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Suppression of Manakov soliton interference in optical fibers
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In this paper, we study the interaction of two vector solitons in the Manakov equations that govern pulse
transmission in randomly birefringent fibers. Under the assumptions that these solitons initially are well
separated and having nearly the same amplitudes and velocities but arbitrary polarizations, we derive a reduced
set of ordinary differential equations for both solitons’ parameters. We then solve this reduced system analyti-
cally. Our analytical solutions show that, when two Manakov solitons have the same amplitude and phases,
their collision distance steadily increases as their initial polarizations change from parallel to orthogonal. In
particular, the collision distance at orthogonal polarizations is of the order of the square of the collision
distance at parallel polarizations. When the Manakov solitons have different amplitudes, a quasiequidistant
bound state can be formed. The degrees of position and amplitude oscillations in this bound state diminish as
the initial polarizations change from parallel to orthogonal. With a combination of launching Manakov solitons
along orthogonal polarizations and at unequal amplitudes, Manakov-soliton interference is almost completely
suppressed. These theoretical results are in excellent agreement with our direct numerical simulations.
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I. INTRODUCTION bined with wavelength-division multiplexingVDM), it has
been shown that collisions of solitons in different channels
Soliton transmission in optical fibers has been theoretimake neighboring solitons in the same channel nonorthogo-
cally predicted and experimentally demonstrated for over 2(al [18,19. When polarization-mode dispersidRMD) ef-
years(see[1,2] and references therginThe early theoretical fect is included, it was pointed out if20] that the use of
work primarily used the nonlinear Sclifioger (NLS) equa- PDM technique is only preferable to a copolarized pulse
tion as the mathematical model. One of the impairments tarain only if the PMD is sufficiently weak. The interaction of
soliton transmission systems is the interference of neighbomanakov solitons was also considered 1], where it was
ing solitons that cause pulses to move away from their exeonjectured that the soliton parameters satisfy the complex
pected time slots. Within the NLS model, pulse interferenceToda chain. When frequency-filter perturbations are added to
has been comprehensively investigai@e-10. It has been the Manakov system, it was shown[i22] that the collision
shown that when two solitons have the same phase and ardistance of orthogonally polarized solitons substantially in-
plitude, they attract each other; when they have the oppositerease. Interaction of vector solitons in the non-Manakov
phase and same amplitude, they repel each other. If the soltoupled NLS equations was investigated[28,24). It was
tons have different amplitudes, they could form a quasiequishown that stationary multivector-soliton bound states exist
distant bound state. In reality, optical fibers are birefringentput are linearly unstable.
i.e., pulses along two orthogonal polarizations of the fiber Despite the above-mentioned work on Manakov-soliton
travel at slightly different speeds. Over long distances, thisnteractions, many important questions still remain open. For
birefringence is also random due to fiber bending, twistingjnstance, the interaction of Manakov solitons at arbitrary po-
and environmental fluctuations. When this random birefrindarizations has not been investigated. This study is desirable
gence is averaged and small perturbation terms such & in a WDM and PDM system, pulses in the same channel
polarization-mode dispersion neglected, pulse propagation isre generally nonorthogongl8,19. More importantly, with
actually governed by the Manakov equatidid—15. To  the NLS equation, it has been shown that launching adjacent
reduce pulse-pulse interference in birefringent fibers, a techpulses at different amplitudes is effective in suppressing soli-
nique called polarization-division multiplexin®DM) has  ton interactiong5,7—10. How this technique affects the in-
been proposefil4]. In a PDM system, adjacent solitons are terference of Manakov solitons has not been carefully exam-
launched along orthogonal polarizations of the fiber. Experiined.
ments have shown that this technique doubles the transmis- In this paper, we study the interaction of Manakov soli-
sion rate compared to the launching of pulses along the sanens at arbitrary polarizations. Our method is an extension of
polarizations[14,16. Analytically, orthogonal-soliton inter- the Karpman-Solov'ev techniqui8,4]. Assuming that the
actions in the Manakov system has been studied#l by =~ Manakov solitons are well separated and having nearly the
the variational method. It was shown that the collision dis-same amplitudes and velocities but arbitrary polarizations,
tance of initially orthogonal solitons is much longer than thatwe derive the full dynamical equations for both solitons’ am-
of the parallel solitons, thus the benefit of the PDM tech-plitudes, velocities, positions, polarizations, and phases. We
nique was analytically demonstrated. When PDM is com-also solve these reduced equations analytically. Based on
these results, we show that two Manakov solitons with the
same amplitudes and phases attract each other. The collision
*FAX: 802-656-2552; Email address: jyang@emba.uvm.edu  distance increases as the initial polarizations change from
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parallel to orthogonal. In particular, the collision distance at>T;. Picking up the dominant interference terms, each soli-
orthogonal polarizations is of the order of the square of thaton is governed by the following perturbed Manakov equa-
at parallel polarizations. This explains why the PDM tech-tions:
nigue doubles the transmission capacity as reported in the
experiment of{14]. More significantly, we show that two
Manakov solitons with different amplitudes form quasiequi-
distant bound states, similar to the NLS solitons. But position

