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Suppression of Manakov soliton interference in optical fibers

Jianke Yang*
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~Received 2 July 2001; revised manuscript received 19 September 2001; published 11 February 2002!

In this paper, we study the interaction of two vector solitons in the Manakov equations that govern pulse
transmission in randomly birefringent fibers. Under the assumptions that these solitons initially are well
separated and having nearly the same amplitudes and velocities but arbitrary polarizations, we derive a reduced
set of ordinary differential equations for both solitons’ parameters. We then solve this reduced system analyti-
cally. Our analytical solutions show that, when two Manakov solitons have the same amplitude and phases,
their collision distance steadily increases as their initial polarizations change from parallel to orthogonal. In
particular, the collision distance at orthogonal polarizations is of the order of the square of the collision
distance at parallel polarizations. When the Manakov solitons have different amplitudes, a quasiequidistant
bound state can be formed. The degrees of position and amplitude oscillations in this bound state diminish as
the initial polarizations change from parallel to orthogonal. With a combination of launching Manakov solitons
along orthogonal polarizations and at unequal amplitudes, Manakov-soliton interference is almost completely
suppressed. These theoretical results are in excellent agreement with our direct numerical simulations.
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I. INTRODUCTION

Soliton transmission in optical fibers has been theor
cally predicted and experimentally demonstrated for over
years~see@1,2# and references therein!. The early theoretica
work primarily used the nonlinear Schro¨dinger ~NLS! equa-
tion as the mathematical model. One of the impairments
soliton transmission systems is the interference of neigh
ing solitons that cause pulses to move away from their
pected time slots. Within the NLS model, pulse interferen
has been comprehensively investigated@2–10#. It has been
shown that when two solitons have the same phase and
plitude, they attract each other; when they have the oppo
phase and same amplitude, they repel each other. If the
tons have different amplitudes, they could form a quasieq
distant bound state. In reality, optical fibers are birefringe
i.e., pulses along two orthogonal polarizations of the fib
travel at slightly different speeds. Over long distances,
birefringence is also random due to fiber bending, twisti
and environmental fluctuations. When this random birefr
gence is averaged and small perturbation terms such
polarization-mode dispersion neglected, pulse propagatio
actually governed by the Manakov equations@11–15#. To
reduce pulse-pulse interference in birefringent fibers, a te
nique called polarization-division multiplexing~PDM! has
been proposed@14#. In a PDM system, adjacent solitons a
launched along orthogonal polarizations of the fiber. Exp
ments have shown that this technique doubles the trans
sion rate compared to the launching of pulses along the s
polarizations@14,16#. Analytically, orthogonal-soliton inter-
actions in the Manakov system has been studied in@17# by
the variational method. It was shown that the collision d
tance of initially orthogonal solitons is much longer than th
of the parallel solitons, thus the benefit of the PDM tec
nique was analytically demonstrated. When PDM is co
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bined with wavelength-division multiplexing~WDM!, it has
been shown that collisions of solitons in different chann
make neighboring solitons in the same channel nonortho
nal @18,19#. When polarization-mode dispersion~PMD! ef-
fect is included, it was pointed out in@20# that the use of
PDM technique is only preferable to a copolarized pu
train only if the PMD is sufficiently weak. The interaction o
Manakov solitons was also considered in@21#, where it was
conjectured that the soliton parameters satisfy the comp
Toda chain. When frequency-filter perturbations are adde
the Manakov system, it was shown in@22# that the collision
distance of orthogonally polarized solitons substantially
crease. Interaction of vector solitons in the non-Manak
coupled NLS equations was investigated in@23,24#. It was
shown that stationary multivector-soliton bound states e
but are linearly unstable.

Despite the above-mentioned work on Manakov-solit
interactions, many important questions still remain open.
instance, the interaction of Manakov solitons at arbitrary p
larizations has not been investigated. This study is desira
as in a WDM and PDM system, pulses in the same chan
are generally nonorthogonal@18,19#. More importantly, with
the NLS equation, it has been shown that launching adjac
pulses at different amplitudes is effective in suppressing s
ton interactions@5,7–10#. How this technique affects the in
terference of Manakov solitons has not been carefully exa
ined.

In this paper, we study the interaction of Manakov so
tons at arbitrary polarizations. Our method is an extension
the Karpman-Solov’ev technique@3,4#. Assuming that the
Manakov solitons are well separated and having nearly
same amplitudes and velocities but arbitrary polarizatio
we derive the full dynamical equations for both solitons’ a
plitudes, velocities, positions, polarizations, and phases.
also solve these reduced equations analytically. Based
these results, we show that two Manakov solitons with
same amplitudes and phases attract each other. The coll
distance increases as the initial polarizations change f
©2002 The American Physical Society06-1
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parallel to orthogonal. In particular, the collision distance
orthogonal polarizations is of the order of the square of t
at parallel polarizations. This explains why the PDM tec
nique doubles the transmission capacity as reported in
experiment of@14#. More significantly, we show that two
Manakov solitons with different amplitudes form quasieq
distant bound states, similar to the NLS solitons. But posit
and amplitude oscillations of individual Manakov solitons
the quasiequidistant state diminish as the initial polarizati
change from parallel to orthogonal. Combining the abo
two results, we show that if Manakov solitons are launch
along orthogonal polarizations and at unequal amplitud
their interference is almost completely suppressed. We h
also checked these analytical results against direct nume
simulations and good agreement is obtained.

