lower bound to its upper bound, so does™ e|genfunct|9ns roughly have the s_hape O.f spatial deriva-
— = — . . . tives of two single-hump vector solitons pieced together.
N/M, consequentI)N{M IS an mcreasmg'funcuon qb. Of Their eigenvalues correspond to the position-related eigen-
course, we have verified this fact numerically as well.

e e i ) ) ) values =\, or ik, discussed above. The other four
SinceN/M is an increasing function gf, the determinant  ejgenfunctions roughly have the shape of two single-hump
(5.16 is positive. It is then clear from Ed5.8) that one of

)2 22 u _ T vector solitons joined together. Their eigenvalues correspond
Aph~ and Api” is positive, and the other one is negative. 1o phase-related eigenvaluesi(}) and £\ (or =ix{})

d

MwNQ—MQNfzJBW(p)d—p

N(p)

Without loss, we denotk()” as positive, and (° negative.  and =i A3)). To make a quantitative comparison, we choose
Then eigenvaluest \{}) are purely real, and- fozh) purely  5=2/3, w=1, and allow(} to take various values.

imaginary. Of the two purely real eigenvaluﬁs}\gh), one of The numerically obtained eigenvalues and the corre-
them is positive and thus unstable. The imaginary eigenvalsponding analytical eigenvalues are plotted in Figs. 3 and 4
uest)\ffh) are stable. for bound states | and Il, respectively. Note that for each

026607-10



INTERACTIONS OF VECTOR SOLITONS PHYSICAL REVIEW B4 026607

oon @ (0 (counterpart ofi)\(pzh)) and the position-related eigenvalue
(counterpart of A ) are both unstable, and the other phase-
related eigenvaluei(\f,lh)) is stable. This agrees with our
analysis. As in Fig. 3, numerical and analytical eigenvalues
agree very well except whefl is close to 1. Numerically,
the two phase-related eigenvalues drop to zerdlasl .
o \ , The reason is also simple. For type Il bound states, soliton
075 o8 fg:;ueggy s 075 o8 frggz eng—; S spacing approaches infinity &s— 1 (see_ Fig. 2 Thus thg
bound state becomes two separate single vector solitons.
FIG. 3. Discrete eigenvalues for type | stationary two-vector-Naturally the phase-related eigenvalugss well as the
soliton bound states witg=2/3, =1 and various) values.(a) position-related eigenvalueollapse to the zero eigenvalue
Stable eigenvalues, o, phase related, obtained numeri€ajlyjo-  of a single vector soliton.
sition related, obtained numerically; solid curya(3)| from for- Now, we put our results in the eigenvalue bifurcation per-
mula (5.7); dashed curvef\ | from formula (5.6); (b) unstable spective. When & 8<1, the linearization operator around
eigenvalue, *, phase related, obtained numerically; solid curvepne single-hump vector soliton has six or eight discrete ei-
INGR| from formula (5.7). genvalues(multiplicity counted, depending on whether an
internal mode exists or nafsee Refs[20,21]). The zero
case, only three of the six eigenvalues are shown, as tHdigenvalue always has multiplicity 6, three from position and
other three are simply their opposites. We also note that thehase invariances, and the other three from velocity and fre-
two solid analytical curves in Fig.(8,b and Fig. 4a,b for ~ quency (or amplitude variations. When an internal mode
|)\é2h)| and |)\é1h)|, respectively, are slightly different, even exists, two purely imaginary e|genva_1lues of opposite sign are
though they look alike. Let us consider Fig. 3 for bound present as well. _If two  vector solitons form a stationary
states | first. We see in this figure that wh@n<1, there is bound state, the' Ilnearlza_ltlon operator around this s.tate will
indeed an unstable phase-related eigenvalue that is the codf@Ve 12 or 16 discrete eigenvalugiuble that for a single
terpart ofA(}) in the analysis above. The other phase-relate%ector soliton. Now the zero eigenvalue still has multiplicity
. ) " : . Another six eigenvalues must bifurcate from the zero ei-
eigenvalue X ) and position-related eigenvalua f,) are

