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Interactions of vector solitons

Jianke Yang*
Department of Mathematics and Statistics, University of Vermont, 16 Colchester Avenue, Burlington, Vermont 05401

~Received 25 January 2001; published 18 July 2001!

In this paper, we study the interaction of two widely separated vector solitons in the nonintegrable coupled
nonlinear Schro¨dinger ~NLS! equations. Using a modification of Karpman-Solov’ev perturbation method, we
derive dynamical equations for the evolution of both solitons’ internal parameters. We show that these dynami-
cal equations allow fixed points that correspond to stationary two-vector-soliton bound states if these solitons
have the same phase in one component~same sign! andp-phase difference in the other component~opposite
sign!. However, linear stability analysis indicates that these bound states are always unstable due to a phase-
related unstable eigenvalue. We also investigate vector-soliton interactions and show that, in contrast to soliton
interactions in the single NLS equation, vector solitons repel or attract each other depending not only on their
relative phases but also on their initial position separation. Lastly, interaction of an arbitrary number of vector
solitons is also studied in brief. All our analytical results are supported by direct numerical simulations.
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I. INTRODUCTION

Optical fiber communications are advancing very rapi
both in lab experiments and in field installations nowada
One of the major transmission formats is to use optical s
tons as information bits. For each optical soliton, dispers
is balanced by fiber nonlinearity, thus the pulse can trans
without change of shape. However, when the bit rates
pushed very high, the tail interaction between adjacent pu
becomes non-negligible. This tail interaction causes a p
to drift away from its expected position, a phenomen
called timing jitter in the optics literature. This timing jitte
leads to signal detection error at the receiver end, an
detrimental to system performance. Motivated by its phys
application, pulse-pulse interactions have been studied in
sively in the past 20 years. Most of these studies used
nonlinear Schro¨dinger ~NLS! equation model, which is ap
propriate when fiber birefringence is neglected. In suc
case, it has been shown that when two equal-amplit
pulses are inphase~zero phase difference!, they attract each
other. When they are out-of-phase (p-phase difference!, they
repel each other. These results are confirmed experimen
in both optical fibers and photorefractive waveguides@1–3#.
The interference between pulses can be reduced if pu
have different amplitudes~a quasistationary two-pulse boun
state can be formed! @1,4,5#, but it can never be eliminated
i.e., two pulses can never form a perfectly stationary bou
state. In real optical fibers, birefringence is an intrinsic pro
erty and cannot be simply neglected. When fiber birefr
gence is taken into consideration, pulse propagation is a
ally governed by two coupled NLS equations@6#. In this
case, each pulse generally consists of two polarization c
ponents that trap each other through nonlinear Kerr effe
Such a pulse is called a vector soliton in the optics literatu
We note that a ‘‘vector soliton’’ here is just a solitary wav
solution, not a soliton in the strict mathematical sense. A n
phenomenon in the coupled NLS equations is that two ve
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solitons can form a perfectly stationary bound state if th
have the same phase in one component andp-phase differ-
ence in the other component. Physically, stationary tw
vector-soliton states can be formed because the attrac
force in the in-phase polarization balances the repelling fo
in the out-of-phase polarization@7#. The existence of such
stationary bound states was first established through num
cal means by Haeltermanet al. @7# ~see also@8#!. The ana-
lytical construction of such bound states was first achie
by Yang by an asymptotic tail-matching method@9#. In that
work, the spacing between vector solitons in a station
configuration was obtained explicitly. Similar results we
reproduced later in Ref.@10# by dynamical system tech
niques. Experimentally, stationary two-vector-soliton sta
have been observed in photorefractive materials@11#.

One important open question is the stability of stationa
two-vector-soliton bound states. A more general questio
the dynamics of interacting vector solitons. We note that
experimental observation of stationary two-vector-solit
states in Ref.@11# does not necessarily imply the stability o
such states. The reason is that the propagation distanc
that experiment was relatively short, thus weak instabi
would not have been detected. In Ref.@10#, a special class of
stationary two-vector-soliton bound states where each ve
soliton has nearly 45° polarization was considered briefly
was claimed that such states were linearly unstable, but
result was not substantiated. In the works@12,13#, slightly
different physical systems where the phase birefringence
weak or the nonlinearity was saturable were considered
the former case, two-soliton bound states were found line
unstable due to symmetry-breaking instability. In the lat
case, linearly stable multihump solitons were discovered

In this work, we study the interaction of two widely sep
rated vector solitons that have nearly the same amplitu
polarizations, and velocities. However, the common polari
tion of the two solitons is arbitrary~not restricted to 45°
angles!, so are the relative phases between them. As a spe
case, we will analytically reestablish the existence of stati
ary two-vector-soliton bound states and determine their
bility properties. The method we will use is a modification
©2001 The American Physical Society07-1
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JIANKE YANG PHYSICAL REVIEW E 64 026607
the Karpman-Solov’ev technique@14# ~see also Gorshkov
and Ostrovsky@15#!. We first derive the dynamical equation
for each vector-soliton’s velocity, amplitude, position, a
phase parameters. Then we show that these dynamical e
tions allow fixed points, which correspond to stationary tw
vector-soliton bound states. There are two geometrically
tinctive stationary bound states: one is that the larg
amplitude components of the two vector solitons are
phase, and the smaller-amplitude components are ou
phase; the other one is that the larger-amplitude compon
are out-of-phase, and the smaller-amplitude components
in phase. These results reproduce those in Refs.@7–9#, which
were obtained differently. Next, we show that both these
tionary bound states are linearly unstable. However, th
instability characteristics are different. For the stationa
bound state whose larger-amplitude components are
phase, there are two unstable~purely real! eigenvalues,
which are position- and phase related, respectively. But
the bound state whose larger-amplitude components are
of-phase, there is only one unstable eigenvalue which
phase related. The position-related eigenvalues are
stable. Next, we discuss the full interaction dynamics of t
vector solitons. We show that, in contrast to the single N
equation, repulsion or attraction of two vector solitons d
pends not only on their phase differences, but also on t
initial position separation. This can be understood intuitiv
by considering the attracting and repelling forces in vec
solitons’ two components. Lastly, we study the interaction
an arbitrary number of vector solitons. We present the
namical equations for these solitons’ internal parameters,
show that stationary bound states can be formed as we
neighboring solitons have the same phase in one compo
andp-phase difference in the other component, just like
two-vector-soliton case. But these bound states are also
early unstable. All our analytical results are confirmed b
qualitatively and quantitatively by the direct numerical sim
lations.

We emphasize that the modification of the Karpman a
Solov’ev method as used in this paper does not depend
the integrability of the underlying wave equation. The k
requirements are just that:~1! each individual pulse is lin-
early stable;~2! all pulses are nearly identical, moving
nearly the same velocities, and widely separated; and~3! the
internal modes and radiation modes generated by tail-tai
teractions are negligible. These requirements are satisfie
many integrable and nonintegrable equations in addition
the coupled NLS equations considered in this paper. T
our generalized method can be widely applied for the st
of pulse-pulse interactions.

The structure of this paper is arranged as follows. In S
II, we develop a one-vector-soliton perturbation theo
which is the foundation for the study of vector-soliton inte
actions. In Sec. III, we derive dynamical equations for int
nal parameters of two interacting vector solitons. In Sec.
we reestablish the existence of stationary two-vector-sol
bound states by examining the dynamical equations of in
acting vector solitons. In Sec. V, we show that the station
two-vector-soliton bound states are linearly unstable. In S
VI, we study the full interaction dynamics of two vecto
02660
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solitons and show that, with the same phase differences,
vector solitons can repel or attract each other for differ
initial position separations. In Sec. VII, we extend the resu
to an arbitrary number of vector solitons. Sec. VIII summ
rizes all the results, and makes some general comment
lated to our results.

II. ONE-VECTOR-SOLITON PERTURBATION THEORY

The coupled NLS equations are

iAt1Axx1~ uAu21buBu2!A50, ~2.1!

iBt1Bxx1~ uBu21buAu2!B50, ~2.2!

whereA andB are complex amplitudes of the electrical field
in the two orthogonal polarizations of an optical fiber, andb
is the cross-phase modulational coefficient@6#. For linearly
birefringent fibers,b52/3. If the birefringence is elliptic,b
can take other values@16#. In a wavelength-division-
multiplexed system,b52 ~see@1,2#!. If b50, the system
becomes two decoupled NLS equations; ifb51, it is called
the Manakov model. In both cases, the system is integra
@17,18#. For otherb values, it is nonintegrable. In this article
we allow b to be an arbitrary non-negative value except
i.e., we consider the general non-Manakov case.

