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Internal oscillations and instability characteristics of „2¿1…-dimensional solitons
in a saturable nonlinear medium

Jianke Yang*
Department of Mathematics and Statistics, University of Vermont, Burlington, Vermont 05401

~Received 19 April 2002; published 13 August 2002!

Two related problems on scalar (211)-dimensional solitons in a saturable nonlinear medium are investi-
gated. The first one is the internal oscillations of fundamental~single-hump! solitons. Internal modes which
cause these oscillations, both with and without angular dependence, are discovered. The visual effect of
angle-dependent internal modes on the soliton can be a rotation or spatially uneven breathing of the perturbed
soliton. These internal oscillations are very robust and persist for a very long distance. The second problem is
the instability of double-hump and radially symmetric solitons. Unstable eigenmodes of these solitons are
presented. Contrary to intuition, the instability growth rates decrease to zero when the soliton power becomes
high. Thus the instability is strongly suppressed at high powers. This phenomenon is corroborated by our direct
numerical simulations.
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I. INTRODUCTION

Spatial solitons are under intensive study these days
to their novel physics as well as application potentials. In
11 dimensions@(111)D#, fundamental~single-hump! soli-
tons for both the Kerr~cubic! and saturable nonlinearities a
linearly stable@1,2#. In 211 and 311 dimensions, funda-
mental solitons with a saturable nonlinearity are stable@3–5#,
but fundamental Kerr solitons exhibit critical collapse@6,7#.
Multihump solitons in a saturable medium are linearly u
stable@8,9,4#. Evolution of a Gaussian beam in a (211)D
saturable medium was studied in@10#. Recurrence of the
field as well as azimuthal-symmetry breaking was observ
Internal oscillations of (311)D fundamental solitons with
saturable nonlinearity were examined in@12#. Radially sym-
metric internal modes were determined. In addition, it w
shown that radiation damping of internal oscillations is ve
slow ~algebraicly!. Collision of (311)D fundamental soli-
tons with saturable nonlinearity was investigated in@11#.
Last, there is a large body of work on the stability as well
collision of vector solitons in a saturable nonlinear mediu
@13–22#.

Internal oscillations of stable solitons are important for
least two reasons. The first reason is for the understandin
single-soliton dynamics under perturbations. Laser beam
experiments are rarely perfect soliton states; rather they
solitons perturbed by various experimental factors. In so
experiments, regular beam patterns were observed@23#. Such
patterns could be induced by internal modes of solitons
be manifestations of internal oscillations. The second
probably more important reason is for the understanding
collision dynamics of such solitons. If internal oscillation
exist, solitons during collision can temporarily store some
the translational energy in these internal oscillations and
trieve this energy after the collision. This energy exchan
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mechanism can induce very complex collision structu
such as window sequences and even fractal structures@24–
26#. So far, collisions of (211)D and (311)D fundamental
solitons have been studied to some extent@22,21,11#, but a
better understanding of such collision processes require
good knowledge of internal oscillations in these solitons.
(211)D, robust radially symmetric oscillations of soliton
were observed in@10#, but it is not clear whether such osci
lations are induced by internal modes or radiation modes
the solitons. In addition, the possibility of angle-depend
internal oscillations was not explored. In (311)D, internal
oscillations and radiation damping were investigated in@12#.
But again, that study only focused on radially symmet
internal modes. In fact, radially asymmetric internal mod
also abound, and they can induce more interesting evolu
dynamics to the underlying soliton, as we will see later
this paper.