II. DYNAMICAL EQUATIONS FOR MANAKOV-SOLITON
INTERACTIONS

The Manakov equations for fiber communication syste
are written as@14,15#

iAz1
1

2
Att1~ uAu21uBu2!A50, ~2.1!

iBz1
1

2
Btt1~ uAu21uBu2!B50, ~2.2!

whereA and B are amplitudes of electrical fields along th
fiber’s orthogonal polarizations,z is the propagation dis
tance, andt is the retarded time. Manakov solitons are of t
form

A~ t,z!5h cosu sechh~ t2T!exp@ iV~ t2T!1 ig#,
~2.3!

B~ t,z!5h sinu sechh~ t2T!exp@ iV~ t2T!1 iG#,
~2.4!

T5Vz1T̄, g5
1

2
~h21V2!z1ḡ, G5

1

2
~h21V2!z1Ḡ,

~2.5!

where amplitudeh, velocityV, polarization angleu, position

parameterT̄, and phasesḡ andḠ are all constants. When tw
Manakov solitons are placed adjacent to each other, t
would interfere through tail overlapping. To study this inte
ference, the idea of Karpman and Solov’ev perturbat
method@3,4# is to treat this interference as a small perturb
tion to each soliton. To leading order, the solution is simpl
superposition of two Manakov solitons

A5A11A2 , B5B11B2 , ~2.6!

where (Ak ,Bk) are of the form~2.3! and ~2.4!, and all pa-
rameters have indicesk(k51,2) and slowly vary over dis-
tancez. For convenience, we assign the left soliton with
dex k51 and the right soliton with indexk52. Thus T2
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.T1. Picking up the dominant interference terms, each s
ton is governed by the following perturbed Manakov equ
tions:

iAk,z1
1

2
Ak,tt1~ uAku21uBku2!Ak5Fk , ~2.7!

iBk,z1
1

2
Bk,tt1~ uAku21uBku2!Bk5Gk , ~2.8!

where

Fk522uAku2A32k2Ak
2A32k* 2AkBkB32k* 2AkBk* B32k

2uBku2A32k , ~2.9!

Gk522uBku2B32k2Bk
2B32k* 2BkAkA32k* 2BkAk* A32k

2uAku2B32k . ~2.10!

The slow evolution of each soliton’s parameters can be
rived by a perturbation theory for the Manakov equatio
~2.7! and ~2.8!. Such a theory has been developed in@24–
27#. To carry out the calculations, we assume that the t
Manakov solitons have nearly the same amplitudes and
locities, and are well separated. But their polarizations
allowed to be arbitrary. Introducing notations

h[
1

2
~h21h1!, V[

1

2
~V21V1!, T[

1

2
~T21T1!,

~2.11!

and

Dh[h22h1 , DV[V22V1 , DT5T22T1 ,
~2.12!

our assumptions then are

uDhu!h, uDVu!uVu, hDT@1, uDhDTu!1.
~2.13!

It is noted that the Manakov system~2.1! and ~2.2! is Gal-
ilean invariant. Thus it is always possible to choose a re
ence frame in whichV50. If this is done, then the condition
on velocity differenceDV is simply uDVu!1. We also intro-
duce the notations

Df5Dg2VDT, DF5DG2VDT, ~2.14!

whereDg[g22g1 andDG[G22G1. Under these assump
tions and notations, and after some simple calculations,
obtain the following dynamical equations for the two Man
kov solitons’ parameters~the details are given in the Appen
dix!:

dh

dz
5

dV

dz
50, ~2.15!

d~DT!

dz
5DV, ~2.16!
6-2
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d~Dh!

dz
58h3e2hDT~cosu1 cosu2 sinDf

1sinu1 sinu2 sinDF!, ~2.17!

d~DV!

dz
528h3e2hDT~cosu1 cosu2 cosDf

1sinu1 sinu2 cosDF!, ~2.18!

du1

dz
52h2e2hDT~sinu1 cosu2 sinDf

2cosu1 sinu2 sinDF!, ~2.19!

du2

dz
522h2e2hDT~cosu1 sinu2 sinDf

2sinu1 cosu2 sinDF!, ~2.20!

d~Df!

dz
5hDh12h2e2hDT cosDf

3
cos2u1 sin2u22sin2u1 cos2u2

cosu1 cosu2
, ~2.21!

d~DF!

dz
5hDh22h2e2hDT cosDF

3
cos2u1 sin2u22sin2u1 cos2u2

sinu1 sinu2
, ~2.22!

d

dzS T1
Dh

4h2D 5V. ~2.23!