Vector solitons of Eqs.~2.1! and ~2.2! have the genera
form,

A5r ~x2Vt2x0!expF i
V

2
~x2Vt2x0!

1 i S v21
V2

4 D t2 ig0G , ~2.3!

B5R~x2Vt2x0!expF i
V

2
~x2Vt2x0!

1 i S V21
V2

4 D t2 iG0G , ~2.4!

wherev andV are frequency parameters,V is the velocity,
x0 is the initial position, andg0 andG0 are phase constants
Without loss, we takev andV as positive numbers. Due t
phase, position and Galilean invariances of Eqs.~2.1! and
~2.2!, the vector-soliton parametersV,x0 ,g0 and G0 are all
arbitrary and can be normalized to be zero. But if one ne
to study vector-soliton evolution under perturbations
vector-soliton interactions, all these parameters must be
as variables as they will not be constants anymore~see later
in this section and Sec. III!. Amplitude functionsr (x) and
R(x) can be made entirely real due to phase invariance
Eqs.~2.1! and~2.2!. Then these real amplitude functions sa
isfy the following ordinary differential equations~ODEs!:

r xx2v2r 1~r 21bR2!r 50, ~2.5!

Rxx2V2R1~R21br 2!R50. ~2.6!
7-2
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INTERACTIONS OF VECTOR SOLITONS PHYSICAL REVIEW E64 026607
Solutions to Eqs.~2.5! and ~2.6! have been studied exten
sively before~see@8# and the references therein!. It has been
shown that for any frequency pair (v,V) with V/v lying
inside the interval (@A118b21#/2, 2/@A118b21#) and
bÞ1, this ODE system has a unique single-hump vec
soliton solution that is symmetric in bothr and R compo-
nents. Thus we can use (v,V) to characterize this uniqu
single-hump solution. The asymptotic behavior of this so
tion at infinity is

r ~x!→ce2vuxu, R~x!→Ce2Vuxu, uxu→`, ~2.7!

wherec andC are tail coefficients. Whenb51, the interval
@(A118b21)/2, 2/(A118b21)# shrinks to a single
point 1. In this case, a single-hump vector soliton exists o
whenv5V, but the polarization of this vector soliton is no
arbitrary due to a rotational symmetry. Consequently, the
rameters to characterize Manakov solitons arev and polar-
ization, rather than (v,V). In this article, we study the inter
action of single-hump vector solitons in non-Manak
systems. Thus we use (v,V) to characterize each vecto
soliton during their interaction. Similar analysis can be do
for the interaction of Manakov solitons, but the formulatio
needs a little modification. The ODE system~2.5! and ~2.6!
also supports many multihump vector-soliton solutions@8#.
But we are not interested in the tail interaction of such vec
solitons since evidence shows that they are all linearly
stable@8#.

When two vector solitons are placed next to each oth
they will interact due to tail overlapping. This pulse-pul
interaction has been studied intensively for the NLS equa
and sine-Gordon equation, among others. The basic ide
Karpman and Solov’ev@14# ~also Gorshkov and Ostrovsk
@15#! is that, this tail overlapping acts as a small perturbat
to each individual pulse. This perturbation causes each p
to evolve adiabatically on a slow time scale. The radiat
generated by the perturbation is small and negligible. In
article, we are going to use this idea to study vector soli
interactions. Since this idea critically depends on the per
bation theory for a single pulse, we will first develop th
theory for a perturbed vector soliton in the remainder of t
section.

Consider the perturbed coupled NLS equations

iAt1Axx1~ uAu21buBu2!A5eF, ~2.8!

iBt1Bxx1~ uBu21buAu2!B5eG, ~2.9!

where functionsF and G are perturbation terms, ande is a
small parameter. Without perturbations, the vector soli
~2.3! and ~2.4! is an exact solution, and its internal param
etersv,V,V,x0 ,g0, andG0 are constants. When the pertu
bation is turned on, this vector soliton will evolve slowly o
the time scaleT5et. The multiple-scale perturbation theor
for this kind of evolution is well known~see@19#, for in-
stance!. We write the perturbed solution as

A5 r̂ ~u,t,T!eiVu/21 ig, B5R̂~u,t,T!eiVu/21 iG,
~2.10!
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u5x2E
0

t

Vdt2x0 , ~2.11!

g5E
0

t

~v21V2/4!dt2g0 , G5E
0

t

~V21V2/4!dt2G0 .

~2.12!

Here velocityV, frequency parametersv, V, initial position
x0, initial phasesg0 andG0 are all functions of slow timeT.
This slow time evolution can be determined when we pur
the perturbation theory to ordere. This will be done next.

We first substitute Eq.~2.10! into the evolution equations
~2.8! and ~2.9!. Then equations forr̂ and R̂ are found to be

i r̂ t1 r̂ uu2v2r̂ 1~ u r̂ u21buR̂u2! r̂

5eF̄2eF i r̂ T2 ix0Tr̂ u1S 1

2
Vx0T2

1

2
VTu1g0TD r̂ G ,

~2.13!

iR̂t1R̂uu2V2R̂1~ uR̂u21bu r̂ u2!R̂

5eḠ2eF iR̂T2 ix0TR̂u1S 1

2
Vx0T2

1

2
VTu1G0TD R̂G .

~2.14!

Here

F̄5Fe2 iVu/22 ig, Ḡ5Ge2 iVu/22 iG. ~2.15!

We now expand amplitude functionsr̂ and R̂ into a pertur-
bation series:

r̂ 5r ~u;v,V!1e r̃ 1O~e2!, ~2.16!

R̂5R~u;v,V!1eR̃1O~e2!. ~2.17!

At the zeroth order, functionsr and R just need to satisfy
Eqs. ~2.5! and ~2.6!, and we take them as a single-hum
vector soliton. At ordere, equations forr̃ and R̃ can be
written as

i Ct1LC5W. ~2.18!

Here
7-3
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L5S ]uu2v212r 21bR2 r 2 brR brR

2r 2 2]uu1v222r 22bR2 2brR 2brR

brR brR ]uu2V212R21br 2 R2

2brR 2brR 2R2 2]uu1V222R22br 2

D , ~2.19!

C5~ r̃ , r̃ * ,R̃,R̃* !T, ~2.20!

W5~W1 ,2W1* ,W2 ,2W2* !T, ~2.21!
u

en

v

ig

oc

e

va

al
six

r
f

ts
re-
the superscript ‘‘T’’ represents the matrix transpose, the s
perscript ‘‘*’’ represents the complex conjugate,

W15F̄02F ir T2 ix0Tr u1S 1

2
Vx0T2

1

2
VTu1g0TD r G ,

~2.22!

W25Ḡ02F iRT2 ix0TRu1S 1

2
Vx0T2

1

2
VTu1G0TDRG ,

~2.23!

and functionsF̄0 and Ḡ0 are justF̄ and Ḡ evaluated atA
5r (u)eiVu/21 ig andB5R(u)eiVu/21 iG. In order for the per-
turbation theory to hold, functionsF̄0 andḠ0 must be slowly
varying with time.

OperatorL has three discrete eigenstates with zero eig
value:

C15~r ,2r ,0,0!T, ~2.24!

C25~0,0,R,2R!T, ~2.25!

C35~r u ,r u ,Ru ,Ru!T. ~2.26!

These eigenstates are related to the phase and position in
ances of the vector soliton solution~2.3! and~2.4!. Operator
L also has three generalized eigenstates for the zero e
value:

F15~r v ,r v ,Rv ,Rv!T, ~2.27!

F25~r V ,r V ,RV ,RV!T, ~2.28!

F35~ur ,2ur ,uR,2uR!T. ~2.29!

These generalized states are related to amplitude and vel
variations of the vector soliton~2.3! and ~2.4!. In addition,

LF152vC1 , LF252VC2 , LF352C3 .
~2.30!

In order for the inhomogeneous solutionC of the first-
order equation~2.18! to be non-secular at large time, th
inhomogeneous term in Eq.~2.18! must be orthogonal to the
above eigenstates and generalized eigenstates of eigen
zero, i.e.,

^W,Ck&5^W,Fk&50, k51,2,3. ~2.31!
02660
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Here the inner product is defined as

^ f ,g&5E
2`

`

f T diag~1,21,1,21!gdu, ~2.32!

where ‘‘diag ~.!’’ represents a diagonal matrix with diagon
elements inside the parentheses. Evaluating the above
integrals in Eq.~2.31!, the slow-time evolution equations fo
x0 ,g0 ,G0 ,V,v andV will be obtained. Defining masses o
the unperturbed vector-soliton’s two components as

M ~v,V!5E
2`

`

r 2~u;v,V!du,

N~v,V!5E
2`

`

R2~u;v,V!du, ~2.33!

these evolution equations can be written as

dM

dT
52E

2`

`

r Im~ F̄0!du, ~2.34!

dN

dT
52E

2`

`

R Im~Ḡ0!du, ~2.35!