4 X Pos genvalue, and another four must bifurcate from the two
b‘“h stable. This agrees .W'th the theory. Qua_ntltauve COMinternal-mode eigenvalues when such modes do exist. Our
parisons between numerical and analytical eigenvalues are

excellent except whefl approaches 1. The reason for the calculations above give exactly the six eigenvalues bifur-
: P i app T cated from the zero eigenvalue. These six eigenvalues are the
disagreement whef is close to 1 is simple. Recall from

Fig. 2 that ast) approaches 1, the spacing for type | boundmOSt important as they are related to the dynamics of vector

. . solitons themselves. Our analysis did not give eigenvalues
sta_tes drops steeply. Thus our ba.S'C assumption of far S€PBiturcated from internal modg# such modes do existThe
ration betyveen the tWO. vector solitons breaks down, CONSEaason is that to obtain those eigenvalues, one has to pursue
quently disagreement is not unexpected. Interestingly, thi
disagreement is only in the phase-related eigenvalues, not
the position-related eigenvalue. In FighB the numerically
obtained unstable eigenvalue rises sharplflaapproaches
1. This is understandable since the two solitons get clos
and closer, thus a stronger instability is created.

Next we consider Fig. 4 for bound states Il. In this case

numerical results show that a phase-related eigenval

o
Q
S

* ek K

Type |

Type |

o
2
@

o
o
Q
o

Stable eigenvalues
Unstable eigenvalue
o

the perturbation theory to second ordeee Ref[19]). Since

e six nonzero eigenvalues we have obtained already reveal
the linear instability of these bound states, we do not have a
strong motivation to pursue eigenvalues bifurcated from in-
Sernal modes. Similarly, it is also possible for eigenvalues to
bifurcate from the edge of the continuous spectrum in a sta-
tionary two-vector-soliton bound state. But our instability re-
Y§ults make such calculations not compelling either.

002 il o0z © VI. INTERACTION DYNAMICS
N

o ot . . . . .
Somsp  Typell Toos|  1ypell In this section, we study interaction dynamics of two vec-
& % 53 tor solitons. In particular, we will highlight the interaction
(=) B2 . . . .
o i o oo dynamics of vector solitons, namely, repulsion or attraction
S 4005 8 0005 of vector solitons depends not only on the relative phases but
Z £ Zaea e also on the initial position separation. To restrict the scope of

005 om o5 owm 0 s o5 oo oos our discus_sion, we \_/vi_II_ consider only the interaqtion of two

frequency © frequency O vector solitons that initially have the same amplitude, polar-

FIG. 4. Discrete eigenvalues for type Il stationary two-vector- ization and velocity, but their relative phases are allowed to

soliton bound states witg=2/3, w=1, and varioud) values.(a) dlff_er by 0 or ar, and their |n|t|_al_ _separat|(_)_n is allowed to _be
Stable eigenvalue. *, phase related, obtained numerically: soli@rbitrary. In such cases, the initial conditions can be written

curve:|)\§}h)| from formula(5.7). (b) Unstable eigenvalues. o, phase as

related, obtained numericallyj, position related, obtained numeri-
cally; solid curve,|)\§,2h)| from formula (5.7); dashed curvej\ | A(X,0)=r

+r
from formula(5.6).

AXxq
Xt

AXq)
X— T e'70, (61)
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Potential V

14 16 18
separation Ax,

12

FIG. 5. Interaction potential6.4) of two vector solitons with
vo=m, 'g=0, B=2/3,w=1, and )=0.85 for various position
separationg x,.

AXg AXp)
B(x,0)=R| x+ —=|+R| x— —= elo. (6.2

Here[r(x),R(x)] is a single-hump vector solitolAx, is the
initial position separation, angly,I' are initial phase differ-
ences which are either 0 ar. For demonstration purpose,
we also take the following parameters valugs 2/3, o

PHYSICAL REVIEW E 64 026607

unstable. When x> 13.0635, two solitons repel each other;
whenAxy<<13.0635, they attract each other and collapse.