The above equations are the leading-order evolution eq
tions for soliton parameters in the Karpman-Solov’ev pert
bation theory. The small parameter in this perturbat
theory ise2(1/2)hT0, whereT0[DT(0) is the initial soliton
separation. Indeed, in the generic case, the above equa
indicate thatDTzz, Dfzz, andDFzz are of the ordere2hT0.
Thus, soliton parameters evolve on the slow distance s
e(1/2)hT0. In the special case when the leading-order term
the amplitude and velocity equations~2.17! and ~2.18! van-
ish, which happens for initially orthogonal solitons~see be-
low!, soliton parameters will evolve on the slow distan
scaleehT0 instead. In this case, higher-order terms in t
above evolution equations will be needed in order for
perturbation theory to be asymptotically correct. We will n
pursue such higher-order corrections in this paper. Lastly,
note that whenu15u250, the above equations reduce
those of the NLS equation@2–4#.

The above ordinary differential equations~ODEs! can be
solved analytically. Similar to the ODEs for the NLS equ
tion, these ODEs have a complex constant of motion that
denote asL2 @2,3#,
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~DV2 iDh!2216h2e2hDT~cosu1 cosu2eiDf

1sinu1 sinu2eiDF![L2. ~2.24!

Utilizing this conserved quantity, the equation forDV
2 iDh can be simplified as

d

dz
~DV2 iDh!5

1

2
h@L22~DV2 iDh!2#, ~2.25!

whose solution is

DV2 iDh5L tanhS 1

2
hLz1C0D , ~2.26!

whereC0 is a complex constant that is determined from t
initial conditions of DV and Dh. When DV has been ob-
tained from the above formula,DT can be given from Eq.
~2.16! as

DT5T01
2

h
lnUcoshS 1

2
hLz1C0D

coshC0

U . ~2.27!

Together with Eq.~2.23!, the positionsT1,2 for both solitons
can be obtained for any distancez. When solutions~2.26!
and~2.27! are substituted into the constant of motion~2.24!,
we find that the polarization anglesu1,2 and phase differ-
ences (Df,DF) satisfy the following complex-valued rela
tion:

cosu1 cosu2eiDf1sinu1 sinu2eiDF

52
L2ehT0

16h2ucoshC0u2

coshS 1

2
hL* z1C0* D

coshS 1

2
hLz1C0D , ~2.28!

where superscript * denotes complex conjugation. This re
tion itself is not enough to determine polarization angles a
phase differences individually. However, in some special
important cases, we have succeeded in obtaining the ana
cal formulas for polarization angles and phase difference
well ~see Sec. III!.

Several interesting facts are worth mentioning here. If
Manakov solitons~2.3! and ~2.4! are written in the compac
vector form

S A

BD 5h sechh~ t2T!eiVtc, ~2.29!

where

c5S cosu e2 iVT1 ig

sinu e2 iVT1 iG D ~2.30!

is the~complex! polarization vector@11#, then under our pre-
vious assumptions~2.13! and notations~2.14!, the inner
product of polarization vectorŝc1 ,c2& of two Manakov soli-
tons is
6-3
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JIANKE YANG PHYSICAL REVIEW E 65 036606
^c1 ,c2&[c1* •c25cosu1 cosu2eiDf1sinu1 sinu2eiDF.
~2.31!

It is easy to show from Eqs.~2.15! to ~2.22!, DV2 iDh and
^c1 ,c2& satisfy the following equations:

d

dz
~DV2 iDh!528h3e2hDT^c1 ,c2&, ~2.32!

d

dz
^c1 ,c2&5 ihDh^c1 ,c2&. ~2.33!

In addition, the constant of motion~2.24! becomes

~DV2 iDh!2216h2e2hDT^c1 ,c2&5L2. ~2.34!

Some important conclusions readily follow from Eqs.~2.32!
and ~2.33!. Two Manakov solitons are said to be orthogon
if the inner product̂ c1 ,c2& of their polarization vectors is
zero. Equations~2.32! and ~2.33! indicate that, if the Mana-
kov solitons are initially orthogonal, they will remain o
thogonal forever. In addition, their velocity and amplitu
differencesDV andDh will remain constant throughout evo
lution. We remind the reader that when two Manakov so
tons remain orthogonal, their polarization anglesu1,2 may
still vary ~see Fig. 4!.

Defining the complex variable

Y[2hDT1 ln^c1 ,c2&, ~2.35!

then it can be shown from Eqs.~2.15! to ~2.33! that the
equation forY is closed,

d2Y

dz2
58h4eY. ~2.36!

When u15u250, this equation reduces to that of the NL
system@4#. It can be readily generalized to the interaction
an arbitrary number of Manakov solitons as well. It is note
however, that Eq.~2.36!, together with the constant of mo
tion ~2.34!, can only give the evolution of amplitude diffe
enceDh, velocity differenceDV, and inner product of po-
larization vectors ^c1 ,c2&. The evolution equations fo
individual polarization anglesu1,2 and phase difference
(Df,DF) still need to be provided separately@see Eqs.
~2.19! to ~2.22!#.