~M1N!
dV

dT
54E

2`

`

Re~r uF̄01RuḠ0!du, ~2.36!

~M1N!vV
dx0

dT
12Mv

dg0

dT
12Nv

dG0

dT

54E
2`

`

Re~r vF̄01RvḠ0!du, ~2.37!

~M1N!VV
dx0

dT
12MV

dg0

dT
12NV

dG0

dT

54E
2`

`

Re~r VF̄01RVḠ0!du, ~2.38!

~M1N!
dx0

dT
52E

2`

`

Im~urF̄ 01uRḠ0!du. ~2.39!

Here ‘‘Re’’ and ‘‘Im’’ represent the real and imaginary par
of a complex number. These six equations are the main
7-4
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INTERACTIONS OF VECTOR SOLITONS PHYSICAL REVIEW E64 026607
sults of the single-vector-soliton perturbation theory. Th
will be critical for the development of vector-soliton intera
tion theory in the next section. We note that in the abo
analysis, we have focused on the evolution of the vec
soliton itself under perturbations. We have not paid any
tention to the radiation that is generated by the perturbat
nor have we considered the internal modes of operatorL that
can also be excited by perturbations~the existence of interna
modes for vector solitons has been extensively studied
@20,21#!. This is legitimate for weak perturbations, as rad
tion and internal modes in that case are indeed small
negligible.

III. VECTOR-SOLITON INTERACTIONS

In this section, we study the interaction of two vect
solitons that have nearly the same amplitudes, polarizat
and velocities, and are separated far apart. Here the tail o
lapping can be considered as a small perturbation, wh
causes each vector soliton to evolve on a slow time scaleet.
Heree is the magnitude of tail overlapping, which is exp
nentially small with soliton spacing. For convenience,
will not introducee explicitly in the analysis below. But we
do need to distinguish between fast variables and slow v
ables as in Sec. II.

As the leading order approximation, the solution is a
perposition of two widely separated vector solitons:

A5A11A2 , B5B11B2 , ~3.1!

where

Ak5r k~uk ,t !exp@ iVkuk/21 igk#,

Bk5Rk~uk ,t !exp@ iVkuk/21 iGk#, ~3.2!

uk5x2xk , xk5E
0

t

Vkdt1xk0 , ~3.3!

gk5E
0

t

~vk
21Vk

2/4!dt2gk0 , Gk5E
0

t

~Vk
21Vk

2/4!dt2Gk0 .

~3.4!

For the convenience of description, we put the first pulse
the left side, and the second pulse on the right side, i.e.x1
,x2. Now we substitute Eq.~3.1! into the original system
~2.1! and ~2.2!. Since the two solitons are widely separate
collecting terms that are the dominating contribution to
evolution of each pulse, we can split Eqs.~2.1! and~2.2! into
two systems, one for each pulse:

iAkt1Akxx1~ uAku21buBku2!Ak5Fk , ~3.5!

iBkt1Bkxx1~ uBku21buAku2!Bk5Gk , ~3.6!

where

Fk522uAku2A32k2Ak
2A32k* 2b~AkBkB32k* 1AkBk* B32k

1uBku2A32k!, ~3.7!
02660
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Gk522uBku2B32k2Bk
2B32k* 2b~BkAkA32k* 1BkAk* A32k

1uAku2B32k!, ~3.8!

andk51,2. Note that termsFk andGk are due to tail over-
lapping of the two vector solitons. These terms now act
perturbations on each vector soliton, as Eqs.~3.5! and ~3.6!
indicate. This idea has been mentioned before in this arti

To proceed further, we need to recall our assumptio
which are that the two vector solitons have nearly the sa
amplitudes, polarizations and velocities, and are separ
far apart. With the notations

v[~v21v1!/2, V[~V21V1!/2, V[~V21V1!/2,

~3.9!

Dv[v22v1 , DV[V22V1 , DV[V22V1 ,

~3.10!

and

Dg[g22g1 , DG[G22G1 , Dx[x22x1 ,
~3.11!

these assumptions are simply

uDvu!v, uDVu!V, uDVu!uVu, vDx@1,

VDx@1, uDvDxu!1, uDVDxu!1. ~3.12!

SinceuDVu!uVu, we get

~V2u22V1u1!/2'2VDx/2. ~3.13!

Then applying the single vector-soliton perturbation theo
of Sec. II to Eqs.~3.5! and ~3.6!, we obtain the dynamica
equations for each vector-soliton’s internal parameters a

dMk

dt
52~21!k11E

2`

`

r k~r k
21bRk

2!r 32kdx

3sin~VDx/22Dg!, ~3.14!

dNk

dt
52~21!k11E

2`

`

Rk~Rk
21br k

2!R32kdx

3sin~VDx/22DG!, ~3.15!

~Mk1Nk!
dVk

dt
54E

2`

`

r k~r k
21bRk

2!r 32k,xdx

3cos~VDx/22Dg!

14E
2`

`

Rk~Rk
21br k

2!R32k,xdx

3cos~VDx/22DG!, ~3.16!
7-5



b

ie
-

ou

ter
rs

-

qs.
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~Mk1Nk!vk
Vk

dxk0

dt
12Mk,vk

dgk0

dt
12Nk,vk

dGk0

dt

524E
2`

`

@r k~r k
21bRk

2!#vk
r 32kdx cos~VDx/22Dg!

24E
2`

`

@Rk~Rk
21br k

2!#vk
R32kdx cos~VDx/22DG!,

~3.17!

~Mk1Nk!Vk
Vk

dxk0

dt
12Mk,Vk

dgk0

dt
12Nk,Vk

dGk0

dt

524E
2`

`

@r k~r k
21bRk

2!#Vk
r 32kdx cos~VDx/22Dg!

24E
2`

`

@Rk~Rk
21br k

2!#Vk
R32kdx cos~VDx/22DG!,

~3.18!

~Mk1Nk!
dxk0

dt

52~21!k11E
2`

`

~x2xk!r k~r k
21bRk

2!r 32kdx

3sin~VDx/22Dg!12~21!k11E
2`

`

~x2xk!Rk

3~Rk
21br k

2!R32kdx sin~VDx/22DG!. ~3.19!

Here k51 and 2. The above dynamical equations can
simplified greatly. First, recall thatr k andRk satisfy the or-
dinary differential equations~2.5! and ~2.6!. In addition, the
tail behavior of the vector soliton with averaged frequenc
(v,V) is given by Eq.~2.7!. Then, in view of the assump
tions ~3.12!, the integrals in Eqs.~3.14!, ~3.15!, and ~3.16!
can be calculated explicitly~to the leading order!. For in-
stance,

E
2`

`

r 1~r 1
21bR1

2!r 2dx5E
2`

`

~v2r 2r xx!cev(x2Dx)dx

5ce2vDx@vrevx2r xe
vx#2`

`

52vc2e2vDx. ~3.20!

In this calculation, integration by parts has been carried
Similarly, we can show that

E
2`

`

r k~r k
21bRk

2!r 32kdx52vc2e2vDx, ~3.21!

E
2`

`

Rk~Rk
21br k

2!R32kdx52VC2e2VDx, ~3.22!
02660
e
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E
2`

`

r k~r k
21bRk

2!r 32k,xdx5~21!k112v2c2e2vDx,

~3.23!

and

E
2`

`

Rk~Rk
21br k

2!R32k,xdx5~21!k112V2C2e2VDx.

~3.24!

Further simplification of Eqs.~3.14!, ~3.15!, and ~3.16! can
be achieved if we derive dynamical equations for parame
differencesDv, DV, and DV instead of these paramete
themselves. For this purpose, we notice from Eqs.~3.14! and
~3.21! that, to leading order,

~M11M2! t50, ~3.25!

~M22M1! t528vc2e2vDx sin~VDx/22Dg!.
~3.26!

Then, since

Mkt5Mv~vk ,Vk!vkt1MV~vk ,Vk!Vkt , k51,2,

~3.27!

and

vk5v1~21!kDv/2, Vk5V1~21!kDV/2, k51,2,

~3.28!

