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Two related problems on scalar {2)-dimensional solitons in a saturable nonlinear medium are investi-
gated. The first one is the internal oscillations of fundamefsiaigle-hump solitons. Internal modes which
cause these oscillations, both with and without angular dependence, are discovered. The visual effect of
angle-dependent internal modes on the soliton can be a rotation or spatially uneven breathing of the perturbed
soliton. These internal oscillations are very robust and persist for a very long distance. The second problem is
the instability of double-hump and radially symmetric solitons. Unstable eigenmodes of these solitons are
presented. Contrary to intuition, the instability growth rates decrease to zero when the soliton power becomes
high. Thus the instability is strongly suppressed at high powers. This phenomenon is corroborated by our direct
numerical simulations.
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[. INTRODUCTION mechanism can induce very complex collision structures
such as window sequences and even fractal strucf@res
Spatial solitons are under intensive study these days dug6]. So far, collisions of (2-1)D and (3+ 1)D fundamental
to their novel physics as well as application potentials. In 1solitons have been studied to some ex{@®,21,1], but a
+ 1 dimensiong (1+ 1) D], fundamentalsingle-hump soli-  better understanding of such collision processes requires a
tons for both the Kerfcubic) and saturable nonlinearities are good knowledge of internal oscillations in these solitons. In
linearly stable[1,2]. In 2+1 and 3+1 dimensions, funda- (2+1)D, robust radially symmetric oscillations of solitons
mental solitons with a saturable nonlinearity are sti®ie], were observed if10], but it is not clear whether such oscil-
but fundamental Kerr solitons exhibit critical collap€e7]. lations are induced by internal modes or radiation modes of
Multihump solitons in a saturable medium are linearly un-the solitons. In addition, the possibility of angle-dependent
stable[8,9,4]. Evolution of a Gaussian beam in a£4)D internal oscillations was not explored. In{3)D, internal
saturable medium was studied &0]. Recurrence of the oscillations and radiation damping were investigatefil 2.
field as well as azimuthal-symmetry breaking was observedBut again, that study only focused on radially symmetric
Internal oscillations of (3-1)D fundamental solitons with internal modes. In fact, radially asymmetric internal modes
saturable nonlinearity were examined[it2]. Radially sym-  also abound, and they can induce more interesting evolution
metric internal modes were determined. In addition, it wasdynamics to the underlying soliton, as we will see later in
shown that radiation damping of internal oscillations is verythis paper.
slow (algebraicly. Collision of (3+1)D fundamental soli- On the problem of the instability of multihump solitons
tons with saturable nonlinearity was investigated[ii]. = with saturable nonlinearity in 21 and 3t+1 dimensions,
Last, there is a large body of work on the stability as well asone interesting feature which was implicit but not elaborated
collision of vector solitons in a saturable nonlinear mediumupon in[8,9,4 is that the instability growth rate of such
[13-22. solitons is reduced when the soliton power is highe also
Internal oscillations of stable solitons are important for at[29] for similar results in a cubic-quintic mediyniThis phe-
least two reasons. The first reason is for the understanding @iomenon is somewhat unexpected, as conventional wisdom
single-soliton dynamics under perturbations. Laser beams igays that higher power leads to stronger instability. Some
experiments are rarely perfect soliton states; rather they arghysicists may argue that this phenomenon is not unexpected
solitons perturbed by various experimental factors. In somaince in a saturable medium, changes in the refractive index
experiments, regular beam patterns were obsdi28dSuch  become smaller as the intensity increases; consequently, the
patterns could be induced by internal modes of solitons anghstability is weaker. But this argument does not hold, as for
be manifestations of internal oscillations. The second andector solitons with saturable nonlinearity, the instability is
probably more important reason is for the understanding oftronger when the soliton power is highegr8]. Thus this
collision dynamics of such solitons. If internal oscillations instability reduction of high-power solitons [8,4,29 is still
exist, solitons during collision can temporarily store some ofan interesting phenomenon. Since experimental techniques
the translational energy in these internal oscillations and resn solitons in a saturable nonlinear medium have become
trieve this energy after the collision. This energy exchangejuite advanced and many theoretical predictions have been
experimentally observed, we believe that this interesting in-
stability suppression behavior of high-power solitons de-
*FAX: 802-656-2552. serves experimental confirmation. To pave its way, more de-
Electronic address: jyang@emba.uvm.edu tailed theoretical and numerical investigations are in order.
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In this paper, we comprehensively study the stability andvhereU is the complex amplitude of the light beamis the
instability characteristics of (2 1)-dimensional solitons in a propagation distance, ard, is the transverse Laplacidall
saturable nonlinear medium. For fundamental solitons whiclyuantities are nondimensionalizedNVe look for radially
are linearly stable in this medium, we determine their inter-symmetric solitons of the form
nal modes. We will show that both radially symmetric and ,
angle-dependent internal modes exist at high soliton powers. U(r,0,z)=u(r)e'”, 2
When the soliton power is low, these internal modes disap- ) )
pear. When the soliton power goes to infinity, the frequenciedvhere €, 6) are the polar coordinates in the transverse plane
of these modes go to zero. If angle-dependent internal modéd'd @ is the soliton frequency. Then functiar(r) satisfies
are excited, the visual effect can be a rotation or spatiallfhe ordinary differential equation
uneven breathing of the perturbed soliton. We also found that
these internal oscillations are very robust and radiation n 1 .. u
damping of these oscillations very weak, similar to the (3 Urr Fur @u 1+ u?
+1)D casd12]. As for radially symmetric but double-hump
solitons, we will determine all their unstable eigenmodesyith the vanishing boundary conditian—0 asr—o. At r
Similar to previous flndlngs{8,9], we will show that the =0, u, must be zero in view of Ec[3) Whenr>1 whereu