and amplitude oscillations of individual Manakov solitons in . 1 ) 5

the quasiequidistant state diminish as the initial polarizations Byt 5Bt (A [By*)Be= Gy, 2.9
change from parallel to orthogonal. Combining the above

two results, we show that if Manakov solitons are launchedyhere

along orthogonal polarizations and at unequal amplitudes,

their interference is almost completely suppressed. We have Fy= —2|Ak|2A3_k—AﬁA’g_k—AkBkBg_k—AkB’k‘ Bs
also checked these analytical results against direct numerical )

simulations and good agreement is obtained. ~[Bil*As . 29

) 1
Akt 5 At (APPHBUDA=FG (27)

Gy=—2|B\|?B3_—BZB%_ —BAAY_ —BAA;_
Il. DYNAMICAL EQUATIONS FOR MANAKOV-SOLITON k [Bid™Ba i BicB3-~ BiAAs - BiAcAs

INTERACTIONS —|A?Bs_k. (2.10
The Manakov equations for fiber communication systemsrhe sjow evolution of each soliton’s parameters can be de-
are written ag14,19 rived by a perturbation theory for the Manakov equations
1 (2.7 and (2.8). Such a theory has been developed 24—
AL ZA L 2. |B|2)A= ' 27]. To carry out the calculations, we assume that the two
Az ZA“ (IAI*+[BIHA=0, @ Manakov solitons have nearly the same amplitudes and ve-
locities, and are well separated. But their polarizations are
1 allowed to be arbitrary. Introducing notations
iB,+ =By+(JA|>+|B|?»B=0, (2.2)
2 1 1 1
_ o n=5(mtm), V=5(Vat Vi), T=5(To+Ty),
whereA and B are amplitudes of electrical fields along the 21
fiber's orthogonal polarizationsz is the propagation dis- (2.1
tance, and is the retarded time. Manakov solitons are of the g,
form
A??Eﬂz_ 71, AVEVZ_V]_, AT:TZ_T]_,
A(t,z)=ncosfsechp(t—T)exdiV(t—T)+ivy], (2.12
2.3
our assumptions then are
B(t,z)=nsindsechy(t—T)exdiV(t—T)+il'],
(2.4) |Ag|<n, |AV|<|V|, 7AT>1, |ApAT|<1.

(2.13

T=Vz+T, y= 5(772+V2)z+? = }(772+V2)Z+F, It is noted that the Manakov systef.1) and (2.2) is Gal-
2 2 ilean invariant. Thus it is always possible to choose a refer-
(25 ence frame in whicv=0. If this is done, then the condition

, _ o » on velocity difference\V is simply|AV|<1. We also intro-
where amglltudey, velogtyv,_polarlzatlon angle, position duce the notations
parameteil, and phasey andI’ are all constants. When two
Manakov solitons are placed adjacent to each other, they Ap=Ay—VAT, AP=AT-VAT, (2.19
would interfere through tail overlapping. To study this inter-
ference, the idea of Karpman and Soloviev perturbationVhereAy=y,—y; andAI'=I',—1I';. Under these assump-
method[3,4] is to treat this interference as a small perturba-ions and notations, and after some simple calculations, we
tion to each soliton. To leading order, the solution is simply aoPtain the following dynamical equations for the two Mana-

superposition of two Manakov solitons kov solitons’ parameter&he details are given in the Appen-
dix):
A=A;+A,, B=B;+B,, (2.6) dp dv
——=—-—-=0, (2.15

where @, ,B,) are of the form(2.3) and (2.4), and all pa- dz dz
rameters have indicdg k=1,2) and slowly vary over dis-
tancez. For convenience, we assign the left soliton with in- d(AT) _AV (2.16
dex k=1 and the right soliton with indek=2. ThusT, dz ' ’
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d(A
(d Zn) =87% "T(cos#, cosb, sinA ¢
+sin#,sinf,sinA®D), (2.17
d(AV
(dz ) —87% "T(cosb, cosé, cosA ¢
+sinf, sinf, cosAd), (2.18
de
d—zl=2772e‘ 7AT(sin @, cosé, sinA ¢
—c0sf, sinf,SINAD), (2.19
de
d_22 =—2n%e " T(cosh, sinb,sinA ¢
—sin#, cosf, SiNAD), (2.20
d(A
(d—z@: nAn+25%e” T cosA ¢
cog 0, sirfh,—sirf 6, cos b,
X , (2.2)
cos6, cosé,
d(A®
(4%) =pAn—27n%e "TcosAd
dz
cog 6, sirf#,—sirf 6, cos b,
X - - , (2.22
sinf,sin 6,
4 27y 2.2
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(AV—iA7)%2—16n%e "™T(cosh, cosh,e'*?
+5sin6; sinh,e'2?)=A2, (2.24
Utilizing this conserved quantity, the equation fdV
—iAn can be simplified as
d . 1 :
d—Z(AV—IAn)=EU[AZ—(AV—IAn)Z], (2.29

whose solution is

1
AV—iAnzAtanl—(EnAanCo , (2.26

whereC, is a complex constant that is determined from the
initial conditions of AV and A#z. When AV has been ob-
tained from the above formul@T can be given from Eq.
(2.16 as