Eqs.~3.25! and ~3.26! become

Mvv t1MVV t50, ~3.29!

and

MvDv t1MVDV t528vc2e2vDx sin~VDx/22Dg!.

~3.30!

Here partial derivativesMv and MV are evaluated at aver
aged frequencies (v,V). Similar calculations show that

Nvv t1NVV t50, ~3.31!

NvDv t1NVDV t528VC2e2VDx sin~VDx/22DG!,

~3.32!

Vt50, ~3.33!

and

~M1N!DVt5216@v2c2e2vDx cos~VDx/22Dg!

1V2C2e2VDx cos~VDx/22DG!#.

~3.34!

We note that Eqs.~3.29! and ~3.31! are equivalent to

v t5V t50. ~3.35!

To simplify Eqs.~3.17!, ~3.18!, and~3.19!, we notice that
the two vector solitons are nearly identical@see assumptions
~3.12!#. Thus, to leading order, the right-hand sides of E
7-6
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~3.17!, ~3.18! and~3.19! are the same fork51 and 2. From
Eqs.~3.3! and ~3.4!, we see that

xk0t5xkt2Vk , gk0t5vk
21

1

4
Vk

22gkt ,

Gk0t5Vk
21

1

4
Vk

22Gkt . ~3.36!

We also know that

Vk5V1~21!kDV/2. ~3.37!

Then equating the left-hand sides of Eqs.~3.17!, ~3.18!, and
~3.19! for k51 and 2, these equations simplify to

dDx

dt
5DV, ~3.38!

dDg

dt
5

1

2
VDV12vDv, ~3.39!

and

dDG

dt
5

1

2
VDV12VDV. ~3.40!

Now, we summarize the evolution equations for vect
soliton parameters after the above simplifications. If we
troduce two new notations:

Df52
1

2
VDx1Dg, DF52

1

2
VDx1DG,

~3.41!

the final evolution equations can be deduced from E
~3.29! to ~3.40! as follows:

v t5V t5Vt50, ~3.42!

FMv MV

Nv NV
GF Dv t

DV t
G5F 8vc2e2vDx sinDf

8VC2e2VDx sinDF
G , ~3.43!

~M1N!DVt5216~v2c2e2vDx cosDf

1V2C2e2VDx cosDF!, ~3.44!

Dxt5DV, ~3.45!

Df t52vDv, ~3.46!

DF t52VDV. ~3.47!

We remind the reader thatM (v,V) andN(v,V) are a vec-
tor soliton’s two component masses defined in Eq.~2.33!,
andc andC are tail coefficients of a vector soliton defined
Eq. ~2.7!.

Dynamical equations~3.42! to ~3.47! are the main results
of this paper. They completely determine the evolution
two vector solitons under tail interactions. Equation~3.42!
indicates that the averaged frequencies~or equivalently, am-
02660
-
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s.

f

plitude and polarization! and velocity of the two vector soli-
tons remain unchanged during this interaction. The para
eter differences are governed by Eqs.~3.43! to ~3.47!.

Whenb50, system~2.1! and ~2.2! becomes two decou
pled NLS equations. Therefore, the dynamical equati
~3.42! to ~3.47! should reproduce those for the single NL
equation as a special case. This is true indeed. We note
whenb50,

r ~x!5A2v sechvx, R~x!5A2V sechVx. ~3.48!

Thus

M54v, N54V, ~3.49!

and

c52A2v, C52A2V. ~3.50!

When these relations are substituted into dynamical eq
tions ~3.42! to ~3.47!, we find that those equations can b
split into two independent sets of equations. Each set
equations governs the evolution of a NLS soliton, and th
are precisely the ones derived by Karpman and Solov’ev@14#
and Gorshkov and Ostrovsky@15# ~see also@1#!. Thus our
results reproduce the previous ones as a special case. Bu
results are much more general, applying to any cross-ph
coupling coefficientbÞ1. Whenb51 ~Manakov case!, vec-
tor solitons are characterized byv and the polarization angle
instead ofv and V. In that case, the dynamical equatio
need to be formulated a little differently. This could be eas
done, but we will leave it elsewhere.

One important fact about the dynamical equations~3.42!
to ~3.47! is that they allow a simple reduction. It proves to b
consistent if we ask that

Dv5DV50, Df50 orp, DF50 orp. ~3.51!

Then, those equations reduce to a single second-order e
tion for the vector-soliton separationDx:

~M1N!Dxtt116@v2c2e2vDx cosDf

1V2C2e2VDx cosDF#50. ~3.52!

We note that similar reduction exists for the single NL
equation as well. Equation~3.52! may allow fixed points
when cosDf and cosDF are of opposite sign. This fixed
point then gives the spacing for a stationary two-vect
soliton bound state. This issue will be examined in grea
detail in the next section.

IV. EXISTENCE OF STATIONARY TWO-VECTOR-
SOLITON BOUND STATES

With the dynamical equations~3.42! to ~3.47! now avail-
able, one can proceed to study interaction dynamics for v
ous initial conditions, as has been done extensively for
NLS equation~see@1# and the references therein!. However,
in this and the next sections, we take a different path a
study the formation of stationary two-vector-soliton bou
states and their linear stability. The existence of these stat
7-7
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JIANKE YANG PHYSICAL REVIEW E 64 026607
ary bound states holds only for the coupled NLS equatio
not for the single NLS equation. This existence has b
established before both numerically and analytically~see
@7–9#!. But the stability problem has not been resolved y
In this section, we rederive stationary two-vector-solit
bound states by virtue of the dynamical equations~3.42! to
~3.47!. Stability issue will be considered in the next sectio

Stationary two-vector-soliton bound states in the coup
NLS system~2.1! and~2.2! simply correspond to fixed point
of the dynamical equations~3.43! to ~3.47!. There are two
fixed points in these dynamical equations:

~ I! Dv5DV5DV50, Df5p, DF50, ~4.1!

~ II ! Dv5DV5DV50, Df50, DF5p. ~4.2!

In the first case, theA components of the two vector soliton
are out-of-phase (p-phase difference!, and theB components
are in phase~zero phase difference!. In other words, theA
components are antisymmetric, and theB components are
symmetric. In the second case, the situation is just the op
site, i.e., theA components are symmetric, and theB com-
ponents are antisymmetric. In both cases, the spacingDx* is
found from Eq.~3.52! as

Dx* 5
ln V2C22 ln v2c2

V2v
. ~4.3!

Of course, the spacing obtained from this formula has to
such thatDx* @1, an assumption we have made through
the paper. A fact we have found is that only when 0,b,1
can positive spacingDx* be obtained from formula~4.3!.
Whenb→12, spacings from this formula approach infini
for every (v,V) pair where a single-hump vector soliton
allowed. Thus stationary two-vector-soliton bound states
not exist in the Manakov model (b51). We note, however
that other stationary bound states not of two-vector-soli
type do exist in the Manakov model~see @22#!. When b
.1, Dx* from formula ~4.3! is negative, thus no stationar
state of two well-separated vector solitons is predicted fr
our analysis above. However, numerical results in@7,8# show
that such stationary states still exist forb.1 whenV'v.
This dilemma needs to be resolved in the future. Below wh
we discuss stationary bound states, we take 0,b,1, so that
our analysis gives the correct prediction. Note that form
~4.3! was first obtained by this author using an entirely d
ferent technique, namely, the asymptotic tail-match
method@9#. That method and its results were very gene
~not restricted to the coupled NLS equations!. But it could
not be used to study the stability problem. These same re
were later reproduced in Ref.@10# by dynamical systems
techniques. But the stability issue was barely touched th
The current perturbation method, however, could estab
the existence of stationary two-vector-soliton bound sta
and resolve their stability issue completely~see later in this
section and the next section!.

The existence of stationary two-vector-soliton bou
states is a phenomenon which is absent in the single N
equation. An intuitive explanation for this existence has be
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given in @7# in terms of force balances as follows. It is we
known that in the single NLS equation, if two solitons are
phase, they attract each other. But if they are out-of-pha
they repel each other. Vector solitons in the coupled N
equations have two components (A andB). If solitons are in
phase in one component, but out-of-phase in the other c
ponent, then a stationary bound state can be formed if
attracting force in the in-phase component exactly balan
the repelling force in the out-of-phase component. This
exactly what happens in the two types of stationary bou
states~4.1! and~4.2!. We note that this force balance occu
only at a specific position separationDx* which is given in
Eq. ~4.3!. At other position separations, the forces will not
in balance, thus the two solitons will move relative to ea
other ~see Sec. VI!.