instability growth rates of these solitons go to zero in thejs small, Eq.(3) can be linearized. lfwo>—1, the linear
high-power limit as well as the low-power limit. Thus, high sgjution is

power serves testabilize double-hump solitons instead of
destabilizing it. To confirm this result, we have performed u(r)=aKe(Vl+owr), (4)
direct numerical simulations of the evolution equation, and
good agreement is found between theoretical predictions anghereKy(r) is the modified Bessel function andis a real
numerics. Last, we want to point out that the numerical techtail coefficient. Our strategy for finding solitons of E@) is
nique we used for determining internal modes and unstablas follows. For a fixedv, we vary« in the asymptotic solu-
modes of the above (21)D solitons is based on zero-level- tion (4). At eacha, we integrate the nonlinear equati¢®)
contour intersection and successive shooting refinemenstarting from the asymptotic solutio@#) at larger toward
This method is more advantageous than that usef8jn r=0. If the functionu,(r=0;a) changes sign at certaim
which was based on the numerical simulation of the linearvalues, then these values give soliton solutions. Carrying
ized equation. The reason is that, first, our method can corput this strategy, we find that for eaehl < w<0, there is an
clusively establish the existence or nonexistence of internghfinite, discrete sequence of soliton solutions. The first so-
modes and unstable modes; second, it is more accurate; thindition is the fundamental soliton which is strictly positive
it applies to the determination of internal modes, where thethe so-called ground staf27]). The second solution crosses
method off 8] will have some difficulty. zero once, the third solution crosses zero twice, and so on. In
this section, we focus on the fundamental soliton which has
been known to be stabld,5]. For illustration, these funda-
II. INTERNAL MODES OF (2+1)D FUNDAMENTAL mental solitons atw=—0.7 and—0.1 are plotted in Fig.
SOLITONS IN A SATURABLE MEDIUM 1(a). We see that whew is larger, the soliton’s intensity is
higher. If we define the soliton power as

