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General rogue waves in the Davey-Stewartson-I equation are derived by the bilinear method. It is shown that
the simplest (fundamental) rogue waves are line rogue waves which arise from the constant background with
a line profile and then disappear into the constant background again. It is also shown that multirogue waves
describe the interaction of several fundamental rogue waves. These multirogue waves also arise from the constant
background and then decay back to it, but in the intermediate times, interesting curvy wave patterns appear.
However, higher-order rogue waves exhibit different dynamics. Specifically, only part of the wave structure in
the higher-order rogue waves rises from the constant background and then retreats back to it, and this transient
wave possesses patterns such as parabolas. But the other part of the wave structure comes from the far distance
as a localized lump, which decelerates to the near field and interacts with the transient rogue wave, and is then
reflected back and accelerates to the large distance again.

DOI: 10.1103/PhysRevE.86.036604 PACS number(s): 05.45.Yv

I. INTRODUCTION

Rogue waves are large and spontaneous ocean surface
waves that occur in the sea and are a threat even to large
ships and ocean liners [1]. Recently, an optical analog of
rogue waves, optical rogue waves, was also observed in optical
fibers [2,3]. A growing consensus is that both oceanic and
optical rogue waves appear as a result of modulation instability
of monochromatic nonlinear waves. Mathematically, the first
and simplest rogue-wave solution was reported in the nonlinear
Schrödinger (NLS) equation by Peregrine [4]. This solution
approaches a nonzero constant background as time goes to
±∞ but develops a localized hump with a peak amplitude
three times the constant background in the intermediate times.
Recently, higher-order rogue waves in the NLS equation were
reported in many articles [5–12]. It was shown that these
higher-order waves could reach higher peak amplitudes or
exhibit multiple intensity peaks at different spatial locations
and times. In addition to the NLS equation, rogue waves in
some other wave equations (such as the Hirota equation) have
also been explored [13]. Rogue waves are intimately related to
homoclinic solutions which approach a constant background
as time goes to ±∞ but develop spatially periodic wave pat-
terns in the intermediate times [14–17]. Indeed, rogue waves
can be obtained from homoclinic solutions when the spatial
period of homoclinic solutions goes to infinity [8,14,15,18].

Rogue waves which have been studied so far are mostly
one dimensional, but ocean surface waves are always two
dimensional. Thus a natural question is to investigate rogue
waves in two-dimensional model equations. It is well known
that the evolution of a two-dimensional wave packet on water
of finite depth is governed by the Benney-Roskes-Davey-
Stewartson equation [19–21]. In the shallow water limit, this
equation is integrable (see Ref. [21] and the references therein).
This integrable equation is sometimes just called the Davey-
Stewartson (DS) equation in the literature. The DS equation
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is divided into two types, DSI and DSII equations, depending
on the strength of surface tension [21]. The simplest (one-
mode) homoclinic solution to the DS equation was derived in
Ref. [22]. Taking the spatial period of this homoclinic solution
to go to infinity, the simplest (fundamental) rogue-wave
solution was also obtained there. But more general rogue waves
in the DS equation are still unknown.

In this paper, general rogue waves in the DSI equation are
derived. These solutions are obtained by the bilinear method
and expressed in terms of determinants. It is shown that the
simplest (fundamental) rogue waves are line rogue waves
which arise from the constant background with a line profile
and then disappear into the constant background again (this
simplest rogue wave agrees with that reported in Ref. [22]). It is
also shown that nonfundamental rogue waves contain different
types such as the multirogue waves and higher-order rogue
waves. The multirogue waves describe the interaction of sev-
eral fundamental rogue waves. These multirogue waves arise
from the constant background and then decay back into it, but
in the intermediate times, interesting curvy wave patterns ap-
pear. Higher-order rogue waves, on the other hand, exhibit cer-
tain features which are very different. Specifically, only parts of
the wave structures in these higher-order rogue waves rise from
the constant background and then retreat back to it, exhibiting
unusual transient wave patterns (such as parabola shapes) in
the intermediate times. But the other parts of the waves come
from the far distance as localized lumps, which interact with
the transient rogue waves in the near field and then are reflected
back to the large distance again. Since the DS equation
describes the evolution of two-dimensional water wave packets
[19–21], these rogue-wave solutions could have interesting
implications for two-dimensional water wave dynamics.