III. INTERACTION OF MANAKOV SOLITONS WITH
EQUAL AMPLITUDES

In this section, we consider the interaction of two Man
kov solitons with equal amplitudes. In particular, we foc
on two special but important cases where the two solit
initially have the same velocities and the same or oppo
phases. In these cases, we can give the solution formula
all soliton parameters.

The first case is when the two Manakov solitons initia
have the same velocities and phases. In this case, by p
ization rotation and normalization, the initial conditions f
the ODEs can be written as
03660
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h~0!51, Dh~0!50, V~0!50, DV~0!50,

u1~0!50, u2~0!5u0 , DT~0!5T0 , Df~0!50,
~3.1!

whereu0 is the initial polarization-angle difference andT0 is
the initial soliton separation. It is noted that sinceu1(0)50,
the initial phase differenceDF(0) can be arbitrary, and i
does not affect the solution. Whenu050, the two solitons
are parallel; whenu05p/2 (90°), the solitons are orthogo
nal. Under the above initial conditions, the complete anal
cal solutions are found to be

Dh~z!5T~z!50, ~3.2!

DT~z!5T012 lnucosbzu, ~3.3!

sinu1~z!5sinu0 sin~cos2(1/2)u0e2(1/2)T0 tanbz!,
~3.4!

sinu2~z!5sinu0 cos~cos2(1/2)u0e2(1/2)T0 tanbz!,
~3.5!

sinDf~z!5tanu1~z!tanu2~z!, ~3.6!

DF~z!52
p

2
, ~3.7!

where

b52Acosu0e2(1/2)T0. ~3.8!

We see from these analytical solutions that the two solit
attract each other. At distance

Zc5
p

2b
5

p

4
cos2(1/2)u0e(1/2)T0, ~3.9!

a singularity develops. In the literature, this distance som
times is called the collision distance. Atu050°,

Zc5
p

4
e(1/2)T0, ~3.10!

which has been derived before@2,3,28#. Whenu0 increases
from 0° to 90°, the collision distance steadily increas
Thus neighboring-soliton interference is reduced. Whenu0
590°, the analytical solutions become

Dh~z!5T~z!50, DT~z!5T0 , ~3.11!

u1~z!52e2T0z, u2~z!5
p

2
22e2T0z, ~3.12!

Df~z!5
p

2
, DF~z!52

p

2
. ~3.13!

Thus in this case, the two solitons do not move toward e
other, but their polarizations linearly change over distance
we define the collision distanceZc here as the distance wher
soliton polarizations are changed by 90°, then
6-4
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FIG. 1. Interaction of Manakov solitons ini
tially with equal amplitudes, same phases but d
ferent polarizations. The initial condition is Eq
~3.1! whereu0585° andT057. ~a,b!: contours
of uAu and uBu solutions~numerical simulations!;
~c,d!: soliton positions T1,2 and polarization
anglesu1,2. Crosses and stars are numerical v
ues, and solid and dashed curves are analyt
solutions~3.2!–~3.5!.
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Zc5
p

4
eT0. ~3.14!

This distance is of the order of the square of the collis
distance~3.10! at parallel polarizations whenT0 is large.

The case of initially orthogonal polarizations is quite sp
cial. In this case, the right-hand sides of the amplitude
velocity equations~2.17! and ~2.18! identically vanish for
all distances. Because of this, the higher-order te
@O(e22T0)# become significant and included in these eq
tions. Without them, we do not expect the leading-ord
equations derived above to be asymptotically accurate. H
ever, since the soliton parameters in this case evolve on
distance scaleeT0 ~see explanation above!, the collision dis-
tance is naturally of this order as well. Thus our formu
~3.14! is still qualitatively correct.

The second case is when the two solitons initially ha
the same velocities, but opposite phases. In this case
initial conditions are the same as Eq.~3.1! except that
Df(0)5p now. The complete ODE solutions for this ca
are

DT~z!5T012 ln cosh~bz!, ~3.15!

sinu1~z!5sinu0 sin~cos2(1/2)u0e2(1/2)T0 tanhbz!,
~3.16!

sinu2~z!5sinu0 cos~cos2(1/2)u0e2(1/2)T0 tanhbz!,
~3.17!

and solutions for the other variables as well as the constab
are the same as in the first case. In this second case, the
solitons always repel each other. Whenu050°, the repulsion
is the strongest. Whenu0 increases from 0° to 90°, the re
pulsion becomes weaker and the solitons separate slow
03660
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To check these analytical results, we have simulated
Manakov equations~2.1! and ~2.2! numerically using the
pseudospectral method. First, we consider one particular
with initial condition ~3.1! where the polarization angleu0

585°, and initial separationT057. The contour plots ofuAu
and uBu components are shown in Figs. 1~a,b!, respectively.
As expected from the analysis, the two solitons attract e
other and form a bound state that is periodic inz. We define
the collision distance in the simulation results as one-hal
the bound-state’s period. Then this distance for Figs. 1~a,b! is
Zc582.7, which is marked in Fig. 1~a!. The theoretical value
from formula ~3.9! is Zc588.1, which is quite close to the
numerical value. In Figs. 1~c,d!, we plotted the positionsTn

and polarization anglesun(n51,2) of both solitons at vari-
ous distances~crosses and stars!. The analytical solutions
from Eqs.~3.2! to ~3.5! are also plotted for comparison. A
we can see, the agreement is very good until the two solit
get very close to each other.