=0, 3

The model for (2+1)-dimensional solitons in an isotro-
pic saturable nonlinear medium is

sz f |U|2dxdy=27-rj ru?(r)dr, (5)
—oJ — 0

(1) then the power dependence of fundamental solitons on fre-

iU, +A,U- ————=0, ; Pen( )
1+|U| guencyw is shown in Fig. 1b). It is observed that the power
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is an increasing function ab. It also appears that the power

n2 1 2
goes to infinity whenw approaches 0. If «>0, we have

1
¢nrr+r¢nr_<w_)\+

) + PN ¢n+ L 5.5 ¢n
. 2 2y2 2\2
found thatu,(r =0;a) never changes sign for any value; r< (1+u9 (1+u)
thus no fundamental solitons exist therewl& —1, a con- _
. X ) _ ) =0. (8)
tinuous family of soliton solutions exists at eacgh How-

ever, at large radius, these solitons are given by Bessel
functions; thus they have infinite powers and are unphysicallt is €asy to check in Cartesian coordinates that the square of
Hence, in this section, we consider fundamental solitonghe above linearization operator is self-adjoint; thus the dis-
when—1<w<0. crete eigenvalue\ is either purely realinternal modg or
Since fundamental solitons have been known to be stabl@urely imaginary(unstable mode We make two comments
we determine their internal modes next. Internal modes arBere. First, if the solitoi2) is angle dependeifivith charge,
discrete eigenfunctions of the linearization operator linearthen the square of its linearization operator is no longer self-
ized around the soliton. To determine these internal mode@djoint; thus eigenvalues may have both real and imaginary
we write the perturbed soliton solution as

s

o
U(r,0,z):ei‘”z{u(r)+d)n(r)ei()‘””")+ l/l:(r)efi()\*ZJrnH)}’ %0.8 /,'l
®) z K et
206 o=
whereu(r) is a fundamental soliton, ,,,) are small per- 3 s
turbations,\ is the eigenvaluen is an integer representing g0-4 . n=
the angle dependence of the disturbance, and the asteyisk =
represents complex conjugation. When E).is substituted GE, 0.2
into Eq. (1) and higher-order terms ig, and ¢, dropped, ¥
the eigenvalue problem is T oo . . ; .
-1 -08 -06 -04 02 0
()]
. n? u? FIG. 3. Internal-mode eigenvalues of fundamental solitons vs
Pty bor—| @AY 2 " (14 u?)? $nt (1+u?)2 ¥ frequencyw. Here the dashgd line is the edge of the continuous
spectrum. Integen represents the angledY dependence of the
=0, (7) internal modegsee Eq.(6)].
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parts(a similar situation in 1D was discussed[i28]). Sec- These eigenfunctions have been normalized so that the maxi-
ond, similar results hold for vector solitorisee[18] for an ~ mum value of¢, is equal to 1. It is noted that in Fig(&,
example. the zero-level curves abq, (r=0) andq (r =0) also have
Next, we exhaustively search faall internal modes a trivial intersection atX,h)=(0,—1). This is the zero ei-
(purely real eigenvalues) of fundamental solitons. In such genvalue which is induced by the phase invariance of the
cases, the eigenfunctiong, and ¢, are both real. The soliton. Whem=2, we see from Fig. ®) that the zero-level

boundary conditions for these internal modes are curves ofg,(r=0) andy,(r =0) have an intersection at
~0.1770 andh~0.49. Thus an angle-dependent internal
$or(r=0)= o (r=0)=0, n=0, (9 mode occurs here. The corresponding eigenfunctions are dis-

played in Fig. 2d). Here, the eigenfunctions are also normal-
ized so that the maximum ap, is 1. We want to point out
that in Figs. 2a) and 2b), there is another intersection be-
tween these zero-level curves in the upper part of each fig-
$—0, ¢y—0, r—o. (11)  ure. Since those eigenvalues are close to the edge of the
continuous spectrumiwhich is \;=0.9 with w=-0.1),
When —1<w<0 andr>1, both Eqs(7) and(8) become a those internal modes are harder to excite from localized per-