II. RATIONAL SOLUTIONS IN THE
DAVEY-STEWARTSON-I EQUATION

The Davey-Stewartson-I (DSI) equation is given by

iAt = Axx + Ayy + (ε|A|2 − 2Q)A,
(2.1)

Qxx − Qyy = ε(|A|2)xx,
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where ε = 1 or −1. It is noted that under the variable transfor-
mation Q → Q + ε|A|2, x ↔ y, and ε → −ε, this equation
is invariant, thus we can fix the sign of ε without loss of gener-
ality. However, the transformation Q → Q + ε|A|2 changes
the boundary condition of Q in general, thus we keep ε in our
analysis. Equation (2.1) is transformed into the bilinear form,(

D2
x + D2

y − iDt

)
g · f = 0,

(2.2)(
D2

x − D2
y

)
f · f = 2ε(f 2 − |g|2),

through the variable transformation,

A =
√

2
g

f
, Q = ε − (2 log f )xx, (2.3)

where f is a real variable, g is a complex variable, and D is
Hirota’s bilinear differential operator.

Rogue waves are rational solutions (under certain param-
eter restrictions). Thus we first present the general rational
solutions to the DSI equation in the following theorem. The
proof of this theorem is given in the Appendix.

Theorem 1. The DSI equation (2.1) has rational solutions
(2.3) with f and g given by N × N determinants

f = τ0, g = τ1, (2.4)

where τn = det1�i,j�N (m(n)
ij ), and the matrix elements are

given by either (a)

m
(n)
ij =

ni∑
k=0

cik

(
pi∂pi

+ ξ ′
i + n

)ni−k

×
nj∑
l=0

c̄j l

(
p̄j ∂p̄j

+ ξ̄ ′
j − n

)nj −l 1

pi + p̄j

, (2.5)

ξ ′
i = pi − εp−1

i

2
x + pi + εp−1

i

2
y + p2

i + p−2
i√−1

t, (2.6)

or (b)

m
(n)
ij =

ni+nj∑
ν=0

( −1

pi + p̄j

)ν+1

(∂x + ∂y)νP (n)
i P

(−n)
j , (2.7)

P
(n)
i =

ni∑
k=0

ĉikSni−k[ξ (n)(pi)], (2.8)

where Sn(x) is the elementary Schur polynomial defined via
the generating function

∞∑
n=0

Sn(x)λn = exp

( ∞∑
k=1

xkλ
k

)

for x = (x1,x2, . . .),

ξ (n)(p) = [ξ1(p) + n, ξ2(p), . . . ,ξk(p) + δk1n, . . .],

δij is the Kronecker delta notation (which is equal to 1 when
i = j and zero otherwise),

ξk(p) = 1

k!

[
p + ε(−1)k/p

2
x + p − ε(−1)k/p

2
y

+2kp2 − (−2)k/p2

2
√−1

t

]
,

and the overbar represents complex conjugation. In (a) and
(b), pi , cik , and ĉik are arbitrary complex constants, and ni is
an arbitrary positive integer. These two expressions in (a) and

(b) would yield identical solutions if the constants cik and ĉik

in them are related by

ĉik = cik(ni − k)!, d̂j l = djl(nj − l)!.

Thus below we use the expression in (a). By a scaling of f

and g we can normalize ci0 = 1 without loss of generality,
and thus hereafter we set ci0 = 1. We will also call the above
solution as the N -rational solution of order (n1,n2, . . . ,nN ).
We comment that a more explicit expression for m

(n)
ij similar

to Eq. (2.6) in Ref. [12] can also be obtained, but since that
expression is a bit complicated, we omit it in this paper.

The simplest rational solution, namely, 1-rational solution
of first order, is given by taking N = 1 and n1 = 1,

f =
1∑

k=0

c1k(p1∂p1 + ξ ′
1)1−k

1∑
l=0

c̄1l(p̄1∂p̄1 + ξ̄ ′
1)1−l 1

p1 + p̄1

= (p1∂p1 + ξ ′
1 + c11)(p̄1∂p̄1 + ξ̄ ′

1 + c̄11)
1

p1 + p̄1

= 1

p1 + p̄1

[(
ξ ′

1 + c11 − p1

p1 + p̄1

)(
ξ̄ ′

1 + c̄11 − p̄1

p1 + p̄1

)