Next, we consider the dependence of the collision d
tanceZc on initial separationT0 and initial polarization angle
u0 in the initial condition~3.1!. At three selected polarization
anglesu050°, 85°, and 90°, we have numerically dete
mined the collision distances at various initial separatio
The results are plotted in Fig. 2 as stars, crosses, and
angles respectively. In the same figure, the analytical form
las ~3.9! and ~3.14! are also plotted for comparison~solid
lines!. We see that atu050° and 85°, the numerical an
theoretical collision distances agree very well. This is e
pected, as our first-order perturbation theory is asympt
cally accurate forT0@1 as long asu0Þ90°. In these two
cases, theZc versusT0 curve in log scale is a straight lin
with slope 1

2 at largeT0 values, in agreement with formul
~3.9!. When u0 is very close but not equal to 90°, the nu
merical and analyticalZc values start to diverge quantita
tively at small and moderateT0 values, but they still ap-
6-5
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JIANKE YANG PHYSICAL REVIEW E 65 036606
proach each other at largeT0 values. Whenu0590°, the
analytical formula~3.14! predicts the logZc slope to be 1.
Numerically, this slope is also approximately 1~see Fig. 2!.
Thus the numerical and analytical values are in qualita
agreement. Note that the logZc slope atu0590° is double of
that atu050°, i.e., the collision distance at orthogonal p
larizations is of the order of the square of that at para
polarizations. Thus, the PDM technique would double
transmission capacity compared to parallel-polarization pu
launching. This fact has been demonstrated in the experim
of @14# already. It is noted that whenu0590°, quantitative
disagreement between numerics and theory persists ev
largeT0 values. The reason for this quantitative difference
due to the absence of higher-order terms in our ODE eq
tions ~2.17! and ~2.18!. This has been explained in the te
above.

IV. INTERACTION OF MANAKOV SOLITONS AT
UNEQUAL AMPLITUDES

In this section, we investigate how the amplitude diffe
ence of Manakov solitons affects their interactions. H
again, we consider two special but important cases where
initial solitons have the same velocities and the same or
posite phases.

In the first case, the two Manakov solitons have the sa
initial velocities and phases. By normalization, the init
conditions can be written as

h~0!51, Dh~0!5h0 , V~0!50, DV~0!50,

u1~0!50, u2~0!5u0 , DT~0!5T0 , Df~0!50,
~4.1!

whereh0 is the initial amplitude difference,u0 is the initial
polarization difference, andT0 is the initial soliton separa
tion. In this case, the solution~2.26! for DV2 iDh becomes

FIG. 2. Dependence of the collision distanceZc on initial sepa-
ration T0 and polarization angleu0 in the interaction of initially
equal-amplitude and same-phase Manakov solitons. The initial
dition is given in Eq.~3.1!. The stars, crosses, and triangles a
numerical values foru050°, 85°, and 90°, respectively. The sol
lines are analytical formulas~3.9! and ~3.14!.
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DV2 iDh5 i L̄ tanhS 1

2
i L̄z1C0D , ~4.2!

where

L̄5Ah0
2116e2T0 cosu0,

C052arctanh
h0

Ah0
2116e2T0 cosu0

. ~4.3!

Equation~4.2!, together with Eq.~2.15!, indicates that both
the velocitiesV1,2 and amplitudesh1,2 of the two Manakov
solitons are periodic functions of distancez with period

Zp5
2p

Ah0
2116e2T0 cosu0

. ~4.4!

Naturally, the soliton positionsT1,2 are also periodic func-
tions with the same period@see Eqs.~2.16!, ~2.23!, and
~2.27!#. Note that this period approaches (2p/h0) asT0 ap-
proaches infinity. When amplitude differenceh0 goes to
zero, this period approaches 2Zc , whereZc is the collision
distance given by Eq.~3.9!.