¢n(r=0)=i¢,(r=0)=0, n#0, (10

and

modified Bessel equation whose solutions are turbations. In this paper, we will not give much attention to
those internal modes.
(1) =K, (V1+w+hr), (12 Once we have judiciously discovered internal modes at
particular » and n values by the above algorithm, we then
(1) =hK,(y1+w+Ar), (13 use the shooting method to trace the entire families of inter-

nal modes by varying frequenay. Overall, we have deter-
whereh is a real parameter. Here the coefficient in front of mined the internal-mode families with=0, 1, 2, and 3, and
K, of the eigenfunctiong, has been normalized to be 1 the results are summarized in Fig. 3. Internal modes at higher
since the eigenvalue proble(W) and(8) is linear. Our strat- n values were also discovered, but they are very close to the
egy for finding all internal modes is the following. At each continuous spectrum and thus will not be considered. Three
integer n, we make a large parameter mesh in the two-features of internal modes in Fig. 3 are noted below. The first
dimensionalh and\ plane. At eachtf,\) mesh point, we one is that internal modes with=0 and 2 are the farthest
numerically integrate Eq$7) and(8) starting from a largeé  from the continuous spectrum. Thus radiation damping of
value to zero. Due to the boundary conditid@sand(10), at  such modes should be the slowest. In other words, internal
eachn, we check if the target functionpo,(r=0) and  oscillations caused by such modes should be most robust.

$or(r=0) (for n=0) or ¢,(r=0) and ¢,(r=0) (for n  The second feature is that internal-mode eigenvalues go to
#0) zero-level curves in theh(\) plane intersect or not. If

they do, then the intersection gives an internal mode. If not, ,_, 22103 22206 22309 72412
then no internal modes at those and n values exist. We
emphasize that this strategy is rigorous and conclusive, eve
though it is computer assisted. As two examples, we selec
w=-0.1,n=0, andn=2. The zero contours of respective
target functions are shown in Figs(a®, 2(b), respectively.
As we can see, fon=0, the zero-level curves of,(r
=0) and o (r=0) have an intersection at~0.2187 and FIG. 5. Evolution of the fundamental soliton with=—0.1
h~0.34. Thus a radially symmetric internal mode with suchundern=2 internal-mode perturbations. The initial perturbed state
eigenvalue is discovered. Then, by the shooting method, Wi given by Eq.(15 wheree=2. Here contour levels 1:1:10 of the
can determine this eigenmode to very high accuracy. Theolution|U(x,y,t)| at five distances are shown. The horizontal di-
eigenfunctions thus obtained are displayed in Fi¢c).2 rection isx and the vertical direction ig.
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z=0 z=7.5 z=14.9 z=29.8 2=37.2 Below, we examine internal oscillations caused by nhe
==*2 modes. If the soliton is perturbed only by the=2
mode, we can write the initial condition as

U(r,0,z=0)=u(r, )+ e{d,(r)e? ’+ y,(r)e 2%

FIG. 6. Evolution of the fundamental soliton with=—0.1
under bothn=2 andn= —2 internal-mode perturbations. The ini-

tial perturbed state is given by E6L6) wheree=2. in view of Eq. (6). Simulation of Eq.(1) starting from the

above initial condition shows that the internal oscillation in-
. duced by then=2 mode is also very robust. In addition, the
zero whenw approaches 0. Recalling that the power of gffect of this internal-mode perturbation is to prolong the
fundamental solitons increases with we see that internal  ¢,ngamental soliton in one direction, and the evolution visu-

oscillations of high-power solitons are more robust. The thirdy)ly appears as etation of the perturbed state. To illustrate,
feature is that these internal modes disappear when the soljje selectw= —0.1 ande=2 in the initial condition(15).