On the problem of the instability of multihump soliton
with saturable nonlinearity in 211 and 311 dimensions,
one interesting feature which was implicit but not elabora
upon in @8,9,4# is that the instability growth rate of suc
solitons is reduced when the soliton power is high~see also
@29# for similar results in a cubic-quintic medium!. This phe-
nomenon is somewhat unexpected, as conventional wis
says that higher power leads to stronger instability. So
physicists may argue that this phenomenon is not unexpe
since in a saturable medium, changes in the refractive in
become smaller as the intensity increases; consequently
instability is weaker. But this argument does not hold, as
vector solitons with saturable nonlinearity, the instability
stronger when the soliton power is higher@18#. Thus this
instability reduction of high-power solitons in@8,4,29# is still
an interesting phenomenon. Since experimental techniq
on solitons in a saturable nonlinear medium have beco
quite advanced and many theoretical predictions have b
experimentally observed, we believe that this interesting
stability suppression behavior of high-power solitons d
serves experimental confirmation. To pave its way, more
tailed theoretical and numerical investigations are in orde
©2002 The American Physical Society01-1
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FIG. 1. ~a! Fundamental soli-
tons u(r ) at v520.7 and v
520.1. ~b! Power dependence o
fundamental solitons on frequenc
v.
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In this paper, we comprehensively study the stability a
instability characteristics of (211)-dimensional solitons in a
saturable nonlinear medium. For fundamental solitons wh
are linearly stable in this medium, we determine their int
nal modes. We will show that both radially symmetric a
angle-dependent internal modes exist at high soliton pow
When the soliton power is low, these internal modes dis
pear. When the soliton power goes to infinity, the frequenc
of these modes go to zero. If angle-dependent internal mo
are excited, the visual effect can be a rotation or spati
uneven breathing of the perturbed soliton. We also found
these internal oscillations are very robust and radiat
damping of these oscillations very weak, similar to the
11)D case@12#. As for radially symmetric but double-hum
solitons, we will determine all their unstable eigenmod
Similar to previous findings@8,9#, we will show that the
instability growth rates of these solitons go to zero in t
high-power limit as well as the low-power limit. Thus, hig
power serves tostabilize double-hump solitons instead o
destabilizing it. To confirm this result, we have perform
direct numerical simulations of the evolution equation, a
good agreement is found between theoretical predictions
numerics. Last, we want to point out that the numerical te
nique we used for determining internal modes and unsta
modes of the above (211)D solitons is based on zero-leve
contour intersection and successive shooting refinem
This method is more advantageous than that used in@8#
which was based on the numerical simulation of the line
ized equation. The reason is that, first, our method can c
clusively establish the existence or nonexistence of inte
modes and unstable modes; second, it is more accurate;
it applies to the determination of internal modes, where
method of@8# will have some difficulty.

II. INTERNAL MODES OF „2¿1…D FUNDAMENTAL
SOLITONS IN A SATURABLE MEDIUM

The model for (211)-dimensional solitons in an isotro
pic saturable nonlinear medium is

iU z1D'U2
U

11uUu2
50, ~1!
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whereU is the complex amplitude of the light beam,z is the
propagation distance, andD' is the transverse Laplacian~all
quantities are nondimensionalized!. We look for radially
symmetric solitons of the form

U~r ,u,z!5u~r !eivz, ~2!

where (r ,u) are the polar coordinates in the transverse pla
andv is the soliton frequency. Then functionu(r ) satisfies
the ordinary differential equation

urr 1
1

r
ur2vu2

u

11u2
50, ~3!

with the vanishing boundary conditionu→0 asr→`. At r
50, ur must be zero in view of Eq.~3!. Whenr @1 whereu
is small, Eq. ~3! can be linearized. Ifv.21, the linear
solution is

u~r !5aK0~A11v r !, ~4!

whereK0(r ) is the modified Bessel function anda is a real
tail coefficient. Our strategy for finding solitons of Eq.~3! is
as follows. For a fixedv, we varya in the asymptotic solu-
tion ~4!. At eacha, we integrate the nonlinear equation~3!
starting from the asymptotic solution~4! at larger toward
r 50. If the functionur(r 50;a) changes sign at certaina
values, then thesea values give soliton solutions. Carryin
out this strategy, we find that for each21,v,0, there is an
infinite, discrete sequence of soliton solutions. The first
lution is the fundamental soliton which is strictly positiv
~the so-called ground state@27#!. The second solution crosse
zero once, the third solution crosses zero twice, and so on
this section, we focus on the fundamental soliton which h
been known to be stable@4,5#. For illustration, these funda
mental solitons atv520.7 and20.1 are plotted in Fig.
1~a!. We see that whenv is larger, the soliton’s intensity is
higher. If we define the soliton power as