The interaction dynamics for ,,['j)=(0,0) and
(vo,I'0)=(7r,7) can be determined similarly from the po-
tential function. For §,,I"g) =(0,0), the potential is mono-
tone increasing. Thus with any initial separation, two vector
solitons attract each other and collapse. When,['()
=(mr,), the situation is just the opposite. Now the potential
is monotone decreasing. Thus two solitons always repel each
other. Interaction dynamics in these two cases is quite similar
to that in a single NLS equation.

The above interaction dynamics can be understood intu-
itively in terms of attractive and repulsive force balances in
vector-solitons’ individual components. It is well known that
in the single NLS equation, if two solitons are in ph&sero
phase differenge an attracting force exists between them; if
the solitons are out-of-phaser(phase differende a repel-
ling force exists between them. The magnitude of the attract-
ing or repelling force is proportional to the integral of prod-
uct of tail amplitudes in the overlapping region. For vector
solitons, the same picture holds. However, since vector soli-
tons have two components, the combined force of the two
components will determine if vector solitons attract or repel
each other. When soliton separation changes, so does the

=1 and(2=0.85. The single-hump vector soliton for these amount of interaction force in each component, thus the

parameters look like one half of either Figalor Fig. 1(b).

amount of combined force overall. But it is important to

For the initial conditions chosen above, the reductionealize that a change in soliton separation causes different
(3.51 holds. Thus our theory in Sec. Il predicts that this amounts of change in interaction forces of the two compo-
soliton interaction is governed by the second-order equatiofents, as soliton amplitude$x) andR(x) decay at rates

(3.52 on pulse separatiofix. This equation can be rewritten
as

(M+N)Ax,+V'(Ax)=0, 6.3
where the potential functiol'(Ax) is

V(AX)= — 16 cosy,C2we” “2*— 16 cos';C20 e~ 24X,
(6.4

and (), which are different ifo and() are differenfsee Eq.
(2.7]. This is the fundamental reason why repulsion or at-
traction of vector solitons depends not only on their relative
phases but also on their initial separation. To be more spe-
cific, let us analyze the interactiof®.1) and (6.2) for vy,

=0 andIl' == for instance. The other parametg#sw and

Q) are as chosen above, i.e., 2/3,1 and 0.85, respectively. We
have established in Sec. IV that whaAm,=Ax, =13.0635,

two vector solitons form a stationary bound state because the

For the chosen parameters, it is found numerically thakttracting and repelling forces in the two components exactly

(c,C)=(2.6592,1.1744) andM,N) = (3.4459,0.9080). Dif-

balance each other. Now if the initial soliton separation is

ferent from the single NLS equation where the interactiongreater thamAx, , the attractive force in thé component

potential is always monotonkl], potential (6.4) now can
have a local maximum or minimum when cgscosl '(<O0.

decreases more than the repulsive force inBlamponent.
As a result, the force balance is broken, and the net force

This is why in such cases a stationary two-vector-solitorbetween the two vector solitons becomes repulsive. Thus
bound state can be found. For our choice of parametersolitons will move away from each other. On the other hand,

wheny,= 7 andIl'=0, this potential is shown in Fig. 5. We
see that it has a local minimurtwhich is also its global
minimum) at Ax, =13.0635, and this minimum point is
stable. For any initial separatialix,>11.9804, the motion

if the initial separation is smaller thafix, , the attractive

force in theA component increases more than the repulsive
force in theB component. Thus the net force becomes attrac-
tive, and solitons will move toward each other. These intui-

is trapped inside the potential well, thus two vector solitonstive expectations agree entirely with the analyses above.

will oscillate around this stable minimum point. ButAfx,

Other cases can be understood in a similar way.