+ p1p̄1

(p1 + p̄1)2

]
,

g =
1∑

k=0

c1k(p1∂p1 + ξ ′
1 + 1)1−k

×
1∑

l=0

c̄1l(p̄1∂p̄1 + ξ̄ ′
1 − 1)1−l 1

p1 + p̄1

= (p1∂p1 + ξ ′
1 + 1 + c11)(p̄1∂p̄1 + ξ̄ ′

1 − 1 + c̄11)
1

p1 + p̄1

= 1

p1 + p̄1

[(
ξ ′

1 + 1 + c11 − p1

p1 + p̄1

)

×
(

ξ̄ ′
1 − 1 + c̄11 − p̄1

p1 + p̄1

)
+ p1p̄1

(p1 + p̄1)2

]
,

where

ξ ′
1 = p1 − εp−1

1

2
x + p1 + εp−1

1

2
y + p2

1 + p−2
1

i
t,

and p1,c11 are arbitrary complex constants. This solution can
be rewritten as

f = 1

p1 + p̄1
(ξ ξ̄ + 	), g = 1

p1 + p̄1
[(ξ + 1)(ξ̄−1) + 	],

where

ξ = ax + by + ωt + θ, 	 = p1p̄1/(p1 + p̄1)2,

and

a = (
p1 − εp−1

1

)
/2, b = (

p1 + εp−1
1

)
/2,

ω = (
p2

1 + p−2
1

)
/i, θ = c11 − p1/(p1 + p̄1).

If we separate the real and imaginary parts of a,b,ω, and θ as

a=a1 + ia2, b = b1 + ib2, ω = ω1 + iω2, θ = θ1 + iθ2,

then

A(x,y,t) =
√

2

[
1 − 2i(a2x + b2y + ω2t + θ2) + 1

W

]
,
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where

W = (a1x + b1y + ω1t + θ1)2

+ (a2x + b2y + ω2t + θ2)2+	.

The solution Q can also be written down from Eq. (2.3) and
the above f .

This simplest rational solution has three distinctly different
dynamical behaviors depending on the parameter value of p2

1.
(1) If p2

1 is not real, then it is easy to see that b/a is not
real, hence b1/b2 �= a1/a2. In this case, along the [x(t),y(t)]
trajectory where

a1x + b1y = −ω1t, a2x + b2y = −ω2t,

(A,Q) are constants. In addition, at any given time, (A,Q) →
(
√

2,1) when (x,y) goes to infinity. Thus the solution is a
localized soliton moving on a constant background.

(2) If p2
1 < 0, i.e., p1 is purely imaginary, then a,b, and

ω are all imaginary. In this case, the solution is a function of
a2x + b2y + ω2t only, and is thus a line soliton moving on a
constant background.

(3) If p2
1 > 0, i.e., p1 is real, then a,b are real but ω is

imaginary. In this case, the solution is also a line wave, but it is
not a moving line soliton anymore. As t → ±∞, this line wave
goes to a uniform constant background; in the intermediate
times, it rises to a higher amplitude. Thus this is a line wave
which “appears from nowhere and disappears with no trace,”
hence it is a line rogue wave.

From the above analysis, we see that rational solutions (2.4)
to the DSI equation become rogue waves when the parameters
pi are real-valued (this fact holds for N = 1 as well as for
higher N integers). In the next section, we will examine these
rogue waves in more detail.

It is noted from the above explicit solution formulas that the
parameter c11 causes a shift of the origin in the (x,y,t) space.
Thus c11 can be set to zero by a shift of the (x,y,t) axes. This
fact also holds for N = 1 as well as for higher N integers in
the solution (2.4).

III. ROGUE WAVES IN THE DAVEY-STEWARTSON-I
EQUATION

As we have shown above, rational solutions (2.4) in
Theorem 1 become rogue waves in the DSI equation when
all parameters pi are required to be real. In this section, we
analyze the dynamics of these rogue waves in detail.

A. Fundamental rogue waves

The fundamental rogue waves in the DSI equation are
obtained when one takes N = 1, n1 = 1, and p1 real in the
rational solution (2.4), and c11 is a free complex parameter.
After a shift of time and space coordinates, c11 can be
eliminated and the fundamental rogue waves can be written
as

A(x,y,t) =
√

2

[
1 + 8i�t − 4

1 + (k1x + k2y)2 + 4�2t2

]
, (3.1)

Q(x,y,t) = 1 − 4εk2
1

1 − (k1x + k2y)2 + 4�2t2

[1 + (k1x + k2y)2 + 4�2t2]2
, (3.2)

where

k1 = p1 − εp−1
1 , k2 = p1 + εp−1

1 , � = p2
1 + p−2

1 .