ton power is low. . The fundamental soliton and the internal-mode eigenfunc-
Next, we numerically study the dynamics of fundamentalijons can be seen in Fig(d and Fig. 2d). Note that since
solitons under the perturbation of these internal modes. Wg, o amplitude of the fundamental soliton at=—0.1 is
just consider internal oscillations induced by modes0  ghoyt 10, thug=2 in Eq.(15) is still a small perturbation to
and 2, as those oscillations are the most persist®® text e fundamental soliton. With this initial condition, the simu-
above. First, we examine internal oscillations caused by theation results at five distances are displayed in Fig. 5. Here
n=0 mode which is radially symmetric. For simplicity, We {he contours of the solutiof| at levels 1:1:10 are shown at

take our initial condition as each distance. As we can see, the fundamental soliton under
this n=2 internal-mode perturbation appears to rotate coun-
U(r,6,z=0)=(1+ e)u(r, ), (14) terclockwise. This is an interesting and distinctive visual fea-

ture of internal oscillations of solitons in21 dimensions.

If the soliton is perturbed by both the=2 andn= -2
wheree<1 is a constant perturbation parameter. Obviouslymodes, then its evolution is visually different. As an ex-
this radially symmetric initial condition will only excite the ample, we take th@= =2 mode components to be equal.
radially symmetric internal mode af=0 (and some radia- Then the initial state of the perturbed soliton can be written
tion). Starting from this initial condition, we have simulated as
the original equation(1). The simulation results withe
=0.2 are displayed in Fig. 4. The left panel of Fig. 4 shows
the distance(g) gvolutiongof the soIitorl? amplitud§J|r:O. U(r,0,z=0)=u(r,w)+ e{¢o(r) + (r)}cos 26. (16)

We see that, indeed, a very robust amplitude oscillation is

excited. The oscillation frequency is approximately 0.2,With the same parametess= —0.1 ande=2 as above, the
which is close to the=0 internal-mode frequendwhich is  contours of the solution at five distances are plotted in Fig. 6.
0.2187. To examine radiation damping of these oscillations,In this case, the perturbed state does not rotate. Instead, it
we display the radial solution profilfJ(r)| at three dis- periodically stretches and contracts along orthogonal direc-
tances in the right panel of Fig. 4. Remarkably, radiationtions. We can call this behavior as spatially uneven breath-
emission from these internal oscillations is extremely smaling. This uneven breathing is another distinctive visual fea-
(almost invisible. Thus, we can expect these oscillations toture of internal oscillations in 2 1 dimensions. We note that
persist for a very long distance. This finding is consistenthe soliton undern=0 internal-mode perturbations also

with that for (3+1)D solitons[12]. “breathes,” but that breathing is uniform along all directions.
(a) ] (b)
10
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l1l. INSTABILITY CHARACTERISTICS nique for finding all these unstable eigenvalues is similar to
OF DOUBLE-HUMP SOLITONS that used in Sec. Il, but with some modifications. For a

purely imaginary eigenvalug, ¢,= ¢ ; thus Eqs.(7) and
(8) reduce to a single equatidi@) for a complex function
s¢“' The boundary conditions of functiof,, are

In this section, we study instability characteristics of
double-hump solitons whose amplitude functiar{s) cross
zero once. The study of solitons with even more humps i

similar, and the results are expected to be analogous as well; $0:(0)=0, n=0, (17)
thus we will not consider such solitons in this paper. It is

noted that these double-hump solitons have been shown to be $,(0)=0, n=#0, (18)
unstable in[8,9]. In this section, we will use a different,

more advantageous method to determine the instability ¢n—0, r—», (19

growth rates of such solitons. Furthermore, we will use direct
numerical simulations of Ed1) to corroborate the main fea- When —1<w<0 andr>1, Eq. (7) becomes a modified

tures of instability results. Bessel equation whose solution is
First, we determine the double-hump solitons by the same s
technique we have used before for fundamental solitons. én(r)=e"Ky(V1+w+\r), (20