<11.9804, the initial potential energy would be too large so  We would like to remind the reader that the reduction
that the two vector solitons would simply separate infinitely(6.3) wheny, andI'y are 0 or# ignores phase instabilities in
apart from each other. This qualitative change in interactionhe full dynamical equation$3.43 to (3.47). In fact, the
dynamics for different initial pulse separations is a featureminimum pointAx, in the potential(6.4) is stable only to

that is not present in the single NLS equationy}f=0 and
I'p=, the potential is exactly opposite of that in Fig(&

position perturbations, but not to phase perturbations, since
we have proved in Sec. V that stationary two-vector-soliton

vertical reflection about the horizontal axighus it has a bound states are always subject to phase-related instabilities.
global maximum atAx, =13.0635. This maximum point is When initial phase perturbations are small, and the interac-
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FIG. 6. Interaction dynamics
of two vector solitons withy,
=, ['g=0, AXg=15 or 10 in the
initial condition (6.1) and (6.2).
Here B=2/3, w=1, and Q
=0.85.(a) Axy=15:|A| contour,
obtained numerically|B8| contour
is similan; (b) Axy=15: positions
of vector solitons. Solid curve: nu-
merical results; dashed curve: ana-
lytical prediction from Eq.(6.3);
(c) Axo=10: |A| contour, ob-
tained numerically;(d) Axqo=10:
positions of vector solitons. Solid
curve: numerical results; dashed
curve: analytical prediction from
Eq. (6.3). Here the two curves
overlap completely with each
other.

tion time is not very long, phase instabilities are mild. In thatFig. 6(d). In this case, the two curves completely overlap

case, the reduced modé&b.3) will describe vector-soliton
interactions very well. But if phase perturbations have accu-
mulated to a significant amount, modé.3) will break

down.

lations of Eqgs(2.1) and(2.2), using Eqs(6.1) and(6.2) as
the initial condition. First we take «,,I'g)=(7,0) and
AXy=15. The numerical results are shown in Figa)6Here
only |A| contour is shown, alB| contour is similar. As pre-
dicted, the two solitons engage in oscillational motions
around spacing\x, =13.0635. In Fig. &), we plot in solid
lines the positions of both vector solitodefined as loca-
tions of maximum/A| amplitudes$ against time. In the same

each other for all times.
Next, we take other,,I"g, andAx, values, and show in
Fig. 7 vector-soliton interactions that are obtained numeri-

cally. Here the interaction’s dependence on initial separation
All the above analytical and intuitive predictions on @s well as relative phases will be demonstrated, and similari-

vector-soliton interactions are completely supported botHies with interactions in a single NLS equation will be high-

qualitatively and quantitatively by our full numerical simu- lighted. In each case, numerical results and the analysis

based on the reduced mod6l3) agree completely when the
two solitons are well separated. Thus analytical results will
not be shown. In Fig. (&), we took (yy,['g)=(0,7), AXg

=15, and found that the solitons repel each other and escape.
In Fig. 7b, we took §q,I'g) =(0,7), Axy=10, and found
that the solitons attract each other and collapse. After col-
lapse, the two solitons reemerge and separate. In Fig. 7c,
(70.'0)=(0,0) andAxy=10 were taken. The solitons at-
tract each other and collapse. But here, after collapse, the

figure, positions of vector solitons obtained from the reducedyyq solitons merge into one instead of reemerging and sepa-
model (6.3) are also shown for comparison. The numericalrating. In Fig. 7d, ¢/9,I'o) = (r,7) andAx,= 10 were taken.

and analytical curves completely overlap with each other unThe solitons repel each other and escape. Interaction dynam-

til t=4600. The reason for deviation after4600 is simply

ics in Figs. 6 and (&,b shows that vector-soliton interac-

the development of phase instabilities which we have mentions depend critically on the initial position separation as
tioned above. This phase instability was ignored in the rewell as on relative phases. Interaction dynamics in Fig.
duced mode(6.3). But in the numerical solution, numerical 7(c,d) resembles that in a single NLS equation, as the rela-
error triggers this instability and causes the relative phases itive phases in thé andB components here are of the same
the A and B components to move away from their initial value, thus repelling or attracting forces in the two compo-
values and 0. This change in relative phases eventualljhents combine instead of canceling each other.