FIG. 1. (Color online) A fundamental rogue wave (3.1) in the DSI
equation with parameters ε = 1, p1 = 1.5.

This solution describes a line rogue wave with the line
oriented in the (k2,−k1) direction of the (x,y) plane, thus
the fundamental rogue waves in the DSI equation are line
rogue waves. The orientation angle β of this line rogue wave
is β = −a tan(k1/k2), and its width is inversely proportional
to

√
k2

1+k2
2 . In terms of the orientation angle β, we find

that k2
1 + k2

2 = 2(p2
1 + p−2

1 ) = 4ε/ cos 2β, thus the width of
this line wave is proportional to

√
ε cos 2β, which is angle

dependent. Along the line direction (with k1x + k2y fixed), the
solution is a constant. As t → ±∞, the solution A uniformly
approaches the constant background

√
2 everywhere in the

(x,y) plane; but in the intermediate times, |A| reaches
maximum amplitude 3

√
2 (i.e., three times the background

amplitude) at the center (k1x + k2y = 0) of the line wave at
time t = 0. The speed at which this line wave approaches
its peak amplitude is � = 2ε/ cos 2β, which is also angle
dependent. This fundamental rogue wave is illustrated in Fig. 1
with parameters ε = 1 and p1 = 1.5.

It is noted that the orientation direction of the line rogue
wave (3.1)–(3.2) is not arbitrary due to the above (k1,k2)
formulas with real p1. Indeed, when ε = 1, one can see that
|k1/k2| < 1, i.e., the slope of this line wave in the (x,y) plane
is always less than one in magnitude. Thus the orientation
angle of this line wave is always between −45◦ and 45◦. If
ε = −1, the situation is opposite. In this case, the orientation
angle of the line wave is always between 45◦ and 135◦. These
results indicate that for a given ε, line rogue waves in the DSI
equation have a limited range of orientations.

The above fundamental rogue waves in the DSI equation are
two-dimensional counterparts of the fundamental (Peregrine)
rogue waves in the NLS equation [4,5]. Indeed, when we take
ε = 1 and p1 = 1 in the above fundamental rogue waves, we
have k1 = 0, hence the solution A is independent of x and
Q = 1. In this case, the DSI equation reduces to the NLS
equation, and this fundamental rogue wave of the DSI equation
reduces to the Peregrine rogue wave of the NLS equation.

Nonfundamental rogue waves can be obtained from the
N -rational solutions of order (n1,n2, . . . ,nN ) in Eq. (2.4) with
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real values of (p1, . . . ,pN ) when N > 1, or n1 > 1, or both.
Below we consider two subclasses of these nonfundamental
rogue waves.

B. Multirogue waves

One subclass of nonfundamental rogue waves is the multi-
rogue waves, which are obtained when we take N > 1, n1 =
. . . = nN = 1 in the rational solution (2.4) with real values
of (p1, . . . ,pN ). These rogue waves describe the interaction
of N individual fundamental rogue waves. When t → ±∞,
the solution approaches the constant background uniformly in
the entire (x,y) plane. In the intermediate times, N line rogue
waves arise from the constant background, interact with each
other, and then disappear into the background again. In the far
field of the (x,y) plane, the solution consists of N separate
line rogue waves. However, in the near field where these line
rogue waves intersect and interact, wavefronts of the solution
are no longer lines, and interesting curvy wave patterns would
appear.