P5E
2`

` E
2`

`

uUu2dxdy52pE
0

`

ru2~r !dr, ~5!

then the power dependence of fundamental solitons on
quencyv is shown in Fig. 1~b!. It is observed that the powe
1-2



l

INTERNAL OSCILLATIONS AND INSTABILITY . . . PHYSICAL REVIEW E 66, 026601 ~2002!
FIG. 2. Our technique for find-
ing internal modes of fundamenta
solitons. Herev520.1. ~a! Zero-
level contours of target functions
f0r(r 50) and c0r(r 50) for n
50; ~b! zero-level contours of tar-
get functionsf2(r 50) andc2(r
50) for n52; ~c! the internal
mode at n50; ~d! the internal
mode atn52.
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is an increasing function ofv. It also appears that the powe
goes to infinity whenv approaches 02. If v.0, we have
found thatur(r 50;a) never changes sign for anya value;
thus no fundamental solitons exist there. Ifv,21, a con-
tinuous family of soliton solutions exists at eachv. How-
ever, at large radiusr, these solitons are given by Bess
functions; thus they have infinite powers and are unphysi
Hence, in this section, we consider fundamental solit
when21,v,0.

Since fundamental solitons have been known to be sta
we determine their internal modes next. Internal modes
discrete eigenfunctions of the linearization operator line
ized around the soliton. To determine these internal mo
we write the perturbed soliton solution as

U~r ,u,z!5eivz$u~r !1fn~r !ei (lz1nu)1cn* ~r !e2 i (l* z1nu)%,
~6!

whereu(r ) is a fundamental soliton, (fn ,cn) are small per-
turbations,l is the eigenvalue,n is an integer representin
the angle dependence of the disturbance, and the asteris~* !
represents complex conjugation. When Eq.~6! is substituted
into Eq. ~1! and higher-order terms infn and cn dropped,
the eigenvalue problem is

fnrr1
1

r
fnr2S v1l1

n2

r 2
1

1

~11u2!2D fn1
u2

~11u2!2
cn

50, ~7!
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cnrr1
1

r
cnr2S v2l1

n2

r 2
1

1

~11u2!2D cn1
u2

~11u2!2
fn

50. ~8!

It is easy to check in Cartesian coordinates that the squar
the above linearization operator is self-adjoint; thus the d
crete eigenvaluel is either purely real~internal mode! or
purely imaginary~unstable mode!. We make two comments
here. First, if the soliton~2! is angle dependent~with charge!,
then the square of its linearization operator is no longer s
adjoint; thus eigenvalues may have both real and imagin

FIG. 3. Internal-mode eigenvalues of fundamental solitons
frequencyv. Here the dashed line is the edge of the continuo
spectrum. Integern represents the angle (u) dependence of the
internal modes@see Eq.~6!#.
1-3
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FIG. 4. Evolution of the fun-
damental soliton withv520.1
under radially symmetric pertur
bations. The initial perturbed stat
is given by Eq. ~14! where e
50.2. ~a! Distance evolution of
the soliton amplitude, i.e.,uU(r
50,z)u. ~b! U(r ,z) profiles at
threez values.
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parts~a similar situation in 1D was discussed in@28#!. Sec-
ond, similar results hold for vector solitons~see@18# for an
example!.

Next, we exhaustively search forall internal modes
~purely real eigenvaluesl) of fundamental solitons. In suc
cases, the eigenfunctionscn and fn are both real. The
boundary conditions for these internal modes are

f0r~r 50!5c0r~r 50!50, n50, ~9!

fn~r 50!5cn~r 50!50, nÞ0, ~10!

and

cn→0, fn→0, r→`. ~11!