1
cosl‘( > nAz+Cgy

AT=Ty+ ;In (2.27

coshCy
Together with Eq(2.23, the positionsT, , for both solitons
can be obtained for any distanee When solutiong2.26)
and(2.27) are substituted into the constant of moti@24),
we find that the polarization angle® , and phase differ-
ences A ¢, Ad) satisfy the following complex-valued rela-
tion:

cos6; cosd,e'*?+sin g, sin 6,e'*®
cos : A*z+C?
A2€7]T0 277 0

=— , (2.28
167%|coshC|? 1
7 o cosl‘(znAerCo

where superscript * denotes complex conjugation. This rela-

The above equations are the leading-order evolution equaion itself is not enough to determine polarization angles and
tions for soliton parameters in the Karpman-Solov’ev perturphase differences individually. However, in some special but
bation theory. The small parameter in this perturbationmportant cases, we have succeeded in obtaining the analyti-
theory ise” (27T where T,=AT(0) is the initial soliton  cal formulas for polarization angles and phase differences as
separation. Indeed, in the generic case, the above equationgll (see Sec. I\

indicate thatAT,,, A¢,,, andA®,, are of the ordee™ "To, Several interesting facts are worth mentioning here. If the
Thus, soliton parameters evolve on the slow distance scal@lanakov solitong2.3) and(2.4) are written in the compact
e7To_|n the special case when the leading-order terms itvector form

the amplitude and velocity equatiof®.17) and(2.18 van-

ish, which happens for initially orthogonal solitofsee be- A
low), soliton parameters will evolve on the slow distance B
scalee”o instead. In this case, higher-order terms in the

above evolution equations will be needed in order for thewhere
perturbation theory to be asymptotically correct. We will not B
pursue such higher-order corrections in this paper. Lastly, we _[cosoe
note that whend,;=6,=0, the above equations reduce to singe”
those of the NLS equatiof2—4].

The above ordinary differential equatiof@DES can be s the(complex polarization vectof11], then under our pre-
solved analytically. Similar to the ODEs for the NLS equa-vious assumptiong2.13 and notations(2.14), the inner
tion, these ODEs have a complex constant of motion that w@roduct of polarization vectokg, ,c,) of two Manakov soli-
denote as\? [2,3], tons is

>= nsechy(t—T)e'Vic, (2.29

(2.30

iVT+iy
iVT+iF)
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(C1,C)=CF - c,=c0s6, cosh,e'*?+sin g, sin h,e'4P. 7(0)=1, Ap(0)=0, V(0)=0, AV(0)=0,

2.3
(230 61(0)=0, 6,(0)=6y, AT(0)=To, A¢(0)=0,
It is easy to show from Eq$2.15 to (2.22, AV—iA» and (3.2

(c1,C,) satisfy the following equations:
whered, is the initial polarization-angle difference aig is

the initial soliton separation. It is noted that singg€0)=0,

the initial phase differenca®(0) can be arbitrary, and it
does not affect the solution. Wheiy=0, the two solitons

d ) are parallel; wherdy=7/2 (90°), the solitons are orthogo-
gz CuC) =inAn{cy,Cp). (233 pal. Under the above initial conditions, the complete analyti-
cal solutions are found to be

d i 3a— 7AT
d_Z(AV_|A7]):_87] e’ <Cllc2>! (232

In addition, the constant of motiof2.24) becomes

Axn(z)=T(z)=0, (3.2
(AV—iAn)?2—167n% "¢, c)=A%  (2.39
AT(z)=Ty+ 2 In|cosBz, (3.3
Some important conclusions readily follow from E¢§8.32
and(2.33. Two Manakov solitons are said to be orthogonal sin 6,(z) =sin 6§, sin(cos M2 gye~ V2T tanBz),
if the inner productc,,c,) of their polarization vectors is (3.4
zero. Equation$2.32 and(2.33 indicate that, if the Mana- . ] W2 am (T
kov solitons are initially orthogonal, they will remain or- sin,(z) =sin f, cog cos "~ oe °tanpz),
thogonal forever. In addition, their velocity and amplitude 3.9
differencesAV andA » will remain constant throughout evo- SiNA ¢(2) =tand,(2)tan,(2), 3.6

lution. We remind the reader that when two Manakov soli-
tons remain orthogonal, their polarization angigs, may

still vary (see Fig. 4 Ad(z)=— z, (3.7
Defining the complex variable 2

Y=—pAT+In(c;,cy), (2.35  Where

then it can be shown from Eq$2.15 to (2.33 that the B=2\/cospe” H2)To, (3.9

equation forY'is closed, We see from these analytical solutions that the two solitons

d2y attract each other. At distance
d—zzzsn“eY. (2.36 o
Z=55=% cos (#2gye(M2To, (3.9