These double-hump solitons at= — 0.7 and— 0.1 are plot- ) ) ]
ted in Fig. 7a). The power dependence of these solitons of¥hereé is a phase constant. Here the eigenfuncygnhas

frequencyw is shown in Fig. T). We see that whew is been normali;ed so that the comple'x coefficignt iq front of
larger, the soliton intensity and power are higher, similar ton Nas magnitude 1. Note that an eigenfunction with phase
fundamental solitons. Also analogously, physically meaningconstantd= 5+ r is trivially related to one with phasé by
ful double-hump solitons which have finite power exist onlya multiplication of factor —1; thus we can restricts
when —1<w<0. e[ 0,7] without any loss of generality. Our strategy for find-
Next, we study the linear stability of these double-humping all unstable eigenvalues is the following. At each integer
solitons. The perturbed solution is the same as(Bgwhere  n, we make a large parameter mesh in the two-dimensiénal
u(r) is a double-hump soliton in the present case. The eigerand\ plane. At each §\) mesh point, we numerically in-
value problem is still Eqs(7) and (8). For double-hump tegrate Eq.(7) starting from a large value to zero. Ifn
solitons, the square of the linearization operator is still self-=0, the eigenfunction must havé, (r=0;5,\)=0 [see
adjoint; thus the discrete eigenvaldeis either purely real Eq. (17)]. If n#0, it must haveg,(r=0;5,\)=0 [see Eq.
(stable or purely imaginary(unstablg. Below, we only (18)]. Thus at eachn, we check if the target function
search for unstabl@urely imaginary eigenvalues. Our tech- [Re(¢q,) and Im(po,) or Re(p,) and Im(p,)] zero-level

(b)

0.25
@ n=
é < 02 ,/ﬁ=3"‘* N\ FIG. 9. (a) The unstable eigen-
< o 4 mode ¢,4(r) with n=4 at o
o ®©0.15 [ N =—0.7; (b) growth rates of un-
g -g stable eigenmodes for double-
el 3 01} /4 Y hump solitons vs frequencyw
8 0] N n=2 2\ (both solid and dashed lines are
[72] n=5"- > .
5 0.05 ' N\ unstable eigenvalugs
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z=0 z=0

20

y _20 .

FIG. 10. Strongly suppressed instability of high-power double-hump solitons. Left column: evolution of the perturbed soliten with
= —0.7 (low powep; right column: evolution of the perturbed soliton with= — 0.1 (high powey.

curves in the §,\) plane intersect or not. If they do, then the unstable eigenvalues with=2, 3, 4, and 5 could exist. In
intersection gives a discrete unstable eigenvalue. If not, unsther words, all unstable eigenmodes have angle dependence
stable eigenvalues at sueh and n values do not exist. To in the forme*??, e*31¢ e*4¢ ore*%¢ We have obtained
demonstrate, we apply this algorithm to two example casethe growth ratesi¢.) of these eigenmodes for all values in
with @=—0.7, n=0, andn=4. The zero-level curves of the interval (-1,0), and the results are displayed in Fig.
Re(¢or) and Im(po,) (for n=0) are shown in the left panel o). This figure is almost the same as Fig. &) (see also

of Fig. 8. We see that no intersection occurs here except tk@]), as it should be, even though our method to obtain this
trivial one at (\,8)=(0,3 ). This intersection corresponds figure is different. As we can see, unstable eigenmodes with
to the zero eigenvalue which is caused by the phase invari=2, 3, and 4 exist for al-1<w<0, while the unstable
ance of the soliton. Thus, radially symmetric£ 0) unstable eigenmode withn=5 exists only for—1<w=—0.36. The
modes do not exist. When=4, the zero-level curves of shapes of these unstable eigenmodes at diffemeand w
Re(¢4) and Im(¢,) are displayed in the right panel of Fig. values are quantitatively different but qualitatively similar.
8. Here, however, we clearly see a unique intersection ofhey are all equal to zero at=0, have one hump, and decay
these zero-level curves at approximately=0.2253 andd  to zero atr =o. An example withw=—0.7 andn=4 can be
=1.43. Thus, we conclude that there is a single unstabléound in Fig. 9a).