leads to the repulsion of solitons as seen in Fig).Next,

More studies on interaction of vector solitons are needed.

we still take (yo,I'g) =(7,0) but choose the initial separa- For instance, one can take as initial conditions two vector
tion Axq=10. In this case, our analysis above predicts thakolitons with different amplitudes, or phase differences other
the two vector solitons would repel each other. This is conthan 0 andw. In such cases, one would need to investigate
firmed by our numerical solutions shown in Figc6 Acom-  the full ODE model(3.43 to (3.47) instead of the reduced
parison between the numerical vector-soliton positions anéne (6.3). But these studies lie outside the scope of the
analytical predictions by the reduced mo@&B) is shown in  present paper.
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VII. INTERACTION OF N VECTOR SOLITONS

Lastly, we briefly discuss the interaction of three or more
vector solitons. Such interactions can be investigated by ex-
tending our two-soliton interaction results. Suppose we have
N vector solitons with frequenciesof, ), velocitiesV,,
positionsx,, and phasesy, I'y), where I =<k<N. Define
averaged variables

13 1 1
w_nglwk' Q_nglgk' V:nglvk'
(7.
and difference variables
Aoy= oy~ ok, A==y,
AVi=Vy1— Vi, (7.2
Ane=yr1— v ADED =T, AXe= X1 =Xy,

(7.3

1 1
A¢k:_§VAXk+A7k' A®k:_§VAXk+AFk:
(7.9

M wA wkt+ M QAth: 40)C2|: —e @AXk—1 SinA d)k,]_
+2e “ksinA ¢y

—e “1sinAdy, 4], (7.6

N, Aw+NoAQ,=40CH —e M X-15inAd,_,
+2e I %%sinAd,

—e MMXa1ginAd, 4],

(7.7

(M+N)AV,=8[ w’c?e™ “**-1coSA ¢, _1
+02C2%e %-1c0sA P, _,]
—16 w?c?e” Yk cosA ¢y
+02C?%e X cosAd, ]
+8[ w?c?e” “Ak+1CcoSA ¢y 4 1

+02C%e M %+1c0sA D, 4], (7.9

Ath=AVk, (79)
Aq‘)kt:Za)Awk, (71@
A(I)kIZZQAQk, (711)

where I=k<N-—1. Then under the adiabatic assumptionswhere 1<k<N-1. Component massed(w,Q) and

similar to Eq.(3.12), we readily derive the following evolu-
tion equations for thé\ vector solitons:

wI:QI:Vt:O’ (75)

026607-14

N(w,Q) are defined in Eq(2.33, tail coefficientsc and C
are defined in Eq(2.7), and conventions

e wAXg — efﬂAxO: e WAXN — efﬂAxN: 0

(7.12
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have been used. Similar to the two-vector-soliton case, dy- |A] contour
namical equation$7.6) to (7.11) also allow the reduction 300

250
Awk=AQk=0, A¢k:0 or, A(Dk=0 or,
200

1sk=sN-1. (7.13 + 150

\ \ Yy

N
7 W
0
X

FIG. 8. An interesting interaction dynamics of three vector soli-

Then those equations reduce to 100
50

(M +N)AXy = 8] w?c?e™ “*-1CcoSA ¢y_ 1
+02C% %%-1cosAD,_4]

— 16 w?c?e” “A*kcosA ¢y

0
-40 -20 20 40

+02C2e X cosA D tons. Shown here is thg\| contour. The initial condition is Egs.
d (717 and (7.18, where 8=2/3, w=1, Q=2/3, x=—11,

+8[ w?c?e” M1 coSA ¢y 1 X =15, 90=0, y;o=m, I'jp=, andl';,=0.

+02C%™ ¥ 1c0sA D 4]. after collapse of the left two solitons, our perturbation analy-

(7.14 sis completely fails. Beyond that point, we see more inter-
esting interaction dynamics.