When 6,= 60,=0, this equation reduces to that of the NLS

system[4]. It can be readily generalized to the interaction ofa singularity develops. In the literature, this distance some-
an arbitrary number of Manakov solitons as well. It is noted,times is called the collision distance. 84=0°,
however, that Eq(2.36), together with the constant of mo-

tion (2.34), can.only_ give the evolutiqn of amplitude differ- 7 :ze(1/2)To

enceA 7, velocity differenceAV, and inner product of po- © 4 ’

larization vectors(c;,c;). The evolution equations for _ _ _
individual polarization anglesd; , and phase differences Which has been derived befof2,3,28. When 6, increases
(Ap,Ad) still need to be provided separatelgee Egs. from 0° to 90°, the collision distance steadily increases.

(3.10

(2.19 to (2.22]. Thus neighboring-soliton interference is reduced. Widgn
=90°, the analytical solutions become
I1I. INTERACTION OF MANAKQOV SOLITONS WITH An(2)=T(2)=0, AT(z)=T,, (3.11)
EQUAL AMPLITUDES

In this section, we consider the interaction of two Mana-
kov solitons with equal amplitudes. In particular, we focus
on two special but important cases where the two solitons
initially have the same velocities and the same or opposite ™ ™
phases. In these cases, we can give the solution formulas for Ad(2)= 2 A®(z)=— 2 (3.13
all soliton parameters.

The first case is when the two Manakov solitons initially Thus in this case, the two solitons do not move toward each
have the same velocities and phases. In this case, by polasther, but their polarizations linearly change over distance. If
ization rotation and normalization, the initial conditions for we define the collision distané. here as the distance where
the ODEs can be written as soliton polarizations are changed by 90°, then

o
6.(z)=2e"Toz, 0,(2)= E—Ze‘TOZ, (3.12
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FIG. 1. Interaction of Manakov solitons ini-
tially with equal amplitudes, same phases but dif-
ferent polarizations. The initial condition is Eq.
(3.1) where ,=85° andTy=7. (a,b: contours
of |A| and|B| solutions(numerical simulations

80 R 80 e (c,d: soliton positions T;, and polarization
*; % iex* anglesé, ,. Crosses and stars are numerical val-
60 * 60 * ues, and solid and dashed curves are analytical
i ﬁ solutions(3.2—(3.5).
z * Z *
40 i 40 1
20 i 20 i
b 1
! !
%0 5 o _ 5 10 L . /2
positions Tk polarization angles 8,
T To check these analytical results, we have simulated the
Zc:ZeTO- (3.149 Manakov equationg2.1l) and (2.2) numerically using the

pseudospectral method. First, we consider one particular case

This distance is of the order of the square of the collisionWith initial condition (3.1) where the polarization anglé,
distance(3.10 at parallel polarizations whef, is large. =85°, and initial separatiofy="7. The contour plots OfA|

The case of initially orthogonal polarizations is quite spe-and|B| components are shown in Figsalh), respectively.
cial. In this case, the right-hand sides of the amplitude and\s expected from the analysis, the two solitons attract each
velocity equations(2.17) and (2.18 identically vanish for other and form a bound state that is periodizie define
all distances. Because of this, the higher-order termshe collision distance in the simulation results as one-half of
[O(e 2T0)] become significant and included in these equathe bound-state’s period. Then this distance for Figa,dLis
tions. Without them, we do not expect the leading-orderZ.=82.7, which is marked in Fig.(&). The theoretical value
equations derived above to be asymptotically accurate. Howfrom formula (3.9) is Z.=88.1, which is quite close to the
ever, since the soliton parameters in this case evolve on thumerical value. In Figs.(t,d), we plotted the positions,,
distance scale' (see explanation abokethe collision dis-  and polarization angleg,(n=1,2) of both solitons at vari-
tance is naturally of this order as well. Thus our formulagg distancegcrosses and starsThe analytical solutions

(3.14 is still qualitatively correct. _ . from Egs.(3.2) to (3.5) are also plotted for comparison. As
The second case is when the two solitons initially hav

" ) . e can see, the agreement is very good until the two solitons
the same velocities, but opposite phases. In this case, t

Hie e Rt very close to each other.
initial conditions are the same as E(B.1) except that