To demonstrate these multirogue-wave solutions, we first
consider the N = 2 case. In this case, the f and g functions
of the solutions can be obtained from Eq. (2.4) as

f =
∣∣∣∣∣m

0
11 m0

12

m0
21 m0

22

∣∣∣∣∣ , g =
∣∣∣∣∣m

1
11 m1

12

m1
21 m1

22

∣∣∣∣∣ , (3.3)

where

m0
ij = 1

pi + p̄j

[(
ξ ′
i + ci1 − pi

pi + p̄j

)

×
(

ξ̄ ′
j + c̄j1 − p̄j

pi + p̄j

)
+ pip̄j

(pi + p̄j )2

]
,

m1
ij = 1

pi + p̄j

[(
ξ ′
i + 1 + ci1 − pi

pi + p̄j

)

×
(

ξ̄ ′
j − 1 + c̄j1 − p̄j

pi + p̄j

)
+ pip̄j

(pi + p̄j )2

]
,

ξ ′
j is given by Eq. (2.6), p1,p2 are free real parameters, and

c11,c21 are free complex parameters. The complex parameter
c11 can be removed by a shift of the (x,y,t) axes, then this two-
rogue-wave solution contains four nontrivial real parameters,
namely, p1, p2, and the real and imaginary parts of c21. This
solution for parameters

ε = 1, p1 = 1, p2 = 1.5, c11 = c21 = 0 (3.4)

is shown in Fig. 2. It is seen that when these two line rogue
waves arise from the constant background, the region of their
intersection acquires higher amplitude first (see the t = −1
panel). After these higher amplitudes in the intersection region
fade, the line rogue solutions in the far field then rise to
higher amplitude (see the t = 0 panel). Interestingly, the wave
pattern at t = 0 features two curvy wave fronts which are
well separated. These curvy wave fronts are caused by the
interaction of the two fundamental (line) rogue waves. At
large times, the solution goes back to the constant background
again (see the t = 5 panel). It is noticed that for all times,
the maximum value of the solution |A| does not exceed 4

√
2

(i.e., four times the constant background). Thus this interaction

FIG. 2. (Color online) A two-rogue-wave solution (3.3) in the
DSI equation for parameters (3.4). Plotted is the |A| field.

between the two line rogue waves does not generate very high
peaks.

For larger N , these multirogue waves have qualitatively
similar behaviors, except that more line rogue waves will arise
and interact with each other, and more complicated wave fronts
will form in the interaction region. For example, with N = 3
and parameter choices

ε = 1, p1 = 1, p2 = 1.5, p3 = 2,
(3.5)

c11 = c21 = c31 = 0,

the corresponding solution is shown in Fig. 3. As can be
seen, the transient solution patterns become more intricate.
But again, the maximum value of this solution |A| stays below
4
√

2 for all times, so this interaction does not create very high
spikes either.

C. Higher-order rogue waves

Another subclass of nonfundamental rogue waves is the
higher-order rogue waves, which are obtained when we take

t = 5

y

t = 1.5 t = 0.75

t = 0

x

y

t = 1.5

x

t = 5

x

FIG. 3. (Color online) A three-rogue-wave solution in the DSI
equation for parameters (3.5). Plotted is the |A| field. The constant-
background value is

√
2.
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N = 1 and n1 > 1 in the rational solution (2.4) with a real
value of p1. For instance, if n1 = 2, we get second-order rogue
waves from Eq. (2.4) as

f = [(
p1∂p1 + ξ ′

1

)2 + c12
]

× [(
p̄1∂p̄1 + ξ̄ ′

1

)2 + c̄12
] 1

p1 + p̄1
, (3.6)

g = [(
p1∂p1 + ξ ′

1 + 1
)2 + c12

]
× [(

p̄1∂p̄1 + ξ̄ ′
1 − 1

)2 + c̄12
] 1

p1 + p̄1
, (3.7)

where ξ ′
1 is given by Eq. (2.6), p1 is a free real parameter, and

c12 is a free complex parameter. Here we have set c11 = 0 in
Eq. (2.4) by a shift of the (x,y,t) axes. Higher-order rogue
waves with n1 > 2 can be similarly obtained.

An interesting phenomenon is that, unlike the multirogue
waves discussed above, these higher-order rogue waves do
not uniformly approach the constant background as t → ±∞.
Instead, only parts of their wave structures approach the
constant background as t → ±∞, but the other parts move
to the far distance as localized lumps with undiminished
amplitude and increasing velocity as t → ±∞. To illustrate
these behaviors, we consider the above second-order rogue
waves. For parameter values

ε = 1, p1 = 1, c12 = 0, (3.8)

we get

f = 1
2 [x − (4t2 + y − y2)]2 + [(

y − 1
2

)2 + 1
4

](
8t2 + 1

2

)
,

g = f − 4it(x + y − y2 − 4t2) + x + y − y2 − 12t2 − 1
2 ,

and

A(x,y,t) =
√

2
g

f
. (3.9)