When21,v,0 andr @1, both Eqs.~7! and~8! become a
modified Bessel equation whose solutions are

fn~r !5Kn~A11v1l r !, ~12!

cn~r !5hKn~A11v1l r !, ~13!

whereh is a real parameter. Here the coefficient in front
Kn of the eigenfunctionfn has been normalized to be
since the eigenvalue problem~7! and~8! is linear. Our strat-
egy for finding all internal modes is the following. At eac
integer n, we make a large parameter mesh in the tw
dimensionalh and l plane. At each (h,l) mesh point, we
numerically integrate Eqs.~7! and~8! starting from a larger
value to zero. Due to the boundary conditions~9! and~10!, at
each n, we check if the target functionf0r(r 50) and
c0r(r 50) ~for n50) or fn(r 50) and cn(r 50) ~for n
Þ0) zero-level curves in the (h,l) plane intersect or not. If
they do, then the intersection gives an internal mode. If n
then no internal modes at thosev and n values exist. We
emphasize that this strategy is rigorous and conclusive, e
though it is computer assisted. As two examples, we se
v520.1, n50, andn52. The zero contours of respectiv
target functions are shown in Figs. 2~a!, 2~b!, respectively.
As we can see, forn50, the zero-level curves off0r(r
50) andc0r(r 50) have an intersection atl'0.2187 and
h'0.34. Thus a radially symmetric internal mode with su
eigenvalue is discovered. Then, by the shooting method,
can determine this eigenmode to very high accuracy.
eigenfunctions thus obtained are displayed in Fig. 2~c!.
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These eigenfunctions have been normalized so that the m
mum value off0 is equal to 1. It is noted that in Fig. 2~a!,
the zero-level curves off0r(r 50) andc0r(r 50) also have
a trivial intersection at (l,h)5(0,21). This is the zero ei-
genvalue which is induced by the phase invariance of
soliton. Whenn52, we see from Fig. 2~b! that the zero-level
curves off2(r 50) andc2(r 50) have an intersection atl
'0.1770 andh'0.49. Thus an angle-dependent intern
mode occurs here. The corresponding eigenfunctions are
played in Fig. 2~d!. Here, the eigenfunctions are also norm
ized so that the maximum off2 is 1. We want to point out
that in Figs. 2~a! and 2~b!, there is another intersection be
tween these zero-level curves in the upper part of each
ure. Since those eigenvalues are close to the edge of
continuous spectrum~which is lc50.9 with v520.1),
those internal modes are harder to excite from localized p
turbations. In this paper, we will not give much attention
those internal modes.

Once we have judiciously discovered internal modes
particularv and n values by the above algorithm, we the
use the shooting method to trace the entire families of in
nal modes by varying frequencyv. Overall, we have deter
mined the internal-mode families withn50, 1, 2, and 3, and
the results are summarized in Fig. 3. Internal modes at hig
n values were also discovered, but they are very close to
continuous spectrum and thus will not be considered. Th
features of internal modes in Fig. 3 are noted below. The fi
one is that internal modes withn50 and 2 are the farthes
from the continuous spectrum. Thus radiation damping
such modes should be the slowest. In other words, inte
oscillations caused by such modes should be most rob
The second feature is that internal-mode eigenvalues g

FIG. 5. Evolution of the fundamental soliton withv520.1
undern52 internal-mode perturbations. The initial perturbed st
is given by Eq.~15! wheree52. Here contour levels 1:1:10 of th
solution uU(x,y,t)u at five distances are shown. The horizontal d
rection isx and the vertical direction isy.
1-4
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INTERNAL OSCILLATIONS AND INSTABILITY . . . PHYSICAL REVIEW E 66, 026601 ~2002!
zero whenv approaches 02. Recalling that the power o
fundamental solitons increases withv, we see that interna
oscillations of high-power solitons are more robust. The th
feature is that these internal modes disappear when the
ton power is low.