Since the soliton positionsT1,2 now are periodic functions
of distance z, these Manakov solitons form a quas
equidistant bound state. Recall that in the NLS caseu0
50), solitons of different amplitudes also form quasiequid
tant bound states@2–10#. Thus our present results show th
nonparallel polarizations of Manakov solitons still preser
quasiequidistant bound states. Intuitively, the formation
quasiequidistant bound states by both the NLS solitons
Manakov solitons of different amplitudes is easy to und
stand. As is well known, if two NLS solitons have the sam
phase, they attract each other; if they have opposite pha
they repel each other. The same picture holds for Mana
solitons@23,24#. When two NLS or Manakov solitons of dif
ferent amplitudes interact with each other, their phase dif
ences roughly change linearly with distancez ashDhz @see
Eqs. ~2.21! and ~2.22!#. Thus, the attracting and repellin
forces experienced by these solitons when they have
same and opposite phases cancel out, hence quasiequid
bound states are formed. In this quasiequidistant st
amounts of position and amplitude oscillations of individu
solitons are important quantities. To minimize soliton inte
ference, these oscillations should be as small as possib
natural question we ask is how initial polarizations of Man
kov solitons affect the degrees of such oscillations. To
swer this question, we note from Eq.~2.27! that the soliton
separationDT now is

DT~z!5DT01 ln
h0

218e2T0 cosu0~11cosL̄z!

h0
2116e2T0 cosu0

,

~4.5!

where constantL̄ is given in Eq.~4.3!. Thus the amount of
position-separation oscillations is

n-
6-6
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DTmax2DTmin5 lnS 11
16e2T0 cosu0

h0
2 D . ~4.6!

The amount of average-position~T! oscillation can be calcu
lated from Eqs.~4.2! and ~2.23!, and the result is

Tmax2Tmin5
4e2T0 cosu0

uh0u
. ~4.7!

The amount of oscillations in the amplitude differenceDh
can be derived from Eq.~4.2! as

Dhmax2Dhmin5
16e2T0 cosu0

uh0u
. ~4.8!

From these equations, the amounts of amplitude and pos
oscillations in individual Manakov solitons can be easily
ferred. It is clear from the above three equations that asu0
increases from 0 top/2, amount of position and amplitud
oscillations diminish. Thus increasing the initial polarizati
difference of Manakov solitons reduces their interference
particular, at orthogonal polarizations (u05p/2), these oscil-
lations are completely suppressed. So combining the P
technique with amplitude unequalization technique can
duce Manakov-soliton interference drastically. Whenh0 ap-
proaches zero~the equal-amplitude limit!, soliton separation
formula ~4.5! reduces to Eq.~3.3! of the equal-amplitude
case. Under this limit, Eq.~4.5! indicates that if the Manakov
solitons initially are not orthogonal (u0Þp/2), then soliton
separationDT would decrease from its initial positive valu
T0 to large negative values, thus the amount of positi
separation oscillations approaches infinity@see Eq.~4.6!#.
However, we need to keep in mind that one of the ba
assumptions of our perturbation theory is thathDT@1 @see
Eq. ~2.13!#. So whenDT decreases to zero or even furthe
that assumption breaks down, hence, care is needed to i
pret the perturbation results. Direct numerical simulations
the Manakov equations show that solitons do approach e
other and coalesce (DT decreasing to 0!, then form a
z-periodic bound state. But the amount of position-separa
oscillations never goes to infinity as formula~4.6! suggests.
Similar care is needed to interpret Eq.~4.8! under the limit
h0→0. Recall that another assumption of our perturbat
theory is thatDh!h. If h0 is small, butDhmax2Dhmin from
Eq. ~4.8! is still much smaller than 1, then we have foun
that formula~4.8! agrees very well with the numerical simu
lation results. But whenh0 approaches zero so thatDhmax
2Dhmin from Eq. ~4.8! becomesO(1) or larger, then for-
mula ~4.8! breaks down.

How do polarizations of Manakov solitons vary in the
quasiequidistant bound states? Unlike the amplitudes and
sitions, polarization angles of Manakov solitons are not
riodic functions of distancez in general. On top of oscilla-
tions at the same frequency as amplitudes’ and positions’
mean values of polarizations change as well. But both
oscillations and mean-value changes are rather weak c
pared to Manakov solitons at equal amplitudes~see Fig. 1!.
For instance, whenh050.1, u0560°, andT057 in the ini-
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tial condition~4.1!, the changes of the mean values ofu1 and
u2 at z5300 are just about 1023 and 1024, respectively. The
amplitudes of oscillations around the mean values are b
approximately 0.016. Asu0 approaches 90°, polarizatio
functionsu1,2(z) become strictly periodic, but their oscilla
tions still remain weak~see Fig. 4!. From these results, we
conclude that in the quasiequidistant bound states of Ma
kov solitons at unequal amplitudes, variations of polarizat
angles are small and insignificant.