- ; . Next, we consider the dependence of the collision dis-
A#(0)=m now. The complete ODE solutions for this case (ancez on initial separatiofT, and initial polarization angle

are 6, in the initial condition(3.1). At three selected polarization
angles ,=0°, 85°, and 90°, we have numerically deter-
AT(2)=To+2IncostiBz), (3.19 mir?ed tr?e collision distances at various initial segarations.
The results are plotted in Fig. 2 as stars, crosses, and tri-
angles respectively. In the same figure, the analytical formu-
(3.16 las (3.9 and (3.14 are also plotted for comparisosolid
lines). We see that at,=0° and 85°, the numerical and
sin 6,(z) = sin 6, cog cos (Y2 g,e~ Y2TotanhBz), theoretical collision distances agree very well. This is ex-
(3.17  pected, as our first-order perturbation theory is asymptoti-

cally accurate fofTp>1 as long asfy#90°. In these two
and solutions for the other variables as well as the congtant cases, th&, versusT, curve in log scale is a straight line

are the same as in the first case. In this second case, the twath slope; at largeT, values, in agreement with formula
solitons always repel each other. Whigy=0°, the repulsion  (3.9). When 6, is very close but not equal to 90°, the nu-
is the strongest. When,, increases from 0° to 90°, the re- merical and analyticaZ. values start to diverge quantita-
pulsion becomes weaker and the solitons separate slower. tively at small and moderaté&, values, but they still ap-

sin 6,(z) = sin #, sin(cos M2 gye~ V2TotanhBz),
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10° _ — 1
AV—iAnp=iAtanh 5iAz+Cy|, (4.2

N° 2
3
< where
@ _
o A=+/75+16e” Tocosb,,
g
3 Co= —arctanh= o . (4.3

. . \7n5+16e”Tocosé,

5 6 7 .8 9

initial separation T, Equation(4.2), together with Eq(2.15), indicates that both

the velocitiesV, , and amplitudesy, , of the two Manakov

FIG. 2. Dependence of the collision distargon initial sepa-  ggjitons are periodic functions of distanzevith period
ration T, and polarization anglé, in the interaction of initially

equal-amplitude and same-phase Manakov solitons. The initial con-
dition is given in Eq.(3.1). The stars, crosses, and triangles are 7 = 2m
numerical values foP,=0°, 85°, and 90°, respectively. The solid P \/,7(2)+ 16e~Tocos6,
lines are analytical formula3.9) and(3.14).

(4.9

Naturally, the soliton position3, , are also periodic func-
proach each other at largg, values. Whenf,=90°, the tions with the same perioflsee Eqgs.(2.16, (2.23, and
analytical formula(3.14 predicts the log, slope to be 1. (2.27)]. Note that this period approaches#/2;,) asT, ap-
Numerically, this slope is also approximatelysee Fig. 2  proaches infinity. When amplitude differenog, goes to
Thus the numerical and analytical values are in qualitativezero, this period approacheg 2 whereZ, is the collision
agreement. Note that the |dg slope atd,=90° is double of distance given by Eq3.9).
that atf,=0°, i.e., the collision distance at orthogonal po-  Since the soliton positiori§; , now are periodic functions
larizations is of the order of the square of that at parallelof distance z, these Manakov solitons form a quasi-
polarizations. Thus, the PDM technique would double theequidistant bound state. Recall that in the NLS cadg (
transmission capacity compared to parallel-polarization pulse-0), solitons of different amplitudes also form quasiequidis-
launching. This fact has been demonstrated in the experimepint bound state2—10]. Thus our present results show that
of [14] already. It is noted that whefi,=90°, quantitative nonparallel polarizations of Manakov solitons still preserve
disagreement between numerics and theory persists even @iasiequidistant bound states. Intuitively, the formation of
large T, values. The reason for this quantitative difference isquasiequidistant bound states by both the NLS solitons and
due to the absence of higher-order terms in our ODE equavianakov solitons of different amplitudes is easy to under-
tions (2.17) and (2.18. This has been explained in the text stand. As is well known, if two NLS solitons have the same
above. phase, they attract each other; if they have opposite phases,

they repel each other. The same picture holds for Manakov

V. INTERACTION OF MANAKOV SOLITONS AT solitons[23,_24]. When two NLS or Manakov so.Iitons of dif—
' UNEQUAL AMPLITUDES ferent amplitudes interact with each other, their phase differ-
ences roughly change linearly with distarcas 7A 5z [see

In this section, we investigate how the amplitude differ-Eds. (2.21 and (2.22)]. Thus, the attracting and repelling
ence of Manakov solitons affects their interactions. Hergforces experienced by these solitons when they have the
again, we consider two special but important cases where tfg@me and opposite phases cancel out, hence quasiequidistant
initial solitons have the same velocities and the same or opPound states are formed. In this quasiequidistant state,
posite phases. amounts of position and amplitude oscillations of individual