For this solution, Ā(x,y,t) = A(x,y, − t), thus |A(x,y,−t)| =
|A(x,y,t)|. This solution is displayed in Fig. 4. We see that
when |t | 	 1, the solution is a localized lump sitting on the
constant background

√
2 (see the t = ±7 panels). The peak

t = 7

y

t = 5 t = 1

t = 0

x

y

t = 1

x

t = 7

x

FIG. 4. (Color online) A second-order rogue-wave solution (3.9)
in the DSI equation with ε = 1.

amplitude of the lump is attained at

(x,y) = (
4t2 + 1

4 , 1
2

)
,

thus this lump is accelerating rightward as |t | increases (see
the t = −7 and t = −5 panels). The peak-amplitude value of
the lump stays at 3

√
2 and is unchanged though. As the lump

accelerates rightward (with increasing |t |), its vertical size
(along the y direction) remains the same, but its horizontal
size (along the x direction) expands (see the t = −7, − 5, −
1 panels). When t → 0, this lump disappears. At the same
time, a parabola-shaped rogue wave rises from the background
(see the t = −1 and t = 0 panels). At t = 0, this parabola is
located at

x = y − y2,

where the rogue wave reaches peak amplitude 3
√

2 (see the
t = 0 panel). Visually one may describe the solution in Fig. 4 as
an incoming lump being reflected back by the emergence of a
parabola-shaped rogue wave. In addition, this lump decelerates
as it comes afar and accelerates as it goes away.

We have also examined the second-order rogue waves (3.6)
and (3.7) for other parameter choices of (ε,p1,c12), and found
that those solutions are qualitatively the same as the one in
Fig. 4, except that those solution patterns may be stretched
and skewed in the (x,y) plane.

IV. SUMMARY

In summary, we have derived general rogue waves in the
DSI equation by the bilinear method, and our solutions are
given in terms of determinants. We showed that the simplest
(fundamental) rogue waves are line rogue waves which arise
from the constant background with a line profile and then
disappear into the constant background again (see Fig. 1). We
also showed that multirogue waves describe the interaction
of several fundamental rogue waves, and interesting curvy
wave patterns appear due to this interaction (see Figs. 2
and 3). However, higher-order rogue waves were found to
show very different features. Specifically, only parts of the
wave structures in the higher-order rogue waves rise from the
constant background and then retreat back to it, but the other
parts of the waves come from the far distance as localized
lumps, which interact with the transient rogue waves in the
near field and then are reflected back and accelerate to the
large distance again (see Fig. 4). These rogue-wave solutions
to the DSI equation generalize the rogue waves of the NLS
equation into two spatial dimensions, and they could play a
role in the physical understanding of rogue water waves in the
ocean.

It is noted that for the Benney-Roskes-Davey-Stewartson
(BRDS) equations [19,20], some two-dimensional waves
bifurcating from a one-dimensional one were constructed in
Ref. [23]. Those solutions are different from the solutions
in this paper. One difference is that those solutions were
derived for the BRDS equations which are elliptic for both
variables, and such BRDS equations are not integrable [21].
But in the DSI equation (2.1) studied in this paper, the
Q equation is hyperbolic, and this DS system is integrable
[21]. Another difference is that the solutions constructed for
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the BRDS equations in Ref. [23] are time independent, but
the rogue-wave solutions derived in this paper for the DSI
equation (2.1) are time dependent.
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APPENDIX

In this Appendix we will prove Theorem 1 in Sec. II by
using the bilinear method. First we present the following
lemma.

Lemma 1. Let m
(n)
ij , ϕ

(n)
i , and ψ

(n)
j be functions of x1, x2,

x−1 and x−2 satisfying the following differential and difference
relations,

∂x1m
(n)
ij = ϕ

(n)
i ψ

(n)
j ,

∂x2m
(n)
ij = ϕ

(n+1)
i ψ

(n)
j + ϕ

(n)
i ψ

(n−1)
j ,

∂x−1m
(n)
ij = −ϕ

(n−1)
i ψ

(n+1)
j ,

∂x−2m
(n)
ij = −ϕ

(n−2)
i ψ

(n+1)
j − ϕ

(n−1)
i ψ

(n+2)
j , (A1)

m
(n+1)
ij = m

(n)
ij + ϕ

(n)
i ψ

(n+1)
j ,

∂xν
ϕ

(n)
i = ϕ

(n+ν)
i ,

∂xν
ψ

(n)
j = −ψ

(n−ν)
j (ν = 1,2,−1,−2).