Next, we compare the above analytical results with dir
numerical simulations. Our main analytical result is that a
plitude and position oscillations in the quasiequidista
bound states of unequal Manakov solitons are drastically
duced when the initial solitons become more orthogonalu0
closer to 90°). To check this result, we have simulated
Manakov equations~2.1! and~2.2! with h050.1, T057 and
various u0 values in the initial condition~4.1!. First, we
show in Fig. 3 the numerical results atu050° where initial
Manakov solitons are parallel~scaler case!. It is observed
that a quasiequidistant bound state is formed. The posi
and amplitude oscillations of individual solitons in this sta
are significant. When the initial solitons are made orthogo
(u0590°), the numerical results are presented in Fi
4~a,b!. As one can see, in this case, the position and am
tude oscillations are almost invisible, thus the interference
Manakov solitons is drastically suppressed. These results
in good agreement with the above analytical predictio
In Figs. 4~c,d!, we plotted the numerically obtaine
polarization-angle evolutions of individual solitons a
crosses. These polarization functions are periodic in dista
z, but their variations along distance are very small and qu
insignificant. In the same figures, the analytical polarizat
angles obtained by numerically integrating the ODEs~2.16!
to ~2.22! are shown as solid curves for comparison. T
agreement is quite reasonable.

In the following, we quantitatively investigate how th
polarization anglesu0 and amplitude differenceh0 affect the
amount of position-separation oscillations of Manakov so
tons,DTmax2DTmin . Here we fix the initial soliton separatio
T057. At each of the three polarization anglesu0

FIG. 3. Interaction of Manakov solitons initially with unequa
amplitudes, same phases, and parallel polarizations~numerical
simulation!. The initial conditions are Eq.~4.1! where h050.1,
T057, andu050°.
6-7



-
nd
s

-
e-

JIANKE YANG PHYSICAL REVIEW E 65 036606
FIG. 4. Interaction of Manakov solitons ini
tially with unequal amplitudes, same phases, a
orthogonal polarizations. The initial condition
are Eq. ~4.1! where h050.1, T057, and u0

590°. ~a,b!: contours ofuAu and uBu solutions
~numerical simulations!; ~c,d!: polarization
anglesu1 andu2. Crosses are numerical simula
tion results, and the solid lines are analytical pr
dictions by integrating the ODE systems~2.16!–
~2.22!.
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50°, 60°, and 90°, and at various amplitude-difference v
ues h0, we have run numerical simulations and record
positions of both Manakov solitons at each distancez. The
difference between the largest and smallest separati
DTmax2DTmin , is recorded for each simulation. The resu
are shown in Fig. 5 as stars, crosses, and triangles fou0
50°, 60°, and 90°, respectively. The analytical formula~4.6!
for this quantity is also shown as solid curves for compa
son. We see that the numerical results agree with the ana
cal formula quite well. In particular, it is confirmed numer
cally that orthogonal polarizations almost complete
suppress the interference of unequal-amplitude Mana
solitons. Thus, a combination of launching Manakov solito
along orthogonal polarizations and at different amplitude

FIG. 5. Dependence of the amount of position oscillations
initial polarizationu0 and amplitude differenceh0 in the interaction
of two Manakov solitons initially with unequal amplitudes an
same phases. Here the initial condition is Eq.~4.1! with T057. The
vertical axis isDTmax2DTmin—difference between the largest an
smallest soliton separations. Stars, crosses, and triangles are
quantity at initial polarizationsu050°, 60°, and 90°, respectively
The solid lines are analytical formulas~4.6!.
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most effective in reducing soliton-soliton interactions. Figu
5 also shows that at a fixed polarization angleu0, position
oscillations of Manakov solitons decrease as amplitude
ferenceh0 increases. At moderate and large amplitude d
ferenceh0, the quantitative disagreement between the
and numerics becomes more pronounced. This is underst
able, as our analysis is based on the assumption that am
tudes of Manakov solitons are almost equal. Whenh0 is
moderate or large, that assumption breaks down, thus
analytical prediction becomes less accurate.

In the remaining section, we briefly discuss the interact
of Manakov solitons with unequal amplitudes but oppos
phases. The initial condition for this case is Eq.~4.1! except
that Df(0)5p now. In this case, the constant of motio
~2.24! is

L2516e2T0 cosu02h0
2 . ~4.9!

When uh0u,hc where the critical valuehc is defined as

hc[4e2 ~1/2! T0Acosu0, ~4.10!

constantL is real, thus according to formula~2.27!, the two
Manakov solitons would repel each other. But whenuh0u
.hc , L is purely imaginary, hence the two solitons wou
again form a quasiequidistant bound state. These behav
are analogous to those in the scaler NLS case. The m
difference is that the critical valuehc now depends on the
initial polarization angleu0. As u0 increases from 0° to 90°
the thresholdhc decreases, thus solitons are more likely
form quasiequidistant states. For fixed values of amplitu
differenceh0 and initial separationT0, larger polarization
anglesu0 reduce the escape velocities of solitons in the c
of eventual separation, and reduce the position and ampli
oscillations in the case of quasi equidistant bound-state

n

this
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SUPPRESSION OF MANAKOV SOLITON INTERFERENCE . . . PHYSICAL REVIEW E 65 036606
mation. Thus, interference of Manakov solitons is alwa
reduced when these solitons are more orthogonally po
ized.