This reduced equatiofas well as the full dynamical equa-
tions (7.6) to (7.11)] allows fixed points where VIIl. DISCUSSIONS

(7.15 In summary, we have studied the interaction of two vector
' solitons in the coupled NLS equatioson-Manakoy. Un-
der the assumption that the two vector solitons have nearly
the same amplitudes, polarizations, velocities, and are sepa-
22 2 0 rated far apart, we derived the dynamical equations for both
InQ°C—Inw-c ; . :
(7.16  Solitons’internal parameters. These equations reveal the ex-
Q- istence of stationary two-vector-soliton bound states when
one of the vector-soliton’s two components changes sign.
for 1I<sk<N—1. These fixed points correspond to stationaryBut these bound states are shown to be linearly unstable due
N-vector-soliton bound states. E7.15 indicates that in  to a phase-related unstable eigenvalue. Study of the interac-
these bound states, neighboring vector solitons must have thign shows that, in contrast to the single NLS equation, vec-
same phase in one componésame sigh and7-phase dif-  tor solitons repel or attract each other depending not only on
ference in the other compone(dpposite sigh just as the the relative phases but also on the initial position separation.
two-vector-soliton case. We note that thééeector-soliton  This fact was explained heuristically by considering force
bound states have been constructed before in[Rg¢by an  balances in vector solitons’ two components. We also pre-
asymptotic tail matching technique. The matching conditionssented dynamical equations for the interaction of an arbitrary
and soliton spacing given in RgB] are the same as above. number of vector solitons. We showed that these solitons can
Linear stability of these stationary bound states can be detegiso form stationary bound states, but these states are linearly
mined by examining the stability of fixed poin{g.13, unstable as well.
(7.19, and(7.16 in the evolution equationé’.6) to (7.11). One question about the dynamical equatid8s43 to
Not surprisingly, we find these states to be always linearly(3.47), or (7.6) to (7.11) in general, is whether they can be
unstable due to phase instabilities. Interaction dynamics ofast as a complex Toda systénoupled to another equation
multiple vector solitons is richer than that of two vector soli- perhaps since we have six equations heF®r the single
tons. One interesting example is shown in Fig. 8 for a threeNLS case, this was possible by defining the complex variable
vector-soliton interaction. The parameter values are gtill as a combination of position separation and phase difference
=2/3, o=1 andQ=0.85. The initial condition is (see Refs[15,23). Inspection of Eqs(3.43 to (3.47) sug-
. , gests that in the present case, this is not possibl@#0 or
A(x,0)=r(x—x))e"o+r(x)+r(x—x,)e'”0, (7.17 1 (nonintegrable cageThe reason is that in order for a com-
plex Toda system to exist, coefficients in the dynamical
B(x,0)=R(x—x)e'"10+R(x)+R(x—x,)e'ro, equations must satisfy certain compatibility conditions.
(7.189  These conditions are not likely to be satisfied by H§43
to (3.47), or (7.6) to (7.11). This claim is consistent with the
where {,R) is the single-hump vector solitom;=—11, X, results for generalized NLS equations where the complex
=15, y,0=0, y, o=, I')x=m, andI',;=0. We see that in Toda chain reduction was found only for the integrable NLS
the initial stage, the interaction of these solitons can still beequation[24]. It is likely that the Manakov modeB=1 can
understood by considering them as pair-pair interactions. Bullow such reductions. But our dynamical equations do not

COSA ¢ COSAD, = —1,

and

Ax=Ax, =

026607-15
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apply to the Manakov model directly. Derivation of dynami- and (2.2). When phase invariance is broken in a wave sys-

cal equations for the interaction of Manakov solitons will betem, then it becomes possible for stationary multipulse

pursued elsewhere. bound states to be actually stable. Such an example has been
One of the main results of this paper is the proof of linearfound in Ref.[25].

instability of stationary multivector-soliton bound states. The

reason fqr this instability is I_a_rgely due to phase-related un- ACKNOWLEDGMENTS
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