Then the determinant,

τn = det
1�i,j�N

(
m

(n)
ij

)
, (A2)

satisfies the bilinear equations,

(Dx1Dx−1 − 2)τn · τn = −2τn+1τn−1,
(A3)(

D2
x1

− Dx2

)
τn+1 · τn = 0,(

D2
x−1

+ Dx−2

)
τn+1 · τn = 0.

This lemma can be proved by the same method as for
Lemma 3.1 in Ref. [12], thus its proof is omitted here. We
note that by the variable transformation

x1 = 1

2
(x + y), x−1 = ε

2
(x − y), x2 = − i

2
t, x−2 = i

2
t,

(A4)

and the complex conjugate condition

τn = τ−n, (A5)

the above bilinear equations (A3) are reduced to the bilinear
equation (2.2) of the DSI equation for f = τ0 and g = τ1.
Therefore to prove Theorem 1, all we need to do is to
choose appropriate matrix elements m

(n)
ij which satisfy (A1)

and realize the conjugate condition (A5) with (A4).

Proof of Theorem 1. It is easy to see that functions ϕ
(n)
i ,

ψ
(n)
j , and m

(n)
ij defined by

ϕ
(n)
i = pn

i e
ξi , ψ

(n)
j = (−qj )−neηj ,

m
(n)
ij =

∫ x1

ϕ
(n)
i ψ

(n)
j dx1 = 1

pi + qj

(
−pi

qj

)n

eξi+ηj ,

ξi = 1

p2
i

x−2 + 1

pi

x−1 + pix1 + p2
i x2,

ηj = − 1

q2
j

x−2 + 1

qj

x−1 + qjx1 − q2
j x2,

satisfy Eqs. (A1). Here pi,qj are arbitrary complex constants,
and it is assumed that the lower boundary value of the integral
in the above m

(n)
ij equation is zero. But these functions do not

lead to rational solutions.
To get rational solutions, we differentiate the above func-

tions with respect to the parameters pi and qj . To obtain
solution expressions in (a) of Theorem 1, we consider the
following ϕ

(n)
i , ψ

(n)
j , and m

(n)
ij functions:

ϕ
(n)
i = Aip

n
i e

ξi , ψ
(n)
j = Bj (−qj )−neηj , (A6)

m
(n)
ij = AiBj

1

pi + qj

(
−pi

qj

)n

eξi+ηj , (A7)

where Ai and Bj are differential operators of order ni and nj

with respect to pi and qj , respectively, defined as

Ai =
ni∑

k=0

cik(pi∂pi
)ni−k, Bj =

nj∑
l=0

djl(qj∂qj
)nj −l , (A8)

cik ,djl are arbitrary complex constants, and ni are arbitrary
positive integers. It is easy to see that these functions also
satisfy Eqs. (A1), thus τn = det(m(n)

ij ) with (A7) satisfies the
bilinear equations (A3). By using the operator relations(

pi∂pi

)
pn

i e
ξi = pn

i e
ξi
(
pi∂pi

+ ξ ′
i + n

)
,(

qj∂qj

)
(−qj )−neηj = (−qj )−neηj

(
qj∂qj

+ η′
j − n

)
,

where

ξ ′
i = − 2

p2
i

x−2 − 1

pi

x−1 + pix1 + 2p2
i x2,

η′
j = 2

q2
j

x−2 − 1

qj

x−1 + qjx1 − 2q2
j x2,

the matrix element m
(n)
ij in Eq. (A7) becomes

m
(n)
ij =

(
−pi

qj

)n

eξi+ηj

ni∑
k=0

cik

(
pi∂pi

+ ξ ′
i + n

)ni−k

×
nj∑
l=0

djl

(
qj∂qj

+ η′
j − n

)nj −l 1

pi + qj

.

Taking parameter constraints

qj = p̄j , djl = c̄j l , (A9)

and using the variable transformation (A4), we obtain

ηj = ξ̄j , m
(n)
ij = m

(−n)
ji , τ̄n = τ−n,
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thus the conjugate condition (A5) is satisfied. Finally using the
gauge freedom of τn, we obtain the rational solutions to the
DSI equation as given in (a) of Theorem 1.