V. SUMMARY AND DISCUSSION

In this paper, we have studied the interaction of tw
Manakov solitons by the Karpman-Solov’ev perturbati
method. Under the assumption that these solitons initially
well separated and having nearly the same amplitudes
velocities but arbitrary polarizations, we have derived a
duced set of ordinary differential equations for both solito
parameters. We then solved this reduced system analytic
Our analytical solutions show that, when two Manakov so
tons have the same amplitude and phases, their collision
tance steadily increases as their initial polarizations cha
from parallel to orthogonal. When these solitons have diff
ent amplitudes, a quasiequidistant bound state can
formed. The degrees of position and amplitude oscillation
this bound state diminish as the initial polarizations chan
from parallel to orthogonal. With a combination of launchin
Manakov solitons along orthogonal polarizations and at
ferent amplitudes, interference of Manakov solitons is alm
completely eliminated. These analytical results are confirm
by our direct numerical simulations.

In real fiber communication systems, WDM technology
often utilized. When WDM is combined with PDM, colli
sions of solitons in different channels cause depolarizati
to solitons in the same channel. Thus orthogonalization
neighboring solitons in the same channel cannot be m
tained. But polarizations of neighboring solitons are still
from parallel in the general case. Since our results show
soliton interference is always the worst when their polari
tions are parallel, we conclude that, as far as soliton-sol
interference is concerned, PDM technology still is benefic
even when it is combined with WDM technology. Recent
a popular technology in telecommunication systems is
launch pulses of adjacent channels along orthogonal po
izations~see@29# for instance!. This technology is a modifi-
cation of PDM. The pulses in such transmission systems g
erally are not solitons. But the idea of using orthogon
polarizations to reduce nonlinear pulse-pulse interference
tween different channels is still consistent with our analyti
result that orthogonal polarizations strongly suppress non
ear interactions of Manakov solitons. Another result of o
is that Manakov-soliton interference is almost complet
eliminated when PDM is combined with amplitude no
equalization. It would be interesting to see how well th
combination works in real transmission experiments. We a
note that in communication systems, various perturbation
the Manakov system such as those due to polarization-m
dispersion and amplifier noise are present@1,2,15#. The ef-
fects of such perturbations on Manakov-soliton interactio
can be analyzed by the same perturbation method as us
this paper. But this question falls outside the scope of
present paper.
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APPENDIX

In this appendix, we derive the dynamical equatio
~2.15!–~2.23! for the interaction of two Manakov solitons
These solitons have the form

Ak~ t,z!5hk cosuk sechhk~ t2Tk!exp@ iVk~ t2Tk!1 igk#,

~A1!

Bk~ t,z!5hk sinuk sechhk~ t2Tk!exp@ iVk~ t2Tk!1 iGk#,

~A2!

Tk5E
0

z

Vkdz1T̄k , gk5E
0

z1

2
~hk

21Vk
2!dz1ḡk ,

Gk5E
0

z1

2
~hk

21Vk
2!dz1Ḡk , ~A3!

where amplitudeshk , velocitiesVk , polarization anglesuk ,

position parametersT̄k , and phasesḡk and Ḡk (k51,2) are
all slowly varying over distancez. The slow evolution of
these parameters can be determined by a perturbation th
for the Manakov equations~2.7! and ~2.8!, which has been
developed in@24–27#. From this theory, the dynamical equa
tions for each soliton’s parameters can be readily writt
After simple calculations of relevant integrals that accou
for tail interactions of Manakov solitons, the dynamic
equations become

dhk

dz
5~21!k4h3e2hDT~cosu1 cosu2 sinDf

1sinu1 sinu2 sinDF!, ~A4!

dVk

dz
5~21!k114h3e2hDT~cosu1 cosu2 cosDf

1sinu1 sinu2 cosDF!, ~A5!

duk

dz
5~21!k112h2e2hDT~sinuk cosu32k sinDf

2cosuk sinu32k sinDF!, ~A6!

dgk

dz
5

1

2
~hk

21Vk
2!16h2e2hDT~cosu1 cosu2 cosDf

1sinu1 sinu2 cosDF!

22hVe2hDT~cosu1 cosu2 sinDf

1sinu1 sinu2 sinDF!

12h2e2hDT tanuk~sinuk cosu32k cosDf

2cosuk sinu32k cosDF!, ~A7!
6-9
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dGk

dz
5

1

2
~hk

21Vk
2!16h2e2hDT~cosu1 cosu2 cosDf

1sinu1 sinu2 cosDF!

22hVe2hDT~cosu1 cosu2 sinDf

1sinu1 sinu2 sinDF!

22h2e2hDTcotuk~sinuk cosu32k cosDf

2cosuk sinu32k cosDF!, ~A8!
-
,

i-

nd

e

03660
dTk

dz
5Vk22he2hDT~cosu1 cosu2 sinDf

1sinu1 sinu2 sinDF!, ~A9!

where k51,2, and variablesh, DT, Df, DF have been
defined in Eqs.~2.11!, ~2.12!, and~2.14!. Using these equa
tions, the dynamical equations~2.15!–~2.23! naturally fol-
low.
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