Next, we compare the above analytical results on stati
ary two-vector-soliton bound states with numerical resu
We choose the following parameter values:b52/3 andv
51. Then for each V lying inside the interval
(0.7583,1.3187), there is a unique single-hump vector s
ton solution. The tail coefficientsc and C of single-hump
vector solitons can be easily determined numerically
shooting techniques. Our analysis above predicts two ty
of stationary two-vector-soliton bound states in Eqs.~2.5!
and~2.6!: type I hasr antisymmetric, andR symmetric; type
II has r symmetric, andR antisymmetric. The analytically
predicted spacingsDx* are given by formula~4.3!. To con-
firm these analytical results, we have numerically determin
multihump solitary waves in Eqs.~2.5! and~2.6! by shooting
techniques~see also@7,8#!. Sure enough, we numericall
found both types of stationary two-vector-soliton bou
states. These states withV50.85 are shown in Fig. 1 for
illustration. The numerical spacings of these two bou
states, measured as the distance between the two higheur u
points in the graph, are 13.0622 and 13.0644, respectiv
For thisV value, tail coefficients of the single-hump vect
soliton are found asc52.6592 andC51.1744. Thus, the
analytical spacing from formula~4.3! is 13.0635 for both
bound states. The analytical spacing agrees very well w
the numerical spacings. If we plot the analytical approxim
tions for the two-vector-soliton bound states, which are
perpositions of two single-hump vector solitons with 0 orp
phase differences and separated apart at spacingDx*

FIG. 1. Numerically obtained stationary two-vector-solito
bound states forb52/3, v51, andV50.85 ~solid: r; dashed:R).
~a! Type I state withr antisymmetric andR symmetric;~b! type II
state withr symmetric andR antisymmetric. Analytical approxima
tions by Eqs.~4.1!, ~4.2!, and~4.3! are indistinguishable from the
numerical curves and thus not shown.
7-8
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513.0635, the analytical curves and exact numerical o
are indistinguishable. Thus the analytical curves are
shown in Fig. 1.

Further comparison between the exact~numerical! soliton
spacing in a stationary two-vector-soliton state and the a
lytical formula ~4.3! can be made when we varyV continu-
ously. This is done in Fig. 2, where we plot the numeric
spacings for type I and II bound states and the analyt
spacing~4.3! simultaneously. As we can see, whenV is not
close to 1, the agreement between numerics and theo

FIG. 2. Spacings of type I and II two-vector-soliton bound sta
for b52/3, v51, and variousV values. Solid curve, type I spac
ing ~numerical!; dashed curve, type II spacing~numerical!; dotted
curve, analytical formula~4.3!.
itio
a

b

ig
.
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very good. AsV approaches 1, the numerical results diver
from the analytical prediction. Specifically, asV approaches
1, type I spacing plummets, while type II spacing rises
infinity. One interesting question is that, while type II spa
ing goes to infinity asV approaches 1, why cannot the pe
turbation theory formula~4.3! predict it? The reason may lie
in the fact that the perturbation theory predicts the sa
spacing for both type I and II bound states, while the act
spacings for the two bound states go different ways whenV
approaches 1. But this question needs further investigati

V. LINEAR STABILITY OF STATIONARY
TWO-VECTOR-SOLITON BOUND STATES

In this section, we analytically determine the linear stab
ity of type I and II bound states~4.1! and ~4.2! @see Fig. 1#.
This will be done by examining the linear stability of fixe
points~4.1! and~4.2! in the ODE system~3.43! to ~3.47!. We
first consider the fixed point I. When this point is perturbe
we can write

Dv5Dṽ, DV5DṼ, DV5DṼ, ~5.1!

Df5p1Df̃, DF5DF̃, Dx5Dx* 1D x̃, ~5.2!

where the tilded quantities are small perturbations. Subst
ing these perturbed quantities into the dynamical equati
~3.43! to ~3.47! and neglecting higher-order terms, we get

s

F Df̃

DF̃
G

tt

5
1

MvNV2MVNv
F216v2c2NVe2vDx

* 216vVC2MVe2VDx
*

16vVc2Nve2vDx
* 16V2C2Mve2VDx

*
GF Df̃

DF̃
G , ~5.3!
-

ues,

ns
and

D x̃tt2
16~v2V!v2c2

M1N
e2vDx

* D x̃50. ~5.4!

Notice that the above equations for the phase and pos
perturbations are decoupled. Now we put the perturbed qu
tities in the normal-mode form:

Df̃5a1elt, DF̃5a2elt, D x̃5a3elt, ~5.5!

wherel is the discrete eigenvalue. When this form is su
stituted into Eq.~5.4!, position-related eigenvalueslpo are
found as

lpo
2 5

16~V2v!v2c2

M1N
e2vDx

* . ~5.6!

There are two such eigenvalues,6lpo , wherelpo is a root
of the right-hand-side quantity in Eq.~5.6!. Notice thatlpo is
either purely real, or purely imaginary, depending on the s
of v2V. Whenv.V, it is purely imaginary, thus is stable
If v,V, lpo is purely real, thus unstable.
n
n-

-

n

When Eq.~5.5! is substituted into Eq.~5.3!, phase-related
eigenvalueslph are found to satisfy the fourth-order polyno
mial equation

lph
4 1

16v2c2~NV2Mv!

MvNV2MVNv
e2vDx

* lph
2

2
162v2V2c2C2

MvNV2MVNv
e2(v1V)Dx

* 50. ~5.7!

The roots of this equation are6lph
(1) and6lph

(2) , where

lph
(1)2lph

(2)252
162v2V2c2C2

MvNV2MVNv
e2(v1V)Dx

* . ~5.8!

To determine the stability of these phase-related eigenval
it is necessary to obtain the sign of the determinantMvNV

2MVNv . For this purpose, we normalize the solutio
(r ,R) in Eqs.~2.5! and ~2.6! as

r ~x;v,V!5v r̄ ~ x̄;p!, ~5.9!
7-9
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JIANKE YANG PHYSICAL REVIEW E 64 026607
R~x;v,V!5vR̄~ x̄;p!, ~5.10!

where

x̄5vx, p5V2/v2, ~5.11!

and the normalized solutionsr̄ ( x̄;p) and R̄( x̄;p) satisfy the
new ODEs:

r̄ x̄x̄2 r̄ 1~ r̄ 21bR̄2! r̄ 50, ~5.12!

R̄x̄x̄2pR̄1~R̄21b r̄ 2!R̄50. ~5.13!

With the further mass notations

M̄ ~p!5E
2`

`

r̄ 2~ x̄;p!dx̄, N̄~p!5E
2`

`

R̄2~ x̄;p!dx̄,

~5.14!

we see that

M ~v,V!5vM̄ ~p!, N~v,V!5vN̄~p!. ~5.15!

With these relations, we readily find that the determinan
given by

MvNV2MVNv52ApM̄2~p!
d

dpF N̄~p!

M̄ ~p!
G . ~5.16!

When 0<b,1 where meaningful stationary two-vecto
soliton bound states exist,N̄(p)/M̄ (p) is an increasing func-
tion of p. This can be understood heuristically as follows. F
the ODE system~5.12! and ~5.13!, single-hump vector soli-
tons exist when p lies in the interval (@A118b
21#/2, 2/@A118b21#) ~see Sec. II!. If 0<b,1,
@A118b21#/2,1,2/@A118b21#, thus @A118b21#/2
is the lower bound, and 2/@A118b21# is the upper bound
When p is close to the lower bound, the vector soliton is
wave and daughter-wave structure whereR̄(x)! r̄ (x), thus
N̄/M̄ is very small~see@8#!. As p increases, functionR(x)
becomes larger relative tor (x), thus N̄/M̄ also increases
When p51, we haveR(x)5r (x), so N̄/M̄51. As p in-
creases further,R(x) becomes larger, andr (x) becomes
smaller. Whenp is close to its upper bound, the vector so
ton is again a wave and daughter-wave structure, but n
r̄ (x)!R̄(x), thus N̄/M̄@1. We see that asp steadily in-
creases from its lower bound to its upper bound, so d
N̄/M̄ , consequentlyN̄/M̄ is an increasing function ofp. Of
course, we have verified this fact numerically as well.