Next, we numerically study the dynamics of fundamen
solitons under the perturbation of these internal modes.
just consider internal oscillations induced by modesn50
and 2, as those oscillations are the most persistent~see text
above!. First, we examine internal oscillations caused by
n50 mode which is radially symmetric. For simplicity, w
take our initial condition as

U~r ,u,z50!5~11e!u~r ,v!, ~14!

wheree!1 is a constant perturbation parameter. Obviou
this radially symmetric initial condition will only excite the
radially symmetric internal mode ofn50 ~and some radia-
tion!. Starting from this initial condition, we have simulate
the original equation~1!. The simulation results withe
50.2 are displayed in Fig. 4. The left panel of Fig. 4 sho
the distance~z! evolution of the soliton amplitudeuUur 50.
We see that, indeed, a very robust amplitude oscillation
excited. The oscillation frequency is approximately 0
which is close to then50 internal-mode frequency~which is
0.2187!. To examine radiation damping of these oscillatio
we display the radial solution profileuU(r )u at three dis-
tances in the right panel of Fig. 4. Remarkably, radiat
emission from these internal oscillations is extremely sm
~almost invisible!. Thus, we can expect these oscillations
persist for a very long distance. This finding is consist
with that for (311)D solitons@12#.

FIG. 6. Evolution of the fundamental soliton withv520.1
under bothn52 andn522 internal-mode perturbations. The in
tial perturbed state is given by Eq.~16! wheree52.
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Below, we examine internal oscillations caused by then
562 modes. If the soliton is perturbed only by then52
mode, we can write the initial condition as

U~r ,u,z50!5u~r ,v!1e$f2~r !e2iu1c2~r !e22iu%
~15!

in view of Eq. ~6!. Simulation of Eq.~1! starting from the
above initial condition shows that the internal oscillation i
duced by then52 mode is also very robust. In addition, th
effect of this internal-mode perturbation is to prolong t
fundamental soliton in one direction, and the evolution vis
ally appears as arotation of the perturbed state. To illustrate
we selectv520.1 ande52 in the initial condition~15!.
The fundamental soliton and the internal-mode eigenfu
tions can be seen in Fig. 1~a! and Fig. 2~d!. Note that since
the amplitude of the fundamental soliton atv520.1 is
about 10, thuse52 in Eq.~15! is still a small perturbation to
the fundamental soliton. With this initial condition, the sim
lation results at five distances are displayed in Fig. 5. H
the contours of the solutionuUu at levels 1:1:10 are shown a
each distance. As we can see, the fundamental soliton u
this n52 internal-mode perturbation appears to rotate co
terclockwise. This is an interesting and distinctive visual fe
ture of internal oscillations of solitons in 211 dimensions.

If the soliton is perturbed by both then52 andn522
modes, then its evolution is visually different. As an e
ample, we take then562 mode components to be equa
Then the initial state of the perturbed soliton can be writ
as

U~r ,u,z50!5u~r ,v!1e$f2~r !1c2~r !%cos 2u. ~16!

With the same parametersv520.1 ande52 as above, the
contours of the solution at five distances are plotted in Fig
In this case, the perturbed state does not rotate. Instea
periodically stretches and contracts along orthogonal dir
tions. We can call this behavior as spatially uneven brea
ing. This uneven breathing is another distinctive visual fe
ture of internal oscillations in 211 dimensions. We note tha
the soliton undern50 internal-mode perturbations als
‘‘breathes,’’ but that breathing is uniform along all direction
f
-

FIG. 7. ~a! Double-hump soli-
tons u(r ) at v520.7 and v
520.1. ~b! Power dependence o
double-hump solitons on fre
quencyv.
1-5
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FIG. 8. Our method for finding
unstable modes of double-hum
solitons. Herev520.1. ~a! Zero-
level curves of target functions
Re@f0r(r 50)# and Im@f0r(r
50)# at n50; ~b! zero-level con-
tours of Re@f4(r 50)# and
Im@f4(r 50)# at n54.
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III. INSTABILITY CHARACTERISTICS
OF DOUBLE-HUMP SOLITONS

In this section, we study instability characteristics
double-hump solitons whose amplitude functionsu(r ) cross
zero once. The study of solitons with even more humps
similar, and the results are expected to be analogous as
thus we will not consider such solitons in this paper. It
noted that these double-hump solitons have been shown
unstable in@8,9#. In this section, we will use a different
more advantageous method to determine the instab
growth rates of such solitons. Furthermore, we will use dir
numerical simulations of Eq.~1! to corroborate the main fea
tures of instability results.