In the first case, the two Manakov solitons have the samégolitons are important quantities. To minimize soliton inter-
initial velocities and phases. By normalization, the initial ference, these oscillations should be as small as possible. A
conditions can be written as natural question we ask is how initial polarizations of Mana-

kov solitons affect the degrees of such oscillations. To an-
swer this question, we note from E@.27) that the soliton
7(0)=1, An(0)=m, V(0)=0, AV(0)=0, separatiolAT now is
6,(0)=0, 6,(0)=6,, AT(0)=To,, AH(0)=0, n2+8e~T0coshy(1+cosAz)
: 75+ 16e™ "0 cosd,

(4.9
where 7, is the initial amplitude difference, is the initial .
polarization difference, and is the initial soliton separa- where constanf\ is given in Eq.(4.3). Thus the amount of
tion. In this case, the solutiof2.26) for AV—iA»n becomes position-separation oscillations is
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16e~ Tocosé (a)
0
AT o ATin=In| 1+ —————|. (4.6
7o o
200 |A|
The amount of average-positi@m) oscillation can be calcu- O
lated from Eqgs(4.2) and(2.23, and the result is 150 o
z
4e Tocosé, 100 o
Tmax™ Tmin= |770| 4.7
50 ©
The amount of oscillations in the amplitude differentey O
can be derived from Ed4.2) as % " o 10
16e~ Tocosé, t
A Nmax— A 7min= [70] (4.9 FIG. 3. Interaction of Manakov solitons initially with unequal

amplitudes, same phases, and parallel polarizationsnerical

From these equations, the amounts of amplitude and positigtimulation. The initial conditions are Eq(4.1) where 7=0.1,
oscillations in individual Manakov solitons can be easily in- To=7, and6p=0°.
ferred. It is clear from the above three equations thadas
increases from 0 ter/2, amount of position and amplitude tial condition(4.1), the changes of the mean valuesvgfand
oscillations diminish. Thus increasing the initial polarization 6, atz=300 are just about I and 10 4, respectively. The
difference of Manakov solitons reduces their interference. Iramplitudes of oscillations around the mean values are both
particular, at orthogonal polarization84= /2), these oscil- approximately 0.016. A9, approaches 90°, polarization
lations are completely suppressed. So combining the PDNunctions 6, ,(z) become strictly periodic, but their oscilla-
technique with amplitude unequalization technique can retions still remain weak'see Fig. 4. From these results, we
duce Manakov-soliton interference drastically. Whgnap-  conclude that in the quasiequidistant bound states of Mana-
proaches zer@the equal-amplitude limjif soliton separation kov solitons at unequal amplitudes, variations of polarization
formula (4.5 reduces to Eq(3.3) of the equal-amplitude angles are small and insignificant.
case. Under this limit, Eq4.5) indicates that if the Manakov Next, we compare the above analytical results with direct
solitons initially are not orthogonaldg# 7/2), then soliton  numerical simulations. Our main analytical result is that am-
separatiomMT would decrease from its initial positive value plitude and position oscillations in the quasiequidistant
T, to large negative values, thus the amount of positionbound states of unequal Manakov solitons are drastically re-
separation oscillations approaches infinjsee Eq.(4.6)]. duced when the initial solitons become more orthogoigl (
However, we need to keep in mind that one of the basicloser to 90°). To check this result, we have simulated the
assumptions of our perturbation theory is thet T>1 [see = Manakov equation§2.1) and(2.2) with 7,=0.1, To=7 and
Eqg. (2.13]. So whenAT decreases to zero or even further, various 6, values in the initial condition4.1). First, we
that assumption breaks down, hence, care is needed to inteshow in Fig. 3 the numerical results &§=0° where initial
pret the perturbation results. Direct numerical simulations oManakov solitons are paralléscaler case It is observed
the Manakov equations show that solitons do approach eadhat a quasiequidistant bound state is formed. The position
other and coalesceA(T decreasing to 9 then form a and amplitude oscillations of individual solitons in this state
z-periodic bound state. But the amount of position-separatiomre significant. When the initial solitons are made orthogonal
oscillations never goes to infinity as formul.6) suggests. (6,=90°), the numerical results are presented in Figs.
Similar care is needed to interpret E4.8) under the limit  4(a,b. As one can see, in this case, the position and ampli-
70— 0. Recall that another assumption of our perturbatiortude oscillations are almost invisible, thus the interference of
theory is thatA < 5. If g is small, butA 7,2 A 7min from Manakov solitons is drastically suppressed. These results are
Eq. (4.9 is still much smaller than 1, then we have foundin good agreement with the above analytical predictions.
that formula(4.8) agrees very well with the numerical simu- In Figs. 4c,d, we plotted the numerically obtained
lation results. But wheny, approaches zero so thAty,.x  polarization-angle evolutions of individual solitons as
—Anmin from Eq. (4.8) becomesO(1) or larger, then for- crosses. These polarization functions are periodic in distance
mula (4.8) breaks down. z, but their variations along distance are very small and quite
How do polarizations of Manakov solitons vary in theseinsignificant. In the same figures, the analytical polarization
quasiequidistant bound states? Unlike the amplitudes and pengles obtained by numerically integrating the OQE4.6)
sitions, polarization angles of Manakov solitons are not peto (2.22 are shown as solid curves for comparison. The
riodic functions of distance in general. On top of oscilla- agreement is quite reasonable.
tions at the same frequency as amplitudes’ and positions’, the In the following, we quantitatively investigate how the
mean values of polarizations change as well. But both the@olarization angleg, and amplitude difference, affect the
oscillations and mean-value changes are rather weak comamount of position-separation oscillations of Manakov soli-
pared to Manakov solitons at equal amplitudsse Fig. 1L tons,AT . ATnin- Here we fix the initial soliton separation
For instance, whemy=0.1, ,=60°, andTy=7 inthe ini- Ty=7. At each of the three polarization angle§,