Next we derive solution expressions in (b) of Theorem 1.
For this purpose, we consider the following ϕ

(n)
i , ψ (n)

j and m
(n)
ij

functions:

ϕ
(n)
i = Âip

n
i e

ξi , ψ
(n)
j = B̂j (−qj )−neηj , (A10)

m
(n)
ij =

∫ x1

ϕ
(n)
i ψ

(n)
j dx1, (A11)

where Âi and B̂j are differential operators of order ni and nj

with respect to pi and qj defined as

Âi =
ni∑

k=0

ĉik

(ni − k)!

(
pi∂pi

)ni−k
, (A12)

B̂j =
nj∑
l=0

d̂j l

(nj − l)!

(
qj∂qj

)nj −l
, (A13)

ĉik ,d̂j l are arbitrary complex constants which are related to the
constants cik ,djl in the solution expression (a) as

ĉik = cik(ni − k)!, d̂j l = djl(nj − l)!,

and it is assumed that the lower boundary value of the integral
in Eq. (A11) is zero. Rewriting ϕ

(n)
i and ψ

(n)
j in Eq. (A10) as

Âip
n
i e

ξi = P
(n)
i pn

i e
ξi , (A14)

B̂j (−qj )−neηj = Q
(n)
j (−qj )−neηj , (A15)

where P
(n)
i and Q

(n)
j are polynomials of degrees ni and nj in

(x−2,x−1,x1,x2), respectively, and using integration by parts,
m

(n)
ij in Eq. (A11) then turns into

m
(n)
ij =

(
−pi

qj

)n

eξi+ηj

ni+nj∑
ν=0

(−1)ν

(pi + qj )ν+1
∂ν
x1

P
(n)
i Q

(n)
j .

Due to the gauge freedom of τn, we can see that

m
(n)
ij =

ni+nj∑
ν=0

( −1

pi + qj

)ν+1

∂ν
x1

P
(n)
i Q

(n)
j (A16)

gives the same solution. In order for this solution to satisfy the
conjugate condition (A5), we take

qj = p̄j , d̂j l = ¯̂cjl . (A17)

Then in view of the variable transformation (A4), we have

Q
(n)
j = P

(−n)
j , m

(n)
ij = m

(−n)
ji , τ̄n = τ−n, (A18)

hence τn with the above matrix elements (A16) satisfies the
bilinear DSI equation (2.2).

Lastly we derive the explicit expression of P
(n)
i . From the

definition of P
(n)
i in Eq. (A14), we have

ni∑
k=0

ĉik

(ni − k)!

(
pi∂pi

)ni−k
pn

i e
ξi = P

(n)
i pn

i e
ξi . (A19)

For ξ = ∑
ν=−2,−1,1,2 pνxν , using the functional identity (see

the Appendix of Ref. [12])

eκp∂pF (p) = F (eκp),

we get

1

pneξ
eκp∂ppneξ = eκn exp

(∑
ν

(eνκ − 1)pνxν

)

= exp

(
κn +

∞∑
k=1

κk

k!

∑
ν

νkpνxν

)

=
∞∑

k=0

κkSk[ξ (n)(p)], (A20)

where ξ (n)(p) = [ξ1(p) + n,ξ2(p), . . . ,ξk(p) + δk1n, . . .] and
ξk(p) = ∑

ν νkpνxν/k!. By comparing the coefficient of order
κk in Eq. (A20), we obtain

1

pneξ

(p∂p)k

k!
pneξ = Sk[ξ (n)(p)].

Substituting p = pi and ξ = ξi into this equation and inserting
it into Eq. (A19), and recalling the variable transformation
(A4), we then find the explicit expression for P

(n)
i as

P
(n)
i =

ni∑
k=0

ĉikSni−k[ξ (n)(pi)],

where ξ (n)(pi) is as given in Theorem 1. Inserting this P
(n)
i and

Q
(n)
j from Eq. (A18) into Eq. (A16), the solution expression

in (b) of Theorem 1 is then derived. It is noted that by
using Lemma 1, we can also directly prove that m

(n)
ij in the

expression (b) of Theorem 1 gives the solution of the bilinear
DSI equation (2.2). This ends the proof of Theorem 1.
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