First, we determine the double-hump solitons by the sa
technique we have used before for fundamental solito
These double-hump solitons atv520.7 and20.1 are plot-
ted in Fig. 7~a!. The power dependence of these solitons
frequencyv is shown in Fig. 7~b!. We see that whenv is
larger, the soliton intensity and power are higher, similar
fundamental solitons. Also analogously, physically meani
ful double-hump solitons which have finite power exist on
when21,v,0.

Next, we study the linear stability of these double-hum
solitons. The perturbed solution is the same as Eq.~6!, where
u(r ) is a double-hump soliton in the present case. The eig
value problem is still Eqs.~7! and ~8!. For double-hump
solitons, the square of the linearization operator is still s
adjoint; thus the discrete eigenvaluel is either purely real
~stable! or purely imaginary~unstable!. Below, we only
search for unstable~purely imaginary! eigenvalues. Our tech
02660
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nique for finding all these unstable eigenvalues is similar
that used in Sec. II, but with some modifications. For
purely imaginary eigenvaluel, cn5fn* ; thus Eqs.~7! and
~8! reduce to a single equation~7! for a complex function
fn . The boundary conditions of functionfn are

f0r~0!50, n50, ~17!

fn~0!50, nÞ0, ~18!

fn→0, r→`. ~19!

When 21,v,0 and r @1, Eq. ~7! becomes a modified
Bessel equation whose solution is

fn~r !5eidKn~A11v1l r !, ~20!

whered is a phase constant. Here the eigenfunctionfn has
been normalized so that the complex coefficient in front
Kn has magnitude 1. Note that an eigenfunction with ph
constantd̄5d6p is trivially related to one with phased by
a multiplication of factor 21; thus we can restrictd
P@0,p# without any loss of generality. Our strategy for find
ing all unstable eigenvalues is the following. At each integ
n, we make a large parameter mesh in the two-dimensiond
andl plane. At each (d,l) mesh point, we numerically in-
tegrate Eq.~7! starting from a larger value to zero. Ifn
50, the eigenfunction must havef0r(r 50;d,l)50 @see
Eq. ~17!#. If nÞ0, it must havefn(r 50;d,l)50 @see Eq.
~18!#. Thus at eachn, we check if the target function
@Re(f0r) and Im(f0r) or Re(fn) and Im(fn)# zero-level
-

e

FIG. 9. ~a! The unstable eigen-
mode f4(r ) with n54 at v
520.7; ~b! growth rates of un-
stable eigenmodes for double
hump solitons vs frequencyv
~both solid and dashed lines ar
unstable eigenvalues!.
1-6
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FIG. 10. Strongly suppressed instability of high-power double-hump solitons. Left column: evolution of the perturbed solitonv
520.7 ~low power!; right column: evolution of the perturbed soliton withv520.1 ~high power!.
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curves in the (d,l) plane intersect or not. If they do, then th
intersection gives a discrete unstable eigenvalue. If not,
stable eigenvalues at suchv and n values do not exist. To
demonstrate, we apply this algorithm to two example ca
with v520.7, n50, and n54. The zero-level curves o
Re(f0r) and Im(f0r) ~for n50) are shown in the left pane
of Fig. 8. We see that no intersection occurs here except

trivial one at (l,d)5(0,1
2 p). This intersection correspond

to the zero eigenvalue which is caused by the phase inv
ance of the soliton. Thus, radially symmetric (n50) unstable
modes do not exist. Whenn54, the zero-level curves o
Re(f4) and Im(f4) are displayed in the right panel of Fig
8. Here, however, we clearly see a unique intersection
these zero-level curves at approximatelyil50.2253 andd
51.43. Thus, we conclude that there is a single unsta
eigenvalue atv520.7 andn54. We then refine this un
stable eigenmode by the shooting method, and the eigenf
tion is shown in Fig. 9~a!.