036606-7



JIANKE YANG PHYSICAL REVIEW E 65 036606

200 |A| 200 1]
150 150
z z
100 100
FIG. 4. Interaction of Manakov solitons ini-
50 50 tially with unequal amplitudes, same phases, and
orthogonal polarizations. The initial conditions
_010 -5 0 5 10 _010 -5 0 5 10 are Eq. (4.1) where 7]0=0.1, T0=7, and 00
t t =90°. (a,b: contours of|A| and|B| solutions
(numerical simulations (c,d): polarization
X X angleséd; and #,. Crosses are numerical simula-
200 200 LN X% tion results, and the solid lines are analytical pre-
XXX dictions by integrating the ODE syster(s16)—
150 150 93<§<xxx e (2.22.
z z
X X %
100 100 o <
50 50 X X
Foi S .
0 0
0.04 1.52 1.58

0.02 154 156
polarization 6, polarization 6,

=0°, 60°, and 90°, and at various amplitude-difference val-most effective in reducing soliton-soliton interactions. Figure
ues 7, we have run numerical simulations and recordeds also shows that at a fixed polarization anglg position
positions of both Manakov solitons at each distamc&he  oscillations of Manakov solitons decrease as amplitude dif-
difference between the largest and smallest separationfgrencer, increases. At moderate and large amplitude dif-
AT max—ATmin, IS recorded for each simulation. The resultsference 7y, the quantitative disagreement between theory
are shown in Fig. 5 as stars, crosses, and trianglegfor and numerics becomes more pronounced. This is understand-
=0°, 60°, and 90°, respectively. The analytical form#e)  able, as our analysis is based on the assumption that ampli-
for this quantity is also shown as solid curves for compari-tudes of Manakov solitons are almost equal. Whegnis

son. We see that the numerical results agree with the analytinoderate or large, that assumption breaks down, thus the
cal formula quite well. In particular, it is confirmed numeri- analytical prediction becomes less accurate.

cally that orthogonal polarizations almost completely Inthe remaining section, we briefly discuss the interaction
suppress the interference of unequal-amplitude Manakoof Manakov solitons with unequal amplitudes but opposite
solitons. Thus, a combination of launching Manakov solitonsphases. The initial condition for this case is E4.1) except
along orthogonal polarizations and at different amplitudes ighat A ¢(0)= = now. In this case, the constant of motion

(2.29 is
g 08 2 T 2
§ A“=16e" '0cosby— 75. 4.9
% 06 - . _
c When| .| < 5. where the critical valuey, is defined as
204
5 n.=4e" Y2 To\/cosh,, (4.10
§ 0.2
S constantA is real, thus according to formul@.27), the two
2 Manakov solitons would repel each other. But wHep|
Q >, A is purely imaginary, hence the two solitons would

0 05 again form a quasiequidistant bound state. These behaviors

are analogous to those in the scaler NLS case. The main

FIG. 5. Dependence of the amount of position oscillations onfj'fference is that the critical valug. now depends on the

initial polarizationd, and amplitude difference, in the interaction initial polarization angleo. As 0o 'ncreases from 0° to_ 00°,

of two Manakov solitons initially with unequal amplitudes and the thresholdy. decreases, thus solitons are more likely to
same phases. Here the initial condition is B1) with To=7. The form quasiequidistant states. For fixed values of amplitude
vertical axis iSA Ty~ AT—difference between the largest and difference », and initial separatiorly, larger polarization
smallest soliton separations. Stars, crosses, and triangles are tf@8glesf, reduce the escape velocities of solitons in the case
quantity at initial polarization®,=0°, 60°, and 90°, respectively. Of eventual separation, and reduce the position and amplitude
The solid lines are analytical formul#4.6). oscillations in the case of quasi equidistant bound-state for-

01 02 03 04
amplitude difference n 0
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mation. Thus, interference of Manakov solitons is always0174, and by the National Science Foundation under Grant
reduced when these solitons are more orthogonally polaiNo. DMS-9971712.
ized.