SinceN̄/M̄ is an increasing function ofp, the determinant
~5.16! is positive. It is then clear from Eq.~5.8! that one of
lph

(1)2 and lph
(2)2 is positive, and the other one is negativ

Without loss, we denotelph
(1)2 as positive, andlph

(2)2 negative.
Then eigenvalues6lph

(1) are purely real, and6lph
(2) purely

imaginary. Of the two purely real eigenvalues6lph
(1) , one of

them is positive and thus unstable. The imaginary eigen
ues6lph

(2) are stable.
02660
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Similar stability analysis can be done for the other fix
point II @see Eq.~4.2!#. We can readily show that the si
eigenvalues for fixed point II are exactly

6 ilpo , 6 ilph
(1) , 6 ilph

(2) , ~5.17!

where lpo , lph
(1) and lph

(2) are given by Eqs.~5.6! and
~5.7!. This means that6 ilph

(1) are now stable eigenvalue
sinceilph

(1) is imaginary, and one of6 ilph
(2) is unstable since

ilph
(2) is now real. The position-related eigenvalues6 ilpo are

stable or unstable depending on whether6lpo for fixed
point I are unstable or stable. Specifically, whenv,V, ilpo
is real, thus one of6 ilpo is positive and unstable. Whe
v.V, both 6 ilpo are imaginary and stable. We note th
for 0<b,1, the r component in the single-hump vecto
soliton is larger than theR component whenv.V, and
smaller whenv,V. Thus, for both type I and II stationar
bound states, when the larger-amplitude component cha
sign (p-phase difference!, the position-related eigenvalue
are stable. When the larger-amplitude component does
change sign~same phase!, one of the position-related eigen
values becomes unstable. Whether the larger-amplitude c
ponent changes sign or not, exactly one phase-related ei
value is always unstable.

Our stability results obtained above can be summarize
follows. Both type I and II stationary bound states are l
early unstable because there is always one~and only one!
phase-related eigenvalue that is unstable. When the lar
amplitude component does not change sign, there is
position-related eigenvalue that is unstable as well. Oth
wise, position-related eigenvalues are stable.

Below we compare the above analytically obtained eig
values for stationary bound states with numerical results.
merically, we determined the discrete nonzero eigenval
and corresponding eigenfunctions of the linearization ope
tor expanded around the underlying stationary bound st
again using the shooting method. We note that for this
earization operator, it is easy to show that ifl is an eigen-
value, so are2l and l* . Thus, whenl is purely real or
imaginary, it leads to a pair of eigenvalues. Whenl is truly
complex, it leads to four eigenvalues. Numerically, we on
look for discrete eigenvalues that are close to zero, as
eigenvalues we have obtained analytically above are of
type. Altogether, we found exactly six such discrete eig
values, all of them either purely real or purely imagina
Thus they always come in pairs with opposite signs. T
agrees perfectly with the analysis. In addition, two of the
six eigenfunctions roughly have the shape of spatial der
tives of two single-hump vector solitons pieced togeth
Their eigenvalues correspond to the position-related eig
values 6lpo or 6 ilpo discussed above. The other fou
eigenfunctions roughly have the shape of two single-hu
vector solitons joined together. Their eigenvalues corresp
to phase-related eigenvalues6lph

(1) and 6lph
(2) ~or 6 ilph

(1)

and6 ilph
(2)). To make a quantitative comparison, we choo

b52/3, v51, and allowV to take various values.
The numerically obtained eigenvalues and the cor

sponding analytical eigenvalues are plotted in Figs. 3 an
for bound states I and II, respectively. Note that for ea
7-10
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INTERACTIONS OF VECTOR SOLITONS PHYSICAL REVIEW E64 026607
case, only three of the six eigenvalues are shown, as
other three are simply their opposites. We also note that
two solid analytical curves in Fig. 3~a,b! and Fig. 4~a,b! for
ulph

(2)u and ulph
(1)u, respectively, are slightly different, eve

though they look alike. Let us consider Fig. 3 for bou
states I first. We see in this figure that whenV,1, there is
indeed an unstable phase-related eigenvalue that is the c
terpart oflph

(1) in the analysis above. The other phase-rela
eigenvalue (lph

(2)) and position-related eigenvalue (lpo) are
both stable. This agrees with the theory. Quantitative co
parisons between numerical and analytical eigenvalues
excellent except whenV approaches 1. The reason for th
disagreement whenV is close to 1 is simple. Recall from
Fig. 2 that asV approaches 1, the spacing for type I bou
states drops steeply. Thus our basic assumption of far s
ration between the two vector solitons breaks down, con
quently disagreement is not unexpected. Interestingly,
disagreement is only in the phase-related eigenvalues, n
the position-related eigenvalue. In Fig. 3~b!, the numerically
obtained unstable eigenvalue rises sharply asV approaches
1. This is understandable since the two solitons get clo
and closer, thus a stronger instability is created.

Next we consider Fig. 4 for bound states II. In this ca
numerical results show that a phase-related eigenv

FIG. 3. Discrete eigenvalues for type I stationary two-vect
soliton bound states withb52/3, v51 and variousV values.~a!
Stable eigenvalues, o, phase related, obtained numerically;h, po-
sition related, obtained numerically; solid curve,ulph

(2)u from for-
mula ~5.7!; dashed curve:ulpou from formula ~5.6!; ~b! unstable
eigenvalue, *, phase related, obtained numerically; solid cu
ulph

(1)u from formula ~5.7!.

FIG. 4. Discrete eigenvalues for type II stationary two-vect
soliton bound states withb52/3, v51, and variousV values.~a!
Stable eigenvalue. *, phase related, obtained numerically; s
curve:ulph

(1)u from formula~5.7!. ~b! Unstable eigenvalues. o, phas
related, obtained numerically;h, position related, obtained numer
cally; solid curve,ulph

(2)u from formula ~5.7!; dashed curve,ulpou
from formula ~5.6!.
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~counterpart ofilph
(2)) and the position-related eigenvalu

~counterpart ofilpo) are both unstable, and the other phas
related eigenvalue (ilph

(1)) is stable. This agrees with ou
analysis. As in Fig. 3, numerical and analytical eigenvalu
agree very well except whenV is close to 1. Numerically,
the two phase-related eigenvalues drop to zero asV→12.
The reason is also simple. For type II bound states, sol
spacing approaches infinity asV→12 ~see Fig. 2!. Thus the
bound state becomes two separate single vector solit
Naturally the phase-related eigenvalues~as well as the
position-related eigenvalue! collapse to the zero eigenvalu
of a single vector soliton.

Now, we put our results in the eigenvalue bifurcation p
spective. When 0,b,1, the linearization operator aroun
one single-hump vector soliton has six or eight discrete
genvalues~multiplicity counted!, depending on whether a
internal mode exists or not~see Refs.@20,21#!. The zero
eigenvalue always has multiplicity 6, three from position a
phase invariances, and the other three from velocity and
quency ~or amplitude! variations. When an internal mod
exists, two purely imaginary eigenvalues of opposite sign
present as well. If two vector solitons form a stationa
bound state, the linearization operator around this state
have 12 or 16 discrete eigenvalues~double that for a single
vector soliton!. Now the zero eigenvalue still has multiplicit
6. Another six eigenvalues must bifurcate from the zero
genvalue, and another four must bifurcate from the t
internal-mode eigenvalues when such modes do exist.
calculations above give exactly the six eigenvalues bif
cated from the zero eigenvalue. These six eigenvalues ar
most important as they are related to the dynamics of ve
solitons themselves. Our analysis did not give eigenval
bifurcated from internal modes~if such modes do exist!. The
reason is that to obtain those eigenvalues, one has to pu
the perturbation theory to second order~see Ref.@19#!. Since
the six nonzero eigenvalues we have obtained already re
the linear instability of these bound states, we do not hav
strong motivation to pursue eigenvalues bifurcated from
ternal modes. Similarly, it is also possible for eigenvalues
bifurcate from the edge of the continuous spectrum in a
tionary two-vector-soliton bound state. But our instability r
sults make such calculations not compelling either.

VI. INTERACTION DYNAMICS

In this section, we study interaction dynamics of two ve
tor solitons. In particular, we will highlight the interactio
dynamics of vector solitons, namely, repulsion or attract
of vector solitons depends not only on the relative phases
also on the initial position separation. To restrict the scope
our discussion, we will consider only the interaction of tw
vector solitons that initially have the same amplitude, pol
ization and velocity, but their relative phases are allowed
differ by 0 or p, and their initial separation is allowed to b
arbitrary. In such cases, the initial conditions can be writ
as

A~x,0!5r S x1
Dx0

2 D1r S x2
Dx0

2 Deig0, ~6.1!

-

e,

-
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JIANKE YANG PHYSICAL REVIEW E 64 026607
B~x,0!5RS x1
Dx0

2 D1RS x2
Dx0

2 DeiG0. ~6.2!

Here@r (x),R(x)# is a single-hump vector soliton,Dx0 is the
initial position separation, andg0 ,G0 are initial phase differ-
ences which are either 0 orp. For demonstration purpose
we also take the following parameters valuesb52/3, v
51 andV50.85. The single-hump vector soliton for the
parameters look like one half of either Fig. 1~a! or Fig. 1~b!.