We have continued this strategy at otherv values and
checked those zero-level curves forn from 0 to very large
integers. Our findings reveal that for eachv, only up to four
02660
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unstable eigenvalues withn52, 3, 4, and 5 could exist. In
other words, all unstable eigenmodes have angle depend
in the forme62iu, e63iu, e64iu, or e65iu. We have obtained
the growth rates (il) of these eigenmodes for allv values in
the interval (21,0), and the results are displayed in Fi
9~b!. This figure is almost the same as Fig. 3 in@8# ~see also
@9#!, as it should be, even though our method to obtain t
figure is different. As we can see, unstable eigenmodes w
n52, 3, and 4 exist for all21,v,0, while the unstable
eigenmode withn55 exists only for21,v;

,20.36. The
shapes of these unstable eigenmodes at differentn and v
values are quantitatively different but qualitatively simila
They are all equal to zero atr 50, have one hump, and deca
to zero atr 5`. An example withv520.7 andn54 can be
found in Fig. 9~a!.

One interesting feature of Fig. 9~b! is that the growth rates
of all the unstable eigenmodes decrease to zero not
whenv→21, but also whenv→0. Recalling Fig. 7~b!, this
means that the instability growth rates diminish not only
low powers, but also athigh powers. This is a little surpris-
ing, as one tends intuitively to expect that solitons w
1-7
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higher powers are more unstable. But here, it is just the
posite; i.e., high power stronglysuppressesthe soliton insta-
bility rather than enhancing it. To verify this suppressed
stability, we have simulated Eq.~1! with the initial condition
as

U~r ,u,0!5u~r ;v!S 11e1e tanhr (
j 51

10

cosj u D , ~21!

whereu(r ;v) is a double-hump soliton at frequencyv and
e50.01 is a perturbation parameter. This choice of the ini
perturbation was intended to mimic ‘‘white noise’’ perturb
tions along angle directions. Withv520.7 again ~low-
power soliton!, the solutions atz50 and 25 are shown in th
left column of Fig. 10. Here the distance is nondimension
ized by the diffraction lengthLD , which in terms of physical
units is given byLD5l0n0 /(2pDn0), where l0 is the
wavelength of the laser beam,n0 is the unperturbed refrac
tive index, andDn0 is the maximum physical index chang
For typical saturable nonlinear materials,Dn0 /n0'2
31024. The typical wavelength of lasers used in expe
ments is approximatelyl050.5 mm. For these parameter
the diffraction length is found to beLD'0.4 mm. Thus the
nondimensional lengthz525 in our simulations correspond
to a physical crystal length of about 10 mm. We see from
left column of Fig. 10 that at distancez525, the double-
hump low-power soliton withv520.7 has broken up. Now
if we take v520.1 ~high-power soliton! and repeat the
above simulation, the results are shown in the right colu
of Fig. 10. Apparently, for the same percentage of init
riv
ka

tt.

.

N.

s

-

02660
p-

-

l

l-

-

e

n
l

perturbations, this high-power double-hump soliton sho
little sign of instability at the same distancez525, which
clearly demonstrates the strongly suppressed instability
high-power solitons. Thus, we have verified that, inde
high-power solitons suffer a drastically reduced instabil
and are robust.

IV. SUMMARY

In conclusion, we have investigated two major aspects
scalar (211)-dimensional solitons in a saturable nonline
medium. For fundamental solitons, we have found inter
modes both with and without angular dependence. Inte
oscillations caused by these modes are very robust, e
cially those caused by modes with no angle dependencen
50) or with angle dependence in the forme62iu (n52).
Evolution of solitons perturbed by angle-dependent inter
modes visually appears like the soliton is rotating or u
evenly breathing. For double-hump solitons, we have de
mined their instability characteristics by a method differe
from that used in@8#. We have shown that the instability o
high-power solitons is very weak, which is unexpected. Th
experimental observation of such solitons is feasible.
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