eigenvalue atw=—0.7 andn=4. We then refine this un- One interesting feature of Fig(l9 is that the growth rates
stable eigenmode by the shooting method, and the eigenfunof all the unstable eigenmodes decrease to zero not only
tion is shown in Fig. ©a). whenw— —1, but also whem— 0. Recalling Fig. {), this

We have continued this strategy at othervalues and means that the instability growth rates diminish not only at
checked those zero-level curves foffrom O to very large low powers, but also atigh powers. This is a little surpris-
integers. Our findings reveal that for eawhonly up to four  ing, as one tends intuitively to expect that solitons with
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higher powers are more unstable. But here, it is just the opperturbations, this high-power double-hump soliton shows
posite; i.e., high power strongBuppressethe soliton insta- little sign of instability at the same distanee=25, which

bility rather than enhancing it. To verify this suppressed in-clearly demonstrates the strongly suppressed instability of
stability, we have simulated E@Ll) with the initial condition  high-power solitons. Thus, we have verified that, indeed,
as high-power solitons suffer a drastically reduced instability

10 and are robust.

U(r,0,00=u(r;w)| 1+ e+ etanhr;1 cosj@|, (21) V. SUMMARY
In conclusion, we have investigated two major aspects of
Iscalar (2+1)-dimensional solitons in a saturable nonlinear
medium. For fundamental solitons, we have found internal
tions along angle directions. Witw=—0.7 again (low- modes_both with and without angular dependence. Internal
oscillations caused by these modes are very robust, espe-

power soliton, the solutions at=0 and 25 are shown in the v th db q th e d q
left column of Fig. 10. Here the distance is nondimensionalS13Y those caused by modes with no anglé dependence (

_ ; ; 200 oo
ized by the diffraction length p , which in terms of physical EO)I (t)'r W't? ar;_gt;le depetndke):ngebm thel f%rm d(nI'Z)t. |
units is given byLp=A\gne/(2AN,), where \q is the volution of solitons perturbed by angle-dependent interna

wavelength of the laser beam is the unperturbed refrac- (ranvoedn?s t;/rlzz?r::)rll a?:poera(;zu“tt(lg-m?‘nsoslg(l)itnori r\cl)\;c:t;]ng/eo:j:tr;—r_
tive index, andAng is the maximum physical index change. Y 9. P '

: : . _ mined their instability characteristics by a method different
I:(olro_tg/ pllt_:r?é tsatilé;?b\:favglz r;lw;ﬁacr)f Irggéfgallﬁeng /i?]ogxz eri_from that used if8]. We have shown that the instability of
. YP! - 9 P high-power solitons is very weak, which is unexpected. Thus
ments is approximately,=0.5 um. For these parameters,

the diffraction length is found to be,~0.4 mm. Thus the experimental observation of such solitons is feasible.
nondimensional length= 25 in our simulations corresponds
to a physical crystal length of about 10 mm. We see from the
left column of Fig. 10 that at distance=25, the double- The author thanks Yuri Kivshar for bringing Refg,12]
hump low-power soliton withw=—0.7 has broken up. Now to his attention. He also thanks Ziad Musslimani and Boris
if we take w=—0.1 (high-power soliton and repeat the Malomed for helpful discussions. This work is supported in
above simulation, the results are shown in the right colummpart by the U.S. Air Force Office of Scientific Research and
of Fig. 10. Apparently, for the same percentage of initialthe National Science Foundation.

whereu(r;w) is a double-hump soliton at frequenayand
€=0.01 is a perturbation parameter. This choice of the initia
perturbation was intended to mimic “white noise” perturba-
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