V. SUMMARY AND DISCUSSION APPENDIX

In this paper, we have studied the interaction of two !N this appendix, we derive the dynamical equations
Manakov solitons by the Karpman-Solov'ev perturbation(2-15)_(2-?3) for the interaction of two Manakov solitons.
method. Under the assumption that these solitons initially ard hese solitons have the form
well separated and having nearly the same amplitudes and
velocities but arbitrary polarizations, we have derived a re- Ax(t,2)= 7y coséy sechn,(t—T)exdiV(t—Ty) +iy,
duced set of ordinary differential equations for both solitons’ (A1)
parameters. We then solved this reduced system analytically.

Our analytical solutions show that, when two Manakov soli- B,(t,z)= 7, sin 6, sechy (t—T)exd iV (t—T ) +il'\],

tons have the same amplitude and phases, their collision dis- (A2)
tance steadily increases as their initial polarizations change

from parallel to orthogonal. When these solitons have differ- z _ 2, _

ent amplitudes, a quasiequidistant bound state can be T«= fo Vidz+ Ty, %= fog(ﬂkaVk)dZJr Yk

formed. The degrees of position and amplitude oscillations in
this bound state diminish as the initial polarizations change
from parallel to orthogonal. With a combination of launching = fzi(aner)dHF (A3)
Manakov solitons along orthogonal polarizations and at dif- k™ Jo2 Tk Tk ko
ferent amplitudes, interference of Manakov solitons is almost
completely eliminated. These analytical results are confirmegvhere amplitudes;, , velocitiesV,, polarization angle,,
by our direct numerical simulations. - = — =
. S ._position parameter$,, and phasey, andI'y (k=1,2) are

In rea_\l_ﬂber communlcatlo_n syster_ns, WDM technology Sall slowly varying over distance. The slow evolution of
o_ften Ut'l'ze.d' When .WDM is combined with PDM, FO”'.' these parameters can be determined by a perturbation theory
sions of solitons in different channels cause depolarization r the Manakov equation€.7) and (2.8), which has been
to solitons in the same channel. Thus orthogonalization OEOeveloped if24—27. From tHis theory. tr;e dynamical equa-
nglghborlng SOI't.OnS. in the same channel_cannot be.ma'nﬁons for each soliton’s parameters can be readily written.
tained. But polarizations of neighboring solitons are still farAfter simple calculations of relevant integrals that account

from parallel in the general case. Since our results show th%r tail interactions of Manakov solitons, the dynamical

soliton interference is always the worst when their pOIa”Za'equations become

tions are parallel, we conclude that, as far as soliton-soliton
interference is concerned, PDM technology still is beneficial

even when it is combined with WDM technology. Recently, Tk =(—1)*4 7% "T(cosh, cosh, SinA ¢
a popular technology in telecommunication systems is to dz
launch pulses of adjacent channels along orthogonal polar- +5in 6, sin 6, sinAd), (A%)

izations(see[29] for instance. This technology is a modifi-

cation of PDM. The pulses in such transmission systems gen-

erally are not solitons. But the idea of using orthogonal — Ko (—1)ktig n3e” "T(cos6, cosf, COSA ¢
polarizations to reduce nonlinear pulse-pulse interference be- z

tween different channels is still consistent with our analytical
result that orthogonal polarizations strongly suppress nonlin-
ear interactions of Manakov solitons. Another result of ours do
is that Manakov-soliton interference is almost completely k_ (—1)k* 1226~ 7AT(sin 6, cosfs_, SiNA ¢

+sin#, sinf, cosAD), (A5)

eliminated when PDM is combined with amplitude non- dz
equalization. It would be interesting to see how well this
combination works in real transmission experiments. We also

note that in communication systems, various perturbations to

the Manakov system such as those due to polarization-mode dyx

—C0S6, Sinf;_, SINAD), (AB)

1
5 ne+V3)+67n%e” 7T (cosh, cosh, cosA ¢

dispersion and amplifier noise are presgh®,15. The ef- dz

fects of such perturbations on Manakov-soliton interactions ) )

can be analyzed by the same perturbation method as used in +sing; sing, cosAd)

this paper. But this question falls outside the scope of the —2pVe "T(cosf; cosf,sinA ¢

present paper.
+sin#;sinf,sinA®)
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1
4z~ 2! ne+VE) +67n% "T(cosh, cosh, CosA ¢

+sin#, sinf, cosAD)

—2nVe "T(cosh, cosb, sinA ¢
+sinf;sin, SINAD)

—27°e” "Tcot f,(sin 6, coshz_ COSA ¢

—C0S6, Sinf;_ COSAD), (A8)
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dTy — AT i
E=Vk—2ne 781 (cosfq cosh, SinA ¢

+sin#, sinf,sinAdD), (A9)

wherek=1,2, and variables;, AT, A¢, A® have been

defined in Egs(2.11), (2.12, and(2.14). Using these equa-

tions, the dynamical equatior®.15—(2.23 naturally fol-

low.
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