For the initial conditions chosen above, the reduct
~3.51! holds. Thus our theory in Sec. III predicts that th
soliton interaction is governed by the second-order equa
~3.52! on pulse separationDx. This equation can be rewritte
as

~M1N!Dxtt1V8~Dx!50, ~6.3!

where the potential functionV(Dx) is

V~Dx!5216 cosg0c2ve2vDx216 cosG0C2Ve2VDx.
~6.4!

For the chosen parameters, it is found numerically t
(c,C)5(2.6592,1.1744) and (M ,N)5(3.4459,0.9080). Dif-
ferent from the single NLS equation where the interact
potential is always monotone@1#, potential ~6.4! now can
have a local maximum or minimum when cosg0 cosG0,0.
This is why in such cases a stationary two-vector-soli
bound state can be found. For our choice of paramet
wheng05p andG050, this potential is shown in Fig. 5. W
see that it has a local minimum~which is also its global
minimum! at Dx* 513.0635, and this minimum point i
stable. For any initial separationDx0.11.9804, the motion
is trapped inside the potential well, thus two vector solito
will oscillate around this stable minimum point. But ifDx0
,11.9804, the initial potential energy would be too large
that the two vector solitons would simply separate infinite
apart from each other. This qualitative change in interact
dynamics for different initial pulse separations is a feat
that is not present in the single NLS equation. Ifg050 and
G05p, the potential is exactly opposite of that in Fig. 5~a
vertical reflection about the horizontal axis!. Thus it has a
global maximum atDx* 513.0635. This maximum point is

FIG. 5. Interaction potential~6.4! of two vector solitons with
g05p, G050, b52/3,v51, and V50.85 for various position
separationsDx0.
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unstable. WhenDx0.13.0635, two solitons repel each othe
whenDx0,13.0635, they attract each other and collapse

The interaction dynamics for (g0 ,G0)5(0,0) and
(g0 ,G0)5(p,p) can be determined similarly from the po
tential function. For (g0 ,G0)5(0,0), the potential is mono
tone increasing. Thus with any initial separation, two vec
solitons attract each other and collapse. When (g0 ,G0)
5(p,p), the situation is just the opposite. Now the potent
is monotone decreasing. Thus two solitons always repel e
other. Interaction dynamics in these two cases is quite sim
to that in a single NLS equation.

The above interaction dynamics can be understood in
itively in terms of attractive and repulsive force balances
vector-solitons’ individual components. It is well known th
in the single NLS equation, if two solitons are in phase~zero
phase difference!, an attracting force exists between them;
the solitons are out-of-phase (p phase difference!, a repel-
ling force exists between them. The magnitude of the attra
ing or repelling force is proportional to the integral of pro
uct of tail amplitudes in the overlapping region. For vect
solitons, the same picture holds. However, since vector s
tons have two components, the combined force of the
components will determine if vector solitons attract or rep
each other. When soliton separation changes, so does
amount of interaction force in each component, thus
amount of combined force overall. But it is important
realize that a change in soliton separation causes diffe
amounts of change in interaction forces of the two com
nents, as soliton amplitudesr (x) andR(x) decay at ratesv
andV, which are different ifv andV are different@see Eq.
~2.7!#. This is the fundamental reason why repulsion or
traction of vector solitons depends not only on their relat
phases but also on their initial separation. To be more s
cific, let us analyze the interaction~6.1! and ~6.2! for g0
50 andG05p for instance. The other parametersb,v and
V are as chosen above, i.e., 2/3,1 and 0.85, respectively
have established in Sec. IV that whenDx05Dx* 513.0635,
two vector solitons form a stationary bound state because
attracting and repelling forces in the two components exa
balance each other. Now if the initial soliton separation
greater thanDx* , the attractive force in theA component
decreases more than the repulsive force in theB component.
As a result, the force balance is broken, and the net fo
between the two vector solitons becomes repulsive. T
solitons will move away from each other. On the other ha
if the initial separation is smaller thanDx* , the attractive
force in theA component increases more than the repuls
force in theB component. Thus the net force becomes attr
tive, and solitons will move toward each other. These int
tive expectations agree entirely with the analyses abo
Other cases can be understood in a similar way.

We would like to remind the reader that the reducti
~6.3! wheng0 andG0 are 0 orp ignores phase instabilities in
the full dynamical equations~3.43! to ~3.47!. In fact, the
minimum pointDx* in the potential~6.4! is stable only to
position perturbations, but not to phase perturbations, s
we have proved in Sec. V that stationary two-vector-solit
bound states are always subject to phase-related instabil
When initial phase perturbations are small, and the inter
7-12
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FIG. 6. Interaction dynamics
of two vector solitons withg0

5p, G050, Dx0515 or 10 in the
initial condition ~6.1! and ~6.2!.
Here b52/3, v51, and V
50.85. ~a! Dx0515: uAu contour,
obtained numerically (uBu contour
is similar!; ~b! Dx0515: positions
of vector solitons. Solid curve: nu
merical results; dashed curve: an
lytical prediction from Eq.~6.3!;
~c! Dx0510: uAu contour, ob-
tained numerically;~d! Dx0510:
positions of vector solitons. Solid
curve: numerical results; dashe
curve: analytical prediction from
Eq. ~6.3!. Here the two curves
overlap completely with each
other.
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tion time is not very long, phase instabilities are mild. In th
case, the reduced model~6.3! will describe vector-soliton
interactions very well. But if phase perturbations have ac
mulated to a significant amount, model~6.3! will break
down.

All the above analytical and intuitive predictions o
vector-soliton interactions are completely supported b
qualitatively and quantitatively by our full numerical simu
lations of Eqs.~2.1! and ~2.2!, using Eqs.~6.1! and ~6.2! as
the initial condition. First we take (g0 ,G0)5(p,0) and
Dx0515. The numerical results are shown in Fig. 6~a!. Here
only uAu contour is shown, asuBu contour is similar. As pre-
dicted, the two solitons engage in oscillational motio
around spacingDx* 513.0635. In Fig. 6~b!, we plot in solid
lines the positions of both vector solitons~defined as loca-
tions of maximumuAu amplitudes! against time. In the sam
figure, positions of vector solitons obtained from the reduc
model ~6.3! are also shown for comparison. The numeric
and analytical curves completely overlap with each other
til t*4600. The reason for deviation aftert*4600 is simply
the development of phase instabilities which we have m
tioned above. This phase instability was ignored in the
duced model~6.3!. But in the numerical solution, numerica
error triggers this instability and causes the relative phase
the A and B components to move away from their initia
valuesp and 0. This change in relative phases eventua
leads to the repulsion of solitons as seen in Fig. 6~a!. Next,
we still take (g0 ,G0)5(p,0) but choose the initial separa
tion Dx0510. In this case, our analysis above predicts t
the two vector solitons would repel each other. This is c
firmed by our numerical solutions shown in Fig. 6~c!. A com-
parison between the numerical vector-soliton positions
analytical predictions by the reduced model~6.3! is shown in
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Fig. 6~d!. In this case, the two curves completely overl
each other for all times.

Next, we take otherg0 ,G0, andDx0 values, and show in
Fig. 7 vector-soliton interactions that are obtained nume
cally. Here the interaction’s dependence on initial separa
as well as relative phases will be demonstrated, and simi
ties with interactions in a single NLS equation will be hig
lighted. In each case, numerical results and the anal
based on the reduced model~6.3! agree completely when th
two solitons are well separated. Thus analytical results w
not be shown. In Fig. 7~a!, we took (g0 ,G0)5(0,p), Dx0
515, and found that the solitons repel each other and esc
In Fig. 7b, we took (g0 ,G0)5(0,p), Dx0510, and found
that the solitons attract each other and collapse. After c
lapse, the two solitons reemerge and separate. In Fig.
(g0 ,G0)5(0,0) andDx0510 were taken. The solitons a
tract each other and collapse. But here, after collapse,
two solitons merge into one instead of reemerging and se
rating. In Fig. 7d, (g0 ,G0)5(p,p) andDx0510 were taken.
The solitons repel each other and escape. Interaction dyn
ics in Figs. 6 and 7~a,b! shows that vector-soliton interac
tions depend critically on the initial position separation
well as on relative phases. Interaction dynamics in F
7~c,d! resembles that in a single NLS equation, as the re
tive phases in theA andB components here are of the sam
value, thus repelling or attracting forces in the two comp
nents combine instead of canceling each other.

More studies on interaction of vector solitons are need
For instance, one can take as initial conditions two vec
solitons with different amplitudes, or phase differences ot
than 0 andp. In such cases, one would need to investig
the full ODE model~3.43! to ~3.47! instead of the reduced
one ~6.3!. But these studies lie outside the scope of t
present paper.
7-13
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FIG. 7. Interaction dynamics
of two vector solitons for various
g0 , G0, andDx0 values in the ini-
tial condition ~6.1! and ~6.2!.
Shown are numerically obtaine
uAu contours. Hereb52/3, v51
and V50.85. ~a! g050, G05p,
Dx0515; ~b! g050, G05p,
Dx0510; ~c! g050, G050, Dx0

510; ~d! g05p, G05p, Dx0

510.
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e
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VII. INTERACTION OF N VECTOR SOLITONS

Lastly, we briefly discuss the interaction of three or mo
vector solitons. Such interactions can be investigated by
tending our two-soliton interaction results. Suppose we h
N vector solitons with frequencies (vk , Vk!, velocitiesVk ,
positionsxk , and phases (gk , Gk!, where 1<k<N. Define
averaged variables

v5
1

N (
k51

N

vk , V5
1

N (
k51

N

Vk , V5
1

N (
k51

N

Vk ,

~7.1!

and difference variables

Dvk5vk112vk , DVk5Vk112Vk ,

DVk5Vk112Vk , ~7.2!

Dgk5gk112gk , DGk5Gk112Gk , Dxk5xk112xk ,

~7.3!

Dfk52
1

2
VDxk1Dgk , DFk52

1

2
VDxk1DGk ,

~7.4!

where 1<k<N21. Then under the adiabatic assumptio
similar to Eq.~3.12!, we readily derive the following evolu
tion equations for theN vector solitons:

v t5V t5Vt50, ~7.5!
02660
x-
e

s

MvDvkt1MVDVkt54vc2@2e2vDxk21 sinDfk21

12e2vDxk sinDfk

2e2vDxk11 sinDfk11#, ~7.6!

NvDvkt1NVDVkt54VC2@2e2VDxk21 sinDFk21

12e2VDxk sinDFk

2e2VDxk11 sinDFk11#, ~7.7!

~M1N!DVkt58@v2c2e2vDxk21 cosDfk21

1V2C2e2VDxk21 cosDFk21#

216@v2c2e2vDxk cosDfk

1V2C2e2VDxk cosDFk#

18@v2c2e2vDxk11 cosDfk11

1V2C2e2VDxk11 cosDFk11#, ~7.8!

Dxkt5DVk , ~7.9!

Dfkt52vDvk , ~7.10!

DFkt52VDVk , ~7.11!

where 1<k<N21. Component massesM (v,V) and
N(v,V) are defined in Eq.~2.33!, tail coefficientsc and C
are defined in Eq.~2.7!, and conventions

e2vDx05e2VDx05e2vDxN5e2VDxN50 ~7.12!
7-14
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have been used. Similar to the two-vector-soliton case,
namical equations~7.6! to ~7.11! also allow the reduction

Dvk5DVk50, Dfk50 orp, DFk50 orp,

1<k<N21. ~7.13!

Then those equations reduce to

~M1N!Dxktt58@v2c2e2vDxk21 cosDfk21

1V2C2e2VDxk21 cosDFk21#

216@v2c2e2vDxk cosDfk

1V2C2e2VDxk cosDFk#

18@v2c2e2vDxk11 cosDfk11

1V2C2e2VDxk11 cosDFk11#.

~7.14!

This reduced equation@as well as the full dynamical equa
tions ~7.6! to ~7.11!# allows fixed points where

cosDfk cosDFk521, ~7.15!

and

Dxk5Dx* 5
ln V2C22 ln v2c2

V2v
~7.16!

for 1<k<N21. These fixed points correspond to stationa
N-vector-soliton bound states. Eq.~7.15! indicates that in
these bound states, neighboring vector solitons must hav
same phase in one component~same sign!, andp-phase dif-
ference in the other component~opposite sign!, just as the
two-vector-soliton case. We note that theseN-vector-soliton
bound states have been constructed before in Ref.@9# by an
asymptotic tail matching technique. The matching conditio
and soliton spacing given in Ref.@9# are the same as abov
Linear stability of these stationary bound states can be de
mined by examining the stability of fixed points~7.13!,
~7.15!, and~7.16! in the evolution equations~7.6! to ~7.11!.
Not surprisingly, we find these states to be always linea
unstable due to phase instabilities. Interaction dynamics
multiple vector solitons is richer than that of two vector so
tons. One interesting example is shown in Fig. 8 for a thr
vector-soliton interaction. The parameter values are stilb
52/3, v51 andV50.85. The initial condition is

A~x,0!5r ~x2xl !e
ig l01r ~x!1r ~x2xr !e

igr0, ~7.17!

B~x,0!5R~x2xl !e
iG l01R~x!1R~x2xr !e

iGr0,
~7.18!

where (r ,R) is the single-hump vector soliton,xl5211, xr
515, g l050, g r05p, G l05p, andG r050. We see that in
the initial stage, the interaction of these solitons can still
understood by considering them as pair-pair interactions.
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after collapse of the left two solitons, our perturbation ana
sis completely fails. Beyond that point, we see more int
esting interaction dynamics.

VIII. DISCUSSIONS

In summary, we have studied the interaction of two vec
solitons in the coupled NLS equations~non-Manakov!. Un-
der the assumption that the two vector solitons have ne
the same amplitudes, polarizations, velocities, and are s
rated far apart, we derived the dynamical equations for b
solitons’ internal parameters. These equations reveal the
istence of stationary two-vector-soliton bound states wh
one of the vector-soliton’s two components changes s
But these bound states are shown to be linearly unstable
to a phase-related unstable eigenvalue. Study of the inte
tion shows that, in contrast to the single NLS equation, v
tor solitons repel or attract each other depending not only
the relative phases but also on the initial position separat
This fact was explained heuristically by considering for
balances in vector solitons’ two components. We also p
sented dynamical equations for the interaction of an arbitr
number of vector solitons. We showed that these solitons
also form stationary bound states, but these states are line
unstable as well.

One question about the dynamical equations~3.43! to
~3.47!, or ~7.6! to ~7.11! in general, is whether they can b
cast as a complex Toda system~coupled to another equatio
perhaps since we have six equations here!. For the single
NLS case, this was possible by defining the complex varia
as a combination of position separation and phase differe
~see Refs.@15,23#!. Inspection of Eqs.~3.43! to ~3.47! sug-
gests that in the present case, this is not possible forbÞ0 or
1 ~nonintegrable case!. The reason is that in order for a com
plex Toda system to exist, coefficients in the dynami
equations must satisfy certain compatibility condition
These conditions are not likely to be satisfied by Eqs.~3.43!
to ~3.47!, or ~7.6! to ~7.11!. This claim is consistent with the
results for generalized NLS equations where the comp
Toda chain reduction was found only for the integrable N
equation@24#. It is likely that the Manakov modelb51 can
allow such reductions. But our dynamical equations do

FIG. 8. An interesting interaction dynamics of three vector so
tons. Shown here is theuAu contour. The initial condition is Eqs
~7.17! and ~7.18!, where b52/3, v51, V52/3, xl5211,
xr515, g l050, g r05p, G l05p, andG r050.
7-15
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apply to the Manakov model directly. Derivation of dynam
cal equations for the interaction of Manakov solitons will
pursued elsewhere.

One of the main results of this paper is the proof of line
instability of stationary multivector-soliton bound states. T
reason for this instability is largely due to phase-related
stable eigenvalues, as position-related eigenvalues ca
made stable by proper arrangement of neighboring ve
solitons, but phase-related eigenvalues cannot. Phase-re
unstable eigenvalues, on the other hand, can trace their
gins to phase invariances of the coupled NLS system~2.1!
.

v,

et
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and ~2.2!. When phase invariance is broken in a wave s
tem, then it becomes possible for stationary multipu
bound states to be actually stable. Such an example has
found in Ref.